
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Reducing runtime of WindNinja’s wind fields
using accelerators

Author: Carles Tena Medina

Abstract– Forest fire is a natural disaster that every year causes lots of losses. Human beings have
always tried to fight them to prevent people from their effects. Currently, simulation tools and high
performance computing arise as a powerful tandem to aid forest fire management. It is well known
that wind is, by far, the most important factor in forest fire propagation and, furthermore, the wind
speed and wind direction is modeled by the terrain topography. For that reason, it is mandatory to
use wind field models that takes into account this features. WindNinja is a wind field model that
provides for a particular terrain the corresponding wind field for a given meteorological wind. The
obtained wind field can then be used in forest fire spread simulator (FARSITE in this work) to predict
the evolution of a given wildland fire. Coupling a wind field model to a forest fire spread system
provides better prediction results but the execution time of the whole systems increases. In this work,
a method to speed up WindNinja execution using accelerators (GPUs) is described.

Keywords– WindNinja, wind field, forest fires, Conjugate Gradient with Preconditioner, CGP,
GPU, CUDA, very sparse matrix

Resum– Els incendis son un desastre natural que cada any causen moltes pèrdues. Els humans
sempre han intentat lluitar contra ells prevenint a la gent dels seus efectes. Actualment, les eines
de simulació i la Computació d’Altes Prestacions són un poderós tàndem per ajudar a la gestió
dels incendis forestals. Es sabut que el vent és, de lluny, el factor més important en la propagació
d’incendis forestals i, per l’altre banda, la direcció i velocitat del vent es modelada per el terreny.
Per aquesta raó, es obligatori l’ús de models de camp de vents que tinguin en compte aquestes
caracterı́stiques. WindNinja és un modelador de camps de vents que el calcula amb el corresponent
terreny i un vent meteorològic donat. El camp de vents obtingut pot ser utilitzat per un simulador
(FARSITE en aquest treball) per predir l’evolució d’un incendi forestal. L’acoblament del camp de
vents al simulador proporciona millors resultats de predicció, però el temps de càlcul s’incrementa.
En aquest treball es descriu un mètode per accelerar l’execució de WindNinja utilitzant acceleradors
de còmput (GPUs).

Paraules clau– WindNinja, camp de vents, incendis, Gradient Conjugat amb Precondicionador,
CGP, GPU, CUDA, matrius molt disperses

F

1 INTRODUCTION

EVERY year forest fires destroy many acres and, even
in the worsts cases, lives. It’s true that the best way
to stop fires is their prevention, however, we can-

not always stop them only with prevention and, therefore,
predict their evolution is a knowledge that can aid to fight
them. There are many simulation tools, which main goal is

E-mail de contacte: carles.tenamed@e-campus.uab.cat
Menció realitzada: Enginyeria de Computadors
Advisor: Anna Cortés Fité (CAOS)

to predict the natural evolution of forest fires. Some of this
simulators are FARSITE [4], FireStation [6], Wildfireana-
lyst [2] or CARDYN [7].

FARSITE is one of the forest fire spread simulators
widely used in the forest fire scientific community. How-
ever, it was originally design to use wind values as homoge-
neous among the whole used terrain, as a consequence, the
prediction accuracy was poor. In order to overcome such
drawback, a wind field model has been coupled to FAR-
SITE in order to consider an heterogeneous wind field and
improve the forest fire prediction. The selected wind field
modeler has been WindNinja [5]. WindNinja was originally
developed by the same developer group as FARSITE, so it

July 2015, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: REDUCING RUNTIME OF WINDNINJA’S WIND FIELDS USING ACCELERATORS

was designed for being directly coupled to FARSITE.
This coupled forest fire spread prediction system, where

the wind field has been considered, provides more accurate
results than running FARSITE in a standalone scheme but,
the total execution time of the system is increased due to the
overhead included by the calculation of the wind field.

Since predicting forest fire evolution during an ongoing
event requires to be able to deliver a prediction under strict
deadlines, the final objective of this work is to execute the
coupled system WindNinja + FARSITE with a hard real
time restrictions. WindNinja has certain limitations that we
must consider. On the one hand, it needs a big memory
to save all the necessary data to be executed. Furthermore,
WindNinja spends a lot of time to generate an output and,
finally, WindNinja is not originally scalable.

