Cancer and development: Epithelial mesenchymal transition in terminal end buds of the mammary gland

Canitrot Regueira, Lucía

Loss of

Apico-Basa

Bioscience Faculty

Universitat Autónoma de Barcelona

2014/2015

Introduction

Several embryonic mechanisms have been described to be reactivated during tumour progression to serve cancer purposes. For example, epithelial-mesenchymal transition (EMT) allows cancer cells to invade, inducing metastasis. It is like disggregate epithelial structure in order to cells acquire the capacity of movement.

HALLMARK	CANCER	DEVELOPMENT
Sustaining Proliferative Signalling	Oncogens	Morphogens
Evading Growth Suppressors	Tumour suppressor genes (TSG)	Morphogens
Resisting Cell Death	No functional p53	p53 is dispensable
Enabling Replicative Immortality	Telomerase activation	Telomere elongation
Inducing Angiogenesis	Leaking and aberrant	Controlled, closed and
	vessels, erratic blood flow	correct blood flow
Activating Invasion and Metastasis	EMT	EMT

Table 1. It shows proposed correspondences or relation of hallmarks of cancer with development processes

Loss of cellular adhesion

Underlying basal membrane is degraded

Switch of cadherins, integrins and cytoeskeletal elements

Functional loss of E-cadherin is considered a hallmark of EMT and TGF-beta signalling pathway the primary inducer of EMT, as it induces E-cadherin repressors (Snail, Slug, SIP1).

Loss of apicobasal polarity

Ability to invade and disseminate

Nesenchyma

Figure Epithelial Mesenchymal Transition. More relevant changes in features and molecules are shown, displaying the conversion from epithelial to mesenchymal phenotype. Ref.(1)

Figure 2. TEB structure. At the onset of puberty, at the end of mammary gland ducts terminal end buds (TEB) are stablished, showing a multilayered epithelial structure. Ref. (1)

lumen or basal membrane, cell adhesion and apicobasal polarity

Induced by steroids at puberty: RTK signalling – shared with EM

• Elongation of the ducts depends on proliferation within the TEB, where cells

exhibit mesenchymal characteristics (epithelial plasticity): lacking contact with

Give rise to the bilayered mammary ducts (lobuloalveolar units, LAU)

• Multilayered epithelial structure: luminal (polar), basal (myoepithelial) and internal

•Induced by steroids at puberty; RTK signalling – shared with EMT
 •High proliferation rate → high probability of mutations and more sensitive to carcinogens → sites of malignization in breast cancer

Primary epithelial tumor cell fibroblast EMT inducers Aberrant activation Invasive migratory

Figure 3. TEB oncogenic transformation. Due to genetic alterations EMT inducers are expressed without any control. Cells are able to invade adjacent stroma and disseminate to spread throughout the body by blood vessels. Ref. (2)

Conclusions

Genetic instability → activation of EMT inducers

Even CIS but already EMT → implications not just for metastasis

Quicker dissemination as they are already motile when basal
membrane is disrupted → prediction of agresiveness

New insight in cancer = developmental point of view

Reactivated developmental mechanisms → molecules or pathways
implicated are possible target for novel therapies (highly specifics)

References

(1) Micalizzi DS, Farabaugh SM, Ford HL. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia. 2010 Jun;15(2):117–34.

(2) Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest . 2009 Jun 1;119(6):1438–49.