INTRODUCTION
Gastrointestinal motility is the result of the coordinated action of smooth muscle cells (SMC), neurons of the enteric nervous system and interstitial cells of Cajal. The principal neurotransmitters of inhibitory motor neurones are nitric oxide (NO) and ATP, which produce SMC relaxation. The receptor P2Y1 is responsible for purinergic relaxations.

OBJECTIVE AND JUSTIFICATION
The aim of this study was to characterize the effect of a new antithrombotic drug named BPTU on purinergic relaxations of the rat gastrointestinal tract. BPTU is the first allosteric antagonist of the P2Y1 receptor.

MATERIAL AND METHODS
The study was performed with 10 rats Sprague Dawley (5 males and 5 females). Circular oriented muscle strips from colon and antrum were studied using the organ bath technique (NANC conditions and L-NNA).

RESULTS
Figure 3. Effect of BPTU on purinergic relaxation in the rat gastrointestinal tract. Both orthosteric (MRS2500) and allosteric (BPTU) antagonists blocked the relaxation in a concentration-dependent manner. MRS2500 was more potent than BPTU. The antrum needed more concentration than the colon in both antagonists.

DISCUSSION
BPTU reverses the purinergic relaxation in rat gastrointestinal tract. It is a possible side effect to consider when used as an antithrombotic. Furthermore, their use can be considered as a treatment for motor digestive diseases to increase the gastrointestinal motility.

CONCLUSION
The results of this study will be published in the paper: BPTU, an allosteric antagonist of P2Y1 receptor, blocks nerve-mediated inhibitory neurotransmitter responses in the gastrointestinal tract of rodents.