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ABSTRACT: Performance of bioinformatic approaches to discover HLA-II binding epitopes is still far from best. HLA-II polymorphism lead to the creation of the so-called pan-specific tools, which are
able to predict binding epitopes for MHC alleles without previous affinity data. In fact, this kind of tools do perform slightly worse than tools focused on HLA-I molecules. The aim of this review is to
perform a presentation of the fortes as well as the limitations in the latest pan-specific tools in order to give some enlightenment for the progress in the field.
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Figure 1.General schematic introduction into bioinformatic tools for the prediction of MHC-II binding epitopes.

The aim to improve existing vaccines and to create new ones for remaining infections
lead researchers into the use of omics data and bioinformatics to predict which proteins
have the best potentiality to induce a big immune response, thus establishing the
approach of Reverse Vaccinology.
MHC-II molecules present a higher degree of complexity for the prediction of binding
epitopes due to its extremely polymorphic beta chain as well as the length variation
binding peptides have because of the openness of the binding groove (Guo, Luo, and
Zhu 2013). These polymorphisms are responsible for the development of pan-specific
tools, which use information concerning several alleles in order to predict binders not
only for known alleles but also for alleles of which there is no binding information
(Zhang, Udaka, et al. 2012).
The aim of this review is to analyse important features which represent some of the
latest pan-specific bioinformatic tools created to discover new MHC-II binding epitopes.

The following conditions were declared
to choose which tools would be analysed:
selected tools must have been created or
updated within the last five years and its
only function must be the discovery of
MHC class II binding epitopes —so tools
which include other functionalities will
be discarded—, and they must be pan-
specific.
Finally, a PUBMED search was performed
using the query ("HLA-DR" OR "MHC-II")
AND "pan-specific" and the result was
restricted to items publicated in the last
five years.
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Figure 7.Graphic representation of pseudosequence generation in each of the tools analysed in this review. Figure 8. Impact of epitope promiscuity evaluation.

Three of the four tools presented in this review use the same rule to create their
pseudosequences, which is based on the distance between some peptide-bound MHC-II
molecules whose structure was analysed. The fact is that some residues in an unknown allele
could be included into the pseudosequence because of their position despite not being contact
residues and be considered as such, thus introducing false results. Moreover, this leads to the
fact that some contact residues could become absent in the pseudosequence, which implies loss
of information.

All of reviewed methods analyse binding epitopes for only one allele at once.
Appropriate epitopes must be promiscuous and thus they must bind to
different MHC alleles. It makes sense to consider that epitope-predicting
tools should intrinsicly feature this characteristic in order to eliminate non-
promiscuous predictions if needed or to simply know which MHC alleles
could bind an epitope to, for example, select epitopes that would bind to the
great majority of a determined population.

One of the most important conclusions of this review is
the fact that there is a need of bioinformaticians who are
able to handle and manipulate raw data in order to
obtain more specific data for the training and to
understand more about immune response and rational
vaccine development.
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Figure 2.Graphic explanation of TEPITOPEpan's workflow. Once the
query allele PSSM is generated, it is used to predict binders.

TEPITOPEpan (Zhang, Chen, et al. 2012) works with the
PSSMs generated for TEPITOPE (Sturniolo et al. 1999). Each
PSSM consists of 20 rows, one for each aminoacid, and 9
columns which correspond to significant pockets within the
binding groove with regard to determining peptide binding
specificity. TEPITOPEpan calculates the contribution of these
matrices to generate a PSSM for an unkown allele based on the
similarity between the unkown allele protein sequence and all
the alleles for which TEPITOPE generated a PSSM.
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Figure 3. Steps of Predivac's workflow. Using PWMs, which are similar to
TEPITOPEpan's PSSMs, Predivac assigns values to peptide nonamers.

Oyarzún et al. (2013) based their tool in the Specificity
Determining Residues (SDRs) concept and was developed using
high affinity data to infer peptidic properties which are related
to epitope promiscuity and immunodominance (Sirskyj et al.
2011). These data were used to build a specific database for
Predivac, which is called PredivacDB and, in fact, contains 2695
sequences which cover 29 class II MHC alleles.
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Figure 6.Database updating of each tool analysed. This shows a major drawback as almost all tools present
an evident lack of updating, so they cannot improve their accuracy by handling a major amount of data.

As we can see in figure 6, NetMHCIIpan's database updates reflect the growth of data available
for these prediction tools. If databases created for each tool were updated regularly, accuracy of
prediction would probably increae, as more alleles and more diverse epitopes would be taken
into consideration.
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Figure 9. Score assignment and score normalization illustrated processes. Figure 10. Considerations related to base substitutions in both epitopes and MHC molecules.

TEPITOPEpan method has been previously criticized by Shen, Zhang, and Wong (2013)
because of the utilization of BLOSUM62 in order to calculate similarity between to sequences
to establish the contribution of each allele to the PSSM for an unkown allele. BLOSUM62
similarity score can easily be negative, so the weight of negative-scoring comparisons could not
be computed in TEPITOPEpan. In fact, Zhang et al. (2012) did consider this issue because their
tool normalizes similarity scores in order to have only positive values.

A subunit vaccine could result in failure because of a spontaneus aminoacid substitution in its target. A nucleotide
mutation rate should be taken into consideration, as mutation rates in different parts of a genome tend to be
different in a determined pattern (Foster et al. 2013). In addition to this, different microorganisms usually have
different biases for certain types of mutations (Lee et al. 2012) that could be useful to predict those
immunodominant and promiscuous epitopes whose mutations do not affect their immunodominancy. New MHC
alleles generated by germline mutations should be taken into consideration to increase vaccine effectiveness.
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Figure 4.MHC2SKpan's tool basic points. Figure 5. Illustration of NetMHCIIpan's ANN system training.
Developped by Guo, Luo, and Zhu (2013), MHC2SKpan is a
kernel-based method that considers variation of epitope lengths
because nonamers may not be sufficient to significantly predict
class II MHC-binding proteins. Kernels permit a fast
classification of data as they use features and transform them
into easy intepretable information which permits distinction of
binders and non-binders.

NetMHCIIpan (Andreatta et al. 2015) uses a feed-forward
artificial neural network, which is composed of an input layer, a
layer with different amounts of hidden neurons, and a single
output neuron. Artificial neural networks are trained with input
and output real data, so weights adjust in a way that the
calculated output fits the real output value.
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