

The role of ALDH^{br} BCSCs as prognostic markers and therapeutic targets in breast cancer

Manuel Grima Reyes

Tutor: Jaume Farrés

Treball de Final de Grau

Grau de Bioquímica

Universitat Autònoma de Barcelona

Juny 2016

Introduction:

- The CSC theory proposes that CSCs are able to establish themselves, drive tumorigenesis giving rise to all cancer cell types, induce metastasis and recurrence, because of their self-renewal, differentiation and chemotherapy/radiotherapy resistance abilities.
- Isolation of CSCs and targeting therapies against them are needed to overcome cancer.
- ALDHs are CSC markers and ALDHbr CSCs selects for poor prognosis cancers.
- ALDHs are involved in the RA signalling, the self-protection against oxidative stress and the chemotherapy/radiotherapy resistance of CSCs

Objectives:

- 1. To study the role of ALDHs in BCSCs.
- 2. To assess ALDH^{br} BCSCs as prognostic markers in breast cancer
- To assess ALDH^{br} BCSCs as therapeutic targets in breast cancer.

Transcriptional and post-

translational regulation of

ALDHS in BCSCs

Results:

Prognostic value of ALDHbr BCSCs

	Marker	Prognostic value	
Cui et al.	ALDH ^b 'CD44+ BCSCs	Correlated with the Ki67* molecular subtype of invasive breast carcinoma, which is a marker of chemotherapy resistance and, therefore, poor survival.	
Marcato et al.	ALDH1A3br BCSCs	Correlated with poor survival in triple- negative breast cancers.	
Tiezzi et al.	ALDH+ BCSCs	Correlated with poor prognosis in locally advanced breast cancers	
Marcato et al.	ALDH1A3br BCSCs	Correlated with high proximal metastasis in high grade breast cancers	
Woodward et al.	ALDH1+BCSCs	Independent predictor of worse overall survival in ER ⁻ breast cancers	
Neumeister et al.	ALDH1 ^{br} CD44 ⁺ CD24 ⁻ epithelial BCSCs	Correlated with worse outcome independently of tumour grade, tumour size, ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) and nodal status	
Khoury et al.	ALDH1A1+BCSCs	Correlated with increased risk of recurrence in post-neoadjuvant chemotherapy patients with triple-negative, HER2* and lymph-node status breast cancers	
Charafe-Jauffret et al.	ALDH ^{br} BCSCs	Independent predictor of metastasis	
Zhong et al.	ALDH1 ⁺ BCSCs	Independent predictor of recurrence and worse disease-free survival (DFS) in invasive ductal breast cancer	
Qiu et al.	ALDH1A3 ⁺ BCSCs	Correlated with distant metastasis and worse DFS and overall survival (OS)	
Opdenaker et al.	ALDH1A3+ BCSCs	Correlated with tumour grade in triple- negative breast cancers	
Qiu et al.	ALDH1A3 ⁺ CD44 ⁺ BCSCs	Correlated with advanced stage, distant metastasis, high tumour size and high nodal status breast cancers and predictor of worse DFS and OS independently of the treatment received	

- ALDH1A3^{br} BCSCs are the best ALDH markers to predict prognosis.
- ALDH1A3^{br} BCSCs are poor prognosis markers.
- Further research is needed to adjust their prognostic value.
- Further research is needed regarding the best combination of markers.
- Further research is needed regarding the distinction between ALDH^{br} BCSCs and ALDH^{br} normal breast SCs.
- Further research is needed regarding the prognostic value of ALDHs in CTCs, DTCs and epithelial-like BCSCs.

The role of ALDHs in the RA signalling pathways of BCSCs

The role of ALDHs in the self-protection against oxidative stress of BCSCs

The role of ALDHs in chemotherapy/radiothera py resistance of BCSCs

Therapeutic target value of ALDH^{br} BCSCs

	Treatment	Target	Outcome
Bhola et al.	TGF-β type I receptor kinase inhibitor (LY2157299), a neutralizing TGF-β type II receptor antibody and SMAD4 siRNA	TGFβ signalling pathway of ALDH ^{6r} BCSCs in triplenegative breast cancer cell lines and mouse xenografts	Blockage of ALDH ^{to} BCSCs expansion and prevention of recurrence after paclitaxel treatment
Zhao et al.	ALDH1A1 acetylation (K353) mimetic mutant	ALDH1A1 of ALDH ^{br} BCSCs In breast cancer xenograft models	Tumorigenesis and tumour growth inhibition
Croker et al.	DEAB	ALDH ^{br} CD44* BCSCs	Long-term sensitization of ALDH ^{br} CD44 ⁺ BCSCs to chemotherapy and radiotherapy
Wang et al.	Disulfiram	ALDHs involved in the self- protection against oxidative stress in ALDH ^{br} BCSCs	Decreased stem cell properties in tumors
Allensworth et al.	Disulfiram	ALDHs involved in the self- protection against oxidative stress in ALDH ^{br} BCSCs	Oxidative stress-mediated apoptosis induction
Sirchia et al.	Decitabine, a DNMT Inhibitors and Trichostatin, a HDAC inhibitor and ATRA	RA signalling pathways of breast cancers	Growth inhibition both in vitro and in vivo
Nguyen et al.	Entinostat, a HDAC inhibitor, ATRA and low-dose Doxorubicin	RA signalling pