# Nanostructuration of antimicrobial peptides:

Marta Batet Palau Bachelor Thesis –Degree in Biochemistry Universitat Autònoma de Barcelona Tutor: Ester Boix Borrás

# strategies and applications



Table 1. Summary of strategies for nanostructuring AMPs explored in pharmaceutical industry research Images from: Liu et al. Nat. Nanotechnol. 4, 457–463; Zetterberg et al. J. Control. Release 156, 323–328; Burchell et al. J. Phys. D: Appl. Phys. 32 1719; Tahirov et al. Nature 465, 747–751; Gribskov et al. To be Publ. at <a href="http://www.rcsb.org/pdb/explore.do?structureId=2mlt">http://www.rcsb.org/pdb/explore.do?structureId=2mlt</a>

| Strategy                                          | AMP                | Composition                                                            | Synthesis method                                                        | Assays                                                                                                                                                                                                                                     | Ref.                            |
|---------------------------------------------------|--------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| iholesterol Gly <sub>3</sub> Arg <sub>6</sub> TAT | TAT from VIH virus | Covalent<br>linked:<br>Cho-GLY <sub>3</sub> -<br>ARG <sub>6</sub> -TAT | Self-assembly while being dialyzed against deionized water              |                                                                                                                                                                                                                                            | Liu et al.<br>(2009)            |
| Lipid derived NP                                  | Melittin           | PEG-stabilized lipid disk: - POPC - Cho - Ceramide- PEG5000            | Thin film hydration + sonication                                        | * Proteolytic assay * Cell culture in vitro: - E. coli                                                                                                                                                                                     | Zetterber<br>g et al.<br>(2011) |
| Polymers                                          | Clavanin A         | EUDRAGIT©<br>(methacrylate<br>polymer)                                 | Oil/water emulsion, inducing nanoparticle aggregation by hydrophobicity | <ul> <li>* Peptide release assay</li> <li>* Cell culture in vitro:</li> <li>- S. aureus</li> <li>- K. pneumoneae</li> <li>- P. aeruginosa</li> <li>* Immunomodulatory assay</li> <li>* In vivo</li> <li>- Septicemic mice model</li> </ul> | Saúde et<br>al. (2014)          |

#### Images from: Hsu et al. Nat.Struct.Mol.Biol. 11, 963; Çağdaş et al. PhD. Diss Ali Demir Sezer (Ed.), ISBN: 978-953-51-1628-8; Xiao,. PhD diss., University of Tennessee (2010). **Synthesis** Ref. Composition Assays Strategy method **PEGylation** PEG 5000 Da \* Cell culture in vitro: Guiotto L. monocytogenes et al. (2002)E. faecalis **AMPs-loaded** \* Cell culture in vitro: Phosphatidylcholine Zou et al. L. monocytogenes Cholesterol (2012)S. aureus hydration Malheiro \* Cell culture on milk: Phosphatidylcholine L. monocytogenes s et al. (2010)

Zein protein

Table 1. Summary of strategies for nanostructuring AMPs explored in food industry research

### Food Industry

Nisin is the only antimicrobial peptide approved as a food preservative by FDA in 1988. It is synthetized by Lactococcus lactis which can generate the peptide directly in situ in fermented products or in bioreactors and adding it afterwards as an additive<sup>3</sup>. However the antimicrobial activity of AMPs can decrease due proteolytic degradation and the interaction between AMPs And food components, limitation that can be overcame nanoencapsulating them.

\* In vitro release

\* Cell culture in vitro:

L. monocytogenes

Dan Xiao

(2010)

kinetics

### Pharmaceutical industry/

Although their potential as therapeutic agents only a few AMPs have really reached the market. Polymyxins and gramicidins are one of those exceptions, although they have been only approved topical application due their hemolytic activity. However, with the emergence of multidrug resistance bacterial infections they had been administrated as in extremis therapy in some patients<sup>2</sup>. Nonetheless is necessary to reduce AMPs cytotoxicity as well as improve their pharmacokinetics and pharmacodynamics in order to have a real substitute of conventional antibiotics.

Biofilms are matrix-enclosed microbial

communities that are adhered to surfaces,

including medical devices such as implants

to antimicrobials. Reactive, charged or large

antimicrobials are neutralized and diluted to

sublethal concentrations before they can reach

individual bacterial cells. Moreover, as most of all

bacteria are into a dormant physiological state, those

antibiotics whose target is related to rapid cell division are not

effective<sup>4</sup>. Since AMPs form pores they can be more effective against

with the matrix, instead of treating stablished biofilms it seems more

dormant cells than conventional antibiotics. Due to AMPs can interact

interesting to functionalize surfaces in order to prevent film formation<sup>5</sup>.

extracellular matrix, biofilms are highly tolerant

and catheters. With cells protected by an

Antimicrobial peptides (AMPs) are an essential part of the innate immunity system of all kingdoms of life. From 5 to more than 50 amino acids, they are amphipathic and positive charged, what allow them to attach and form pores to microbial membranes inducing death to a

> possibility of entrapping them into nanostructures could overcome those hurdles.

Wang et al. J. Biol. Chem. 283, 32637-43 (2008); Hwang et al. Biochemistry 37, 4288-98 (1998)

## Actual panorama of antimicrobial peptides-

Polymer capsules

broad spectrum of microorganisms. The search for safer preservatives, the rise of infections related to biofilms' formation on medical devices and specially the emergence of multidrug resistant bacteria challenges that have surpassed traditional antibiotics. For that reason antimicrobial peptides are in the spotlight. However, AMPs have some limitations that have truncated their commercial development. The

#### Strengths limitations Wide variety of Highly **AMPs** susceptible to Broad spectrum of be biodegraded. Not orally action, Few resistance available mechanisms Cytotoxic at high reported. concentrations due their lose of Synergies with specificity

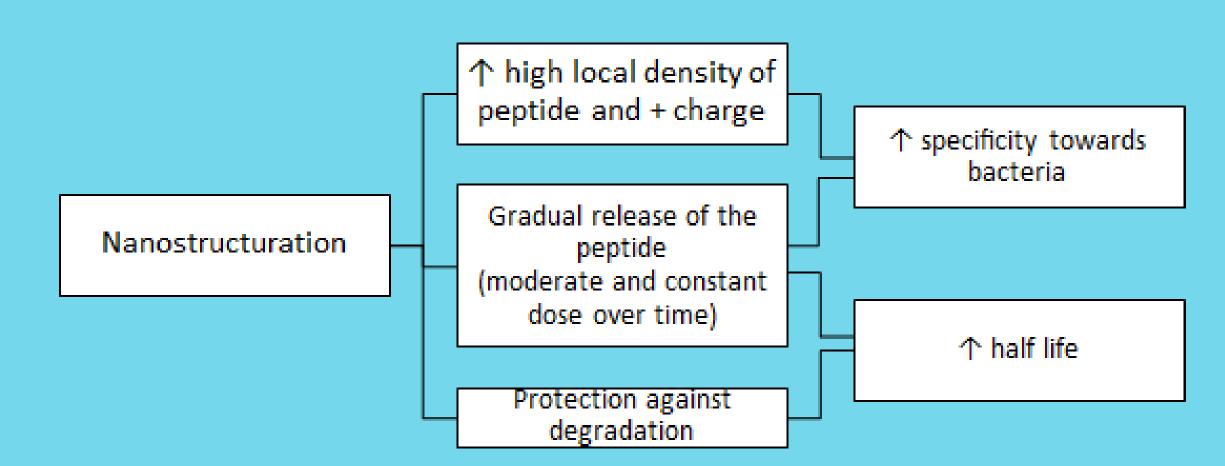
### Biofilms eradication

| Strategy                   | Peptide           | Composition | Synthesis method        | Assays                  | Ref.    |
|----------------------------|-------------------|-------------|-------------------------|-------------------------|---------|
| Hydrogels                  | Maximin-4         | Poly(HEMA)  | HEMA monomers           | * Peptide release       | Laverty |
|                            | + synthetic AMPs  | hydrogels   | were crosslinked with   | assay                   | et al.  |
|                            |                   |             | EGDMA                   | * Cell adhesion:        | (2012)  |
|                            |                   |             | + peptide added by      | - S. epidermis          |         |
|                            | 2                 |             | electrostatic           |                         |         |
|                            |                   |             | interaction or          |                         |         |
|                            |                   |             | entrapping during       |                         |         |
|                            |                   |             | synthesis               |                         |         |
| Polymeric                  | Tet-20Cys + other | DMA and     | 1) Ti surface           | * Cell adhesion:        | Gao et  |
| brushes                    | synthetic         | APMA        | immobilization of       | - S. epidermis          | al.     |
| Copolymer<br>Brush Peptide | peptides          | polymer     | ATRP initiator.         | * Cytotoxicity test     | (2011)  |
| ma may may                 |                   |             | 2) Chain elongation     | with osteoblast-like    |         |
| per per per per            |                   |             | with DMA and APMA       | cells.                  |         |
| may that the that          |                   |             | 3) Peptide              | * In vivo rat infection |         |
| THE THE MEN WAS THE        |                   |             | functionalization       | model                   |         |
| Substrate                  |                   |             | trough S covalent link. | - S. aureus             |         |
|                            |                   |             |                         |                         |         |

Table 1. Summary of strategies for nanostructuring AMPs explored in biofilms eradication research Images from: Savina et al. Soft Matter, 3(9), 1176; Gao, G. et al.. Biomaterials 32, 3899–3909

#### **References:**

- [1] Gordon, Y. J., Romanowski, E. G. & McDermott, A. M. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30, 505–515 (2005)
- [2] Li, J. et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. (2006). [3] De Arauz, L. J., Jozala, A. F., Mazzola, P. G. & Vessoni Penna, T. C. Nisin biotechnological production and application: a review. Trends Food Sci. Technol. 20, 146–154 (2009)


#### [4] Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004). [5] Bahar, A. A. & Ren, D. Antimicrobial peptides. Pharmaceuticals 6, 1543–1575 (2013).

### Antimicrobial peptides as antibiotics<sup>1</sup>

conventional antibiotics.

### To sum up

Strategies used for entrapping AMPs into nanostructures are different depending on their final purpose, as each application has its own requirements.



Nanostructuration of AMPs is not excluded from other investigation lines like researching on new synthetic AMPs or the synergic administration of AMPs with conventional antibiotics.