WindNinja has 4 main parts: the equation creation, the
array storage, the solver of the equations and, lastly, the
wind field creation. Figure 1 shows these 4 components of
WindNinja, which are described in more detail below.

Figure 1: WindNinja parts

1.1 System of equations’creation
First of all, we have to calculate the equations that drive the
system and, for doing this, WindNinja needs the elevation
map of the terrain and the meteorological wind data (wind
direction and wind speed) at the time that the fire is taking
place.

The elevation map (DEM, Digital Elevation Map) con-
sists of a raster file where the terrain is represented by cells
of a certain size and, for each cell, the height of the partic-
ular point is stored. Furthermore, the relation of each point
with its neighbours is needed and, for that purposes, the real
distance between them is evaluated. Using this information,
WindNinja builds a mesh where each node contains the in-
formation of each cell and in the nodes connections are the
data of the relations.

Once the mesh is defined, the principles of mass con-
servation are applied to each node and each relation. The
relation of between two node is the same independently of
the order of the nodes, that is, one obtains the same value
either if the mass conservations is evaluated from node ni
to nj or in the backwards order. All obtained values will
be later stored in a matrix. The main diagonal of this ma-
trix includes the information of each node of the mesh, and
the other elements of the matrix are the data of all the re-
lations. As the relation between two nodes is the same if

we calculate it onwards or backwards, the final matrix is
a symmetric matrix and, because of this, we only need to
store each element once instead of twice. In particular, the
elements are stored in the superior part of the matrix what
avoid redundancies and it requires less memory.

As a result, we have an upper triangular sparse matrix
A. The original implementation of WindNinja stored this
matrix in CSR [3] mode (later explained).

Besides, WindNinja needs the atmospheric wind speed
and wind direction as input to generate a wind field. Wind-
Ninja applies also the principle of mass conservation in or-
der to obtain a vector b with the information at each mesh
point related to the instantaneous homogeneous meteoro-
logical wind.

In the next section, we describe in more detail the storage
scheme used by WindNinja (CSR) to keep the vector and
matrix values in memory.

1.2 Matrix storage
As it has been previously mentioned, both the matrix A and
the vector b are stored using the CSR scheme. To store a
dens vector is easy but, keeping a sparse matrix in memory
is more difficult. Our A matrix is extremely sparse, the ma-
jority of the elements are zero and, for this reason, Wind-
Ninja uses a method who does not spend memory saving
the zero elements. Because of this, WindNinja uses CSR
method (Compressed Sparse Row) [3].

CSR uses three vectors to storage the matrix data. The
firts vector, called data, saves the relevant data, rejecting
the zero elements of the matrix. The other two vectors
(col index and row index) save the necessary information
to position the data element in the matrix.

In particular, the col index stores the information related
to the columns. col index is a vector with the same size
that data vector. Each position of the vector contains the
column index positioned in A of the data element with the
same index of the col index vector.

On the other hand, the vector called row index is a vec-
tor with the same size that rows have the A matrix + 1. The
first position of this vector always has a zero, the next posi-
tions stored the accumulative number of elements that have
the row and the previous zone of A.

1.3 Solver: Resolution of the system of equa-
tions

Once we have obtained matrix A and vector b,we have to
calculate the following system of equation :

Ax = b

It seams that the best way to solve this systems consists
of isolating vector x like this:

x = A−1b

This kind of resolution method has many problems. On
the one hand, we cannot be sure that A−1 is also a sparse
matrix. On the other hand, the time spent to calculate the
inversion is too much. In addition, the inversion matrix
maybe could be too large to be stored in the available mem-
ory.



CARLES TENA MEDINA: REDUCING RUNTIME OF WINDNINJA’S WIND FIELDS USING ACCELERATORS 3

For that reason, the methods used to solve the system of
equations are the Krylov methods [13]. In particular, within
the Krylow’s spaces, one has the iterative methods for posi-
tive defined sparse matrix, like the WindNinja ones. Specif-
ically, the conjugate gradient with preconditioner (CGP) ex-
plained below.

