PROTECTIVE AND PATHOLOGICAL ROLE OF MICROGLIA IN ALZHEIMER’S DISEASE

Alejandro Ramos-Roda

INTRODUCTION Alzheimer’s disease (AD) is the most common form of dementia. It is characterized by a progressive memory loss and changes in behaviour due to the neuronal death in several regions of central nervous system (CNS), mainly the cerebral cortex, the hippocampus and the amygdala. Although the major hallmarks of AD are plaques of amyloid-β peptides (Aβ) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein, the aetiology of the disease remains unknown. Among others, it has been reported that the immune system plays an important role in both protective and pathological processes in AD and microglial cells would be the main responsible.

OBJECTIVES As previously indicated, microglial cells are involved in AD. Nevertheless, the influence of these cells has not been completely elucidated. The main goal of the present work is to understand the role of microglia in the progression of AD and to review the use of monoclonal antibodies (Mabs) in order to reduce Aβ burden.

IMPLICATIONS OF MICROGLIA RECEPTORS IN AD
Several microglia receptors cooperate in the recognition, internalization and removal of Aβ and polymorphisms in some of them may result in protection or damage [1]. In some cases microglia receptors may increase Aβ uptake:


But in other may mediate early synapse loss:

Fig 2. Aβ oligomers induce synapse loss in mice (black). However, co-injection of Aβ oligomers with antibody against C1q (striped) have not effect. From Science. 2016 May 6;352(6286):712-6.

MICROGLIA IN AGING
Microglia may be protective or harmful depending on its phenotype. It has been reported that aging enhances classical activation of microglia and mitigate the neuroprotective alternative phenotype [3].

Fig 4. Hypothetical spectrum of microglial phenotypes. It stands out that in AD patients ROS generation is increased and phagocytic ability is reduced. From Gliol. 2016 Apr 21. doi: 10.1002/glia.22988.

MICROGLIA IS INVOLVED IN Tau PROPAGATION
Although abnormal Tau protein has been found in different regions of the brain, specially the entorhinal cortex (EC) and the hippocampus, how it has been propagated was unknown. It had been proposed that microglia could play an important role in Tau propagation due to their ability to phagocyte and excocyte several molecules and it has been confirmed recently [2].

ANTIBODIES AS A NEW APPROACH TO FIGHT AGAINST AD
The use of antibodies against Aβ is supported by several evidences which demonstrate that FcR-mediated phagocytosis contribute in the plaques clearance. However, due to over-activation of microglia some of them lead to plasma leakage. That is why several studies with lack Fc domain antibodies are in development. In fact, experiments in the triple transgenic mice (3xTg-AD) which were treated with scFv-h3D6 (derived from napineumazab) show an improvement in cognition and a neuroprotective effect in deep cerebellar nuclei [4].

REFERENCES
[4] Esquerda-Canals, G. et al. 3xTg-AD mice and protection by an anti-amyloid β antibody fragment. Loss of deep cerebellar nuclei neurons in the 3xTg-AD mice and protection by an anti-amyloid β antibody fragment. MAb 0862, (2013)