Hector Puigd

Bachelor's Degree Final Project

omenech Gomez | Bachelor's Degree in Genetics

Analysis of the latest pan-specific bioinformatic tools for the discovery of

Universitat Autonoma de Barcelona

ABSTRACT: Performance of bioinformatic a;lbproaches to discover HLA-II binding
able to predict binding epitopes for MHC alleles without previous affinity data. In

MHC class |l binding epitopes

epitopes is still far from best. HLA-II polfzmorphism lead to the
act, this kind of tools do perform slight
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creation of the so-called pan-specific tools, which are

y worse than tools focused on HLA-I molecules. The aim of this review is to

perform a presentation of the fortes as well as the limitations in the latest pan-specific tools in order to give some enlightenment for the progress in the field.
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Figure 1. General schematic introduction into bioinformatic tools for the prediction of MHC-II binding epitopes.

Introduction — Methodology —

The aim to improve existing vaccines and to create new ones for remaining infections The following conditions were declared
lead researchers into the use of omics data and bioinformatics to predict which proteins to choose which tools would be analysed:
o ) have the best potentiality to induce a big immune response, thus establishing the selected tools must have been created or
Bioinformatic approach of Reverse Vaccinology. upldatfed within the lzliost ﬁ}\lle }éears and itsf
n nction m i r
tools per formance MHC-II molecules present a higher degree of complexity for the prediction of binding K/[I—%]C lcl]agts (1)1 binﬁfﬁg gpitto(;es Si%\get}éo?s
epitopes due to its extremely polymorphic beta chain as well as the length variation which include other functionalities will
binding peptides have because of the openness of the binding groove (Guo, Luo, and be discarded—, and they must be pan-

Zhu 2013). These polymorphisms are responsible for
tools, which use information concerning several allele

the development of pan-specific specific.
s in order to predict binders not

only for known alleles but also for alleles of which there is no binding information Finally, a PUBMED search was performed

(Zhang, Udaka, et al. 2012).

using the query ("HLA-DR" OR "MHC-II")
AND "pan-specific" and the result was

The aim of this review is to analyse important features which represent some of the restricted to items publicated in the last

TEPITOPEpan Predivac

latest pan-specific bioinformatic tools created to discover new MHC-II binding epitopes. five years.
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Figure 2. Graphic explanation of TEPITOPEpan's workflow. Once the - - [ ¢ e e °
query allele PSSM is generated, it is used to predict binders.
Figure 3. Steps of Predivac's workflow. Using PWMs, which are similar to
TEPITOPEpan (Zhang, Chen, et al. 2012) works with the TEPITOPEpan's PSSMs, Predivac assigns values to peptide nonamers. Figure 4. MHC2SKpan's tool basic points.
PSSMs generated for TEPITOPE (Sturniolo et al. 1999). Each
PSSM consists of 20 rows, one fo_r each am1noac1gi, gnd 9 Oyarzn et al. (2013) based their tool in the Specificity DeveIOﬁped by Guo, Luo, and Zhu (2013), MHC2SKpan is a
columns which correspond to significant pockets within the Determining Residues (SDRs) concept and was developed using kernel-based method that considers variation of epitope lengths
binding groove with regard to determining peptide binding high affinity data to infer peptidic properties which are related because nonamers may not be sufficient to significantly predict
specificity. TEPITOPEpan calculates the contribution of these to epitope promiscuity and immunodominance (Sirskyj et al. class II MHC-binding proteins. Kernels permit a fast
matrices to generate a PSSM for an unkown allele based on the 2011). These data were used to build a specific database for classification of data as they use features and transform them
similarity between the unkown allele protein sequence and all Predivac, which is called PredivacDB and, in fact, contains 2695 into easy intepretable information which permits distinction of
the alleles for which TEPITOPE generated a PSSM. sequences which cover 29 class II MHC alleles. binders and non-binders.
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Figure 5. Illustration of NetMHClIIpan's ANN system training.

NetMHCIIpan (Andreatta et al. 2015) uses a feed-forward
artificial neural network, which is composed of an input layer, a
layer with different amounts of hidden neurons, and a single
output neuron. Artificial neural networks are trained with input
andp output real data, so weights adjust in a way that the
calculated output fits the real output value.

Discussion

Database dynamics
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Figure 6. Database updating of each tool analysed. This shows a major drawback as almost all tools Fresent
an evident lack of updating, so they cannot improve their accuracy by handling a major amount o

As we can see in figure 6, NetMHClIIpan's database updates reflect the growth of data available could be included into the pseudosequence because of their position despite not being contact
for these prediction tools. If databases created for each tool were updated regularly, accuracy of residues and be considered as such, thus introducing false results. Moreover, this leads to the
prediction would probably increae, as more alleles and more diverse epitopes would be taken fact that some contact residues could become absent in the pseudosequence, which implies loss
into consideration. of information.

data. Three of the four tools presented in this review use the same rule to create their
pseudosequences, which is based on the distance between some peptide-bound MHC-II
molecules whose structure was analysed. The fact is that some residues in an unknown allele

Figure 7. Graphic representation of pseudosequence generation in each of the tools analysed in this review.
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Figure 8. Impact of epitope promiscuity evaluation.

All of reviewed methods analgse binding epitopes for only one allele at once.
A%propriate epitopes must I
difterent MHC alleles. It makes sense to consider that epitope-predicting
tools should intrinsicly feature this characteristic in order to eliminate non-
promiscuous predictions if needed or to simply know which MHC alleles
could bind an epitope to, for example, select epitopes that would bind to the
great majority of a determined population.

e promiscuous and thus they must bind to

Mutation as an escape way

Final remarks
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Figure 9. Score assignment and score normalization illustrated processes. Figure 10. Considerations related to base substitutions in both epitopes and MHC molecules. pOSIHY
TEPITOPEpan method has been previously criticized by Shen, Zhang, and Wong (2013) A subunit vaccine could result in failure because of a spontaneus aminoacid substitution in its target. A nucleotide One of the most important conclusions of this review is
because of the utilization of BLOSUMS62 in order to calculate similarity between to sequences mutation rate should be taken into consideration, as mutation rates in different parts of a genome tend to be the fact that there is a need of bioinformaticians who are
to establish the contribution of each allele to the PSSM for an unkown allele. BLOSUMG62 different in a determined pattern (Foster et al. 2013). In addition to this, different microorganisms usually have able to handle and manipulate raw data in order to
similarity score can easily be negative, so the weight of negative-scoring comparisons could not different biases for certain types of mutations (Lee et al. 2012) that could be useful to predict those obtain more specific data for the training and to
be computed in TEPITOPEpan. In fact, Zhang et al. (2012) did consider this issue because their immunodominant and promiscuous epitopes whose mutations do not affect their immunodominancy. New MHC understand more about immune response and rational
tool normalizes similarity scores in order to have only positive values. alleles generated by germline mutations should be taken into consideration to increase vaccine effectiveness. vaccine development.
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