The actual version of WindNinja with CGP is serial and it
does not use all the potential that provides the actual parallel
architectures such as multi-core and accelerators of compu-
tation. In order to take advantage of the computational im-
provements that this new computational architecture have,
one has first to analyze how the CGP is implemented to,
later, propose an alternative way of executing it on many-
core architecture. For that reason, in the next section, we
briefly describe how the CPG works.

1.3.1 Conjugate Gradient with Preconditioner

The purpose of including as a solver the CGP is to provide a
good solution to the system of equations expressed byAx =
b, in a computational feasible time and faster that not using
a Preconditioner. The algorithm that describes how to find
the vector x applying the CGP is shown in algorithm 1.

Starting from x0
Calculate g0 = Ax0 − b, which is the difference between
the initial value and the real value
Considering that M is the preconditioner evaluate
q0 =Mg0 and set the initial value of p as p0 = −q0
For k=1, . . . , n:

αk = (gk,qk)
(pk,Apk)

xk+1 = xk + αkpk
gk+1 = gk + αkApk
qk+1 =Mgk+1

βk = (gk+1,qk+1)
(gk,qk)

pk+1 = qk+1 + βkpk

Algorithm 1: Conjugate Gradient with Preconditioner
(CGP)

Typically, the x vector, that we want to found, lies at
the intersection point of all the hyperplanes created by the
quadratic form of each equation from the equations system.

To do this, one initializes x and, at each iteration, one
modifies it to be each time near to the real solution. These
modifications are going to be explained by following the
algorithm 1.

To obtain the best possible transformation of x we have
to calculate the vector p who is going to modify it.

To do the modifications we need two scalars: α and β
that will modify the module of some vectors and, we also
need three more vectors: p, g and q.

First of all, we have to initialize the variables that we
use in the algorithm to a concrete value to make shorter the
convergence. After that, we start the modifications of x that
implies less iterations to converge, find the optimum result.

In order to find p, the first thing that we have to do is to
calculate the vector g using the previous version of g, the A
matrix, the previous version of p and alpha.

When we have found g, we are ready to found q that is
an orthogonal vector perpendicular to g. Then, to obtain the
result, we need the already calculated g and the precondi-
tioner.

Finally, we can find the p vector using q and the previous
version of p modified by β that we also have to calculate
before this.

At last, we are ready to modify x using p, modified by α,
and the previous version of x.

This process is repeated for each iteration and we have to
repeat it until the result becomes optimal

The optimum result of x lies in the intersection of the
maximum number of hyperplanes possibles. That depends
on the reliability (error) of the result. Figure 2 shows in a
graphical way, how this iterative process works.

Figure 2: Conjugate Gradient with Preconditioner

1.4 Wind field creation
Finally, with the obtained results from the CGP (vector x),
all obtained values related to one particular cell are re-
grouped. Consequently, one obtains a solution with the
same number of elements that cells have the original map.

2 OBJECTIVES

As it has been previously introduced, the main objective
of this study is to reduce the execution time of WindNinja
in order to be able to generate a wind field evaluation at
real time during an ongoing hazard. Otherwise, it will be
impossible to deploy an operational system that could aid
firefighter to take more accurate mitigation decisions. In
particular, the part of WindNinja that takes more time is the
solver of the equations system that spends, more or less,
80% of all execution time.

There are many strategies to speed up the solver but, we
have focused to using accelerators, in particular, GPUs.

The main objective of this work, is to find an optimum
strategy that takes the less time possible and it requires



4 EE/UAB TFG INFORMÀTICA: REDUCING RUNTIME OF WINDNINJA’S WIND FIELDS USING ACCELERATORS

as few memory as possible to obtain the same results that
WindNinja would deliver without any improvement.

3 STATE OF THE ART

As it has been previously mentioned, the solver of Wind-
Ninja takes the major part of all the runtime (80%) and it is
not paralleled at all. Furthermore, it has a very bad scalabil-
ity when the size of the problem is increased.

