The role of ALDH^{br} BCSCs as prognostic markers and therapeutic targets in breast cancer Manuel Grima Reyes Tutor: Jaume Farrés Treball de Final de Grau Grau de Bioquímica Universitat Autònoma de Barcelona Juny 2016 # Introduction: - The CSC theory proposes that CSCs are able to establish themselves, drive tumorigenesis giving rise to all cancer cell types, induce metastasis and recurrence, because of their self-renewal, differentiation and chemotherapy/radiotherapy resistance abilities. - Isolation of CSCs and targeting therapies against them are needed to overcome cancer. - ALDHs are CSC markers and ALDHbr CSCs selects for poor prognosis cancers. - ALDHs are involved in the RA signalling, the self-protection against oxidative stress and the chemotherapy/radiotherapy resistance of CSCs ## **Objectives:** - 1. To study the role of ALDHs in BCSCs. - 2. To assess ALDH^{br} BCSCs as prognostic markers in breast cancer - To assess ALDH^{br} BCSCs as therapeutic targets in breast cancer. Transcriptional and post- translational regulation of ALDHS in BCSCs **Results:** ### Prognostic value of ALDHbr BCSCs | | Marker | Prognostic value | | |-------------------------|---|---|--| | Cui et al. | ALDH ^b 'CD44+ BCSCs | Correlated with the Ki67* molecular subtype
of invasive breast carcinoma, which is a
marker of chemotherapy resistance and,
therefore, poor survival. | | | Marcato et al. | ALDH1A3br BCSCs | Correlated with poor survival in triple-
negative breast cancers. | | | Tiezzi et al. | ALDH+ BCSCs | Correlated with poor prognosis in locally
advanced breast cancers | | | Marcato et al. | ALDH1A3br BCSCs | Correlated with high proximal metastasis in
high grade breast cancers | | | Woodward et al. | ALDH1+BCSCs | Independent predictor of worse overall
survival in ER ⁻ breast cancers | | | Neumeister et al. | ALDH1 ^{br} CD44 ⁺ CD24 ⁻
epithelial BCSCs | Correlated with worse outcome independently of tumour grade, tumour size, ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and nodal status | | | Khoury et al. | ALDH1A1+BCSCs | Correlated with increased risk of recurrence in
post-neoadjuvant chemotherapy patients with
triple-negative, HER2* and lymph-node status
breast cancers | | | Charafe-Jauffret et al. | ALDH ^{br} BCSCs | Independent predictor of metastasis | | | Zhong et al. | ALDH1 ⁺ BCSCs | Independent predictor of recurrence and worse disease-free survival (DFS) in invasive ductal breast cancer | | | Qiu et al. | ALDH1A3 ⁺ BCSCs | Correlated with distant metastasis and worse DFS and overall survival (OS) | | | Opdenaker et al. | ALDH1A3+ BCSCs | Correlated with tumour grade in triple-
negative breast cancers | | | Qiu et al. | ALDH1A3 ⁺ CD44 ⁺ BCSCs | Correlated with advanced stage, distant metastasis, high tumour size and high nodal status breast cancers and predictor of worse DFS and OS independently of the treatment received | | - ALDH1A3^{br} BCSCs are the best ALDH markers to predict prognosis. - ALDH1A3^{br} BCSCs are poor prognosis markers. - Further research is needed to adjust their prognostic value. - Further research is needed regarding the best combination of markers. - Further research is needed regarding the distinction between ALDH^{br} BCSCs and ALDH^{br} normal breast SCs. - Further research is needed regarding the prognostic value of ALDHs in CTCs, DTCs and epithelial-like BCSCs. The role of ALDHs in the RA signalling pathways of BCSCs The role of ALDHs in the self-protection against oxidative stress of BCSCs The role of ALDHs in chemotherapy/radiothera py resistance of BCSCs # Therapeutic target value of ALDH^{br} BCSCs | | Treatment | Target | Outcome | |--------------------|--|---|---| | Bhola et al. | TGF-β type I receptor
kinase inhibitor
(LY2157299), a neutralizing
TGF-β type II receptor
antibody and SMAD4 siRNA | TGFβ signalling pathway of ALDH ^{6r} BCSCs in triplenegative breast cancer cell lines and mouse xenografts | Blockage of ALDH ^{to} BCSCs
expansion and prevention of
recurrence after paclitaxel
treatment | | Zhao et al. | ALDH1A1 acetylation
(K353) mimetic mutant | ALDH1A1 of ALDH ^{br} BCSCs
In breast cancer xenograft
models | Tumorigenesis and tumour growth inhibition | | Croker et al. | DEAB | ALDH ^{br} CD44* BCSCs | Long-term sensitization of
ALDH ^{br} CD44 ⁺ BCSCs to
chemotherapy and
radiotherapy | | Wang et al. | Disulfiram | ALDHs involved in the self-
protection against oxidative
stress in ALDH ^{br} BCSCs | Decreased stem cell properties in tumors | | Allensworth et al. | Disulfiram | ALDHs involved in the self-
protection against oxidative
stress in ALDH ^{br} BCSCs | Oxidative stress-mediated apoptosis induction | | Sirchia et al. | Decitabine, a DNMT
Inhibitors and Trichostatin, a
HDAC inhibitor and ATRA | RA signalling pathways of
breast cancers | Growth inhibition both in vitro and in vivo | | Nguyen et al. | Entinostat, a HDAC inhibitor,
ATRA and low-dose
Doxorubicin | RA signalling pathways of
triple negative breast
cancers | Regression of established tumour xenografts | | Suman et al. | Psoralidin, an inhibitor of
NOTCH1 signalling | Notch signalling pathway of
ALDH ^{br} BCSCs | Growth arrest in both breast
SCs and BCSCs | - The combination of retinoids and epigenetic modifiers is the most promising therapy. - Targeting against the Notch and the TGFβ signalling of ALDH^{br} BCSCs inhibits their BCSC behaviour. - Direct targeting against ALDHs inhibits BCSC behaviour. - Further research is needed on the previously described targets and on the targeting of other ALDH-regulatory and functional signalling nathways - Further research is needed regarding the distinction between ALDH^{br} BCSCs and ALDH^{br} normal breast SCs. ## **Conclusions:** - ALDHs are BCSC markers tightly related with the behaviour of BCSCs, where they play a functional role in the RA-signalling pathways, the self-protection against oxidative stress and the chemotherapy/radiotherapy resistance. - ALDH1A3^{br} BCSCs are poor prognosis markers in breast cancer. - 3. ALDH^{br} BCSCs are possible future therapeutic targets to overcome breast cancer. - Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis. 2015:1-17. - Xu X, Chai S, Wang P, et al. Aldehyde dehydrogenase and cancer stem cells. Cancer Lett. 2015;369:50-7. - Januchowski R, Wojtowicz K and Zabel M. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother. 2013;67:669-80. - ☐ Ginestier C, Wicinski J, Cervera N, et al. Retinoic signalling regulates breast cancer stem cell differentiation. Cell Cycle. 2009;8:3297-302.