

Introduction & Aims

Echolocation, or biosonar, is an active sensory system that consists of the emission of sound and the determination of environmental characteristics from received echoes. Because of the wide array of echolocators, this review will focus on microchiropterans, odontocetes and birds (both oilbirds and swiftlets).

Function

Foraging, orientation, obstacle avoidance, social uses		Foraging, orientation, obstacle avoidance, possibly social uses		Orientation and obstacle avoidance , possibly conspecific recognition	
		Signa	acoustics		
Ultrasonic (20-60 kHz); 0,3-100 ms		Ultrasonic (30-200 kHz); 70-250 µs		Non- ultrasonic (0,5-15kHz); several ms	
			dulation		
Highly modulated depending on situation. Shared hunting and exploring patterns		Highly modulated depending on situation. Shared hunting and exploring patterns		Shared exploring pattern . Slightly modified when approaching objects	
Signal types					
FM: broadband, short. Species moving in open spaces CF/FM: narrowband, long CF		- Type I : narrowband, long, higher frequency. Species living in cluttered	Phocoena phocoena Type I	Broadband, short, low frequency. kHz - Oilbird: 2-6 pulses per click - Swiftlet: 1 or 2 pulses per click	

in the azimuth axis shifted to higher levels. **Target distance** processing in the thalamus and the auditory cortex.

Target distance processing in the thalamus and the auditory

Fig. 5

Fig 6: general representation

Close integration of motor and auditory systems.

Fig. 4: General mammalian auditory pathway, OLFACTORY represented on a microchiropteran brain. From: Covey and Casseday. Inside of: Popper and Fay. Hearing by bats. Springer-Verlag, 1995.

Conclusions

cortex, which is shifted to the parietal lobe.

Fig. 4

Audition is the main sensory input of the motor system

Fig. 5: Odontocete brain scheme. The auditory pathway is colored in blue. From: Oelschläger and Oelschläger. Inside of: Perrin et al. Encyclopedia of Marine Mammals. Academic Press, 2008.

ditory cortex of the avian auditory neural system. From: Jarvis et al. Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 2005.

Cerebrum Striatum Pallidum Thalamus Midbrain Cochlean Fig. 6 Hindbrain gangilon

Hyperpallium

Selected references

- Popper, A. N. and Fay, R. R. Hearing by bats. 1-36. Springer-Verlag, 1995. New York

- Thomas, J. et al. Echolocation in Bats and Dolphins. 27-36. The University of Chicago Press, 2004. Chicago. - Cranford, T. W. et al. Functional Morphology and Homology in the Odontocete Nasal Complex: Implications for Sound Generation. Journal of Morphology 228:223-285. 1996.

- Brinklov, S. et al. Echolocation in oilbirds and swiftlets. Frontiers in Physiology, 4(123):1-12. 2013 -Madsen, P. T. and Surlykke, A. Functional Convergence in Bat and Toothed Whale Biosonars. Physiology, 28: 276-283. 2013

Although these taxa are very different animals indeed, they all move in an environment where vision is limited. This has forced the development of echolocation.

Each group has found its own ways to achieve many shared traits; such as signal emission patterns. Odontocete and Microchiroptera have very similar signals and adaptations to environments that are acoustically alike. Therefore, signal-dependent reception adaptations are also similar; even though emission systems are quite different. Aves' signals are more primitive, since their anatomical features strongly limit sound perception.

Neural adaptations are not very well known, but tend toward the amplification of auditory areas and increasing complexity of biosonar processing.