There exist many strategies to reduce the execution
time of WindNinja such as: partitioning the map Map
Partitioning[11], reducing the resolution of the map, Map
Resolution[9]. However, these solutions are not oriented
to reduce the execution time of the solver itself, they are
oriented to reduce the size of the system of equations and,
therefore, it takes less time to run the solver.

There are others solutions, called domain decomposition,
oriented to reduce the size of the mesh from which the sys-
tem of equation is obtained. Some of them are oriented to
use a better preconditioner such as: the Schwarz method[8]
or the Schur method[10].

Other kind of strategies are oriented to parallelize the
code of the solver using: OpenMP, MPI or news technolo-
gies like accelerator such as XeonPhi or, in our case, Graph-
ics Processing Units (GPUs).

Another important issue to consider in this work, is the
one related to the matrix storage strategy. Due to the par-
ticular structure of the matrix A, a new way to storage the
matrix that improves a lot the runtime execution has been
developed. It is possible because the matrix of WindNinja
has a specifically pattern that makes possible the transfor-
mation of this sparse matrix to 14 dense vectors. It is a
great innovation because reduce considerably the memory
needed to storage the full matrix and improve the memory
accesses to it. In this work, we have taken advantage of this
new storage strategy and we have use the strategy of the
vectorized matrix to make our solution[12].

There are other options, already in use, like use libraries
like cuSparse[1] from NVIDIA, but none of them are effi-
cient with a very sparse matrix like the one we are working
with.

4 METHODOLOGY

In this study, first of all, WindNinja has been analyzed to
understand how it works.

Secondly, the solver has been extracted from WindNinja
and it has been deeply studied for a better comprehension.

Apart of this, we had analyzed our available computa-
tional platform and hardware and how they work. Then we
had been doing smalls tests to get acquainted with the hard-
ware doing little programs who work in the available GPU.

• Model: NVIDIA GeForce GTX TITAN.

• Memory: 6144 MB.

• Threads: 1024.

When all the concepts had been assimilated, the first
thing that was tried was to transform all the solver using
CUDA programming language. But, unfortunately, it didn’t
work.

Then, once we were more aware of the problem, we
started doing small changes in the original code to trans-
form every function to CUDA language, step by step.

When all the functions of the solver had been translated
into the CUDA mode, we were able to unify different func-
tions to a better and faster CUDA functions called kernels.

The problem comes out when a simple function needs
more than one kernel. These kernels are not able to be uni-
fied and, it means that they have to be executed one by one,
what implies that the second one have to wait until the first
one have finished.

Because of this, we cannot unify all the functions in the
same kernel, but, if it is discovered the way to do it, it will
be a way to improve even more the execution time.

5 RESULTS

Following the methodology described above, we have run
the modify parallel CGP solver using matrix pattern stor-
age for different matrix sizes. The number of elements of
the matrix has been varied from 800.000 elements to 20 mil-
lions elements and the CGP has been executed in its serial
version in a CPU, in CPU including the new storage pattern
and executed in GPU with the same new storage pattern.
The results in terms of execution time in seconds are listed
in table the following table.

N MEM CPU CPU-Patron GPU
0.8 M 353 MB 285.70 204.32 5.17
1.8 M 793 MB 512.27 371.59 8.48
3.2 M 1.38 GB 1,038.86 756.21 16.58
5 M 2.17 GB 1,728.89 1,258.76 26.65

12.8 M 5.56 GB 5,075.35 3,784.40 78.09
20 M 7.03 GB 9.119.69 6,710.25 killed

Table 2: Runtime (seconds)

As it can be observed, the proposed strategy improves
significantly reduce the execution time of the CGP solver
keeping the times to a feasible time that could be considered
to be included in a real time prediction system.

From the table, we can note that there is a case that no
time has been provided. This particular case is the situation
where the obtained matrix required more than 6 GB what
is the maximum memory capacity of the used GPU. In this
case, the execution is killed and no results are reported.

So, despite the case where the matrix is too big for the
current version of the proposed implementation on GPUs,
the new approach provides greats improvements in terms
of time savings enabling the capability of performing wind
field evaluations at real time.

6 CONCLUSIONS

There exists many libraries that offer solutions to run CGP
in parallel such as cuSparse, PETSc, ... but the kind of ma-
trix generated in our problem is too disperse and it has a
bad scalability when applying these solutions. We should
provide a comparative study in terms of time to these alter-
natives but they have not been implemented yet. However,
our expectations are that they cannot improve our results
using pure CUDA language programming.



CARLES TENA MEDINA: REDUCING RUNTIME OF WINDNINJA’S WIND FIELDS USING ACCELERATORS 5

To sum up, we have achieved really great results in terms
of execution time reductions when using GPUs, although
we think that they can be improved if additional enhance-
ments are included the described proposal.

One way to improve the solution could be to study how a
reduction function can be executed in an unique kernel, and
when it becomes possible, unify all the kernels in only one
and take advantage of the different kinds of memory of the
GPUs to make it faster.

Apart of this, we think that nowadays the options to de-
velop code to run in the GPUs is a bit rudimentary, like the
other ones in the past, and it is a problem to develop code
faster and easily. But with hard work you can obtain really
great results. We think that in the future will appear new
options to do it efficiently and with better results.

REFERENCES

[1] cusparse.
http://docs.nvidia.com/cuda/cusparse: Last visited on
17/06/2015.

[2] Tomàs Artés, Andrés Cencerrado, Ana Cortés, Tomàs
Margalef, Darı́o Rodrı́guez-Aseretto, Thomas Petro-
liagkis, and Jesús San-Miguel-Ayanz. Towards a Dy-
namic Data Driven Wildfire Behavior Prediction Sys-
tem at European Level. Procedia Computer Science,
29:1216–1226, 2014.

[3] Aiyoub Farzaneh, Hossein Kheiri, and Mehdi Ab-
baspour Shahmersi. an Efficient Storage Format for
Large Sparse Matrices. Communications, Faculty Of
Science, University of Ankara Series A1Mathematics
and Statistics, 0:001–010, 2009.

[4] Mark A Finney. Farsite fire area simulator - model
development and evaluation. Ogden, UT [Department
of Agriculture, Forest Service, Rocky Mountain Re-
search Station, 1998.

[5] Jason Forthofer, Kyle Shannon, and Bret Butler. Sim-
ulating diurnally driven slope winds with WindNinja.
Proceedings of 8th Symposium on Fire and Forest Me-
teorological Society, page 13, 2009.

[6] a. M G Lopes, M. G. Cruz, and D. X. Viegas. Firesta-
tion - An integrated software system for the numeri-
cal simulation of fire spread on complex topography.
Environmental Modelling and Software, 17:269–285,
2002.

[7] J. Martinez Millan, S. Vignote, J. Martos, and D. Ca-
ballero. Cardin, un sistema para la simulación de la
propagación de incendios forestales. Forest Systems,
0(1), 2008.

[8] Gemma Sanjuan and Ana Cortés. Applying Domain
Decomposition Schwarz Method to Accelerate Wind
Field Calculation. International Conference on High
Performance Computing Simulation 2015. CORE B.

[9] Gemma Sanjuan, Ana Cortés, and Tomàs Margalef.
Effect of map resolution on wind field accuracy Pre-
diction. International Conference on Fire Behaviour
research 2015.

[10] Gemma Sanjuan, Tomàs Margalef, and Ana Cortés.
Applying Domain Decomposition to Wind Field Cal-
culation Parallel Computing Special Issue on Parallel
Matrix Algorithms and Applications. Parallel Com-
puting Systems Applications.

[11] Gemma Sanjuan, Tomàs Margalef, and Ana Cortés.
Adapting Map Resolution to Accomplish Execution
Time Constraints in Wind Field Calculation. Procedia
Computer Science, 51:2749–2753, 2015.

[12] Gemma Sanjuan, Carles Tena, and Ana Cortés. Ap-
plying vectorization of diagonal sparse matrix to ac-
celerate wind field calculation. 2015.

[13] Ha Van Der Vorst. Iterative Krylov methods for large
linear systems. 2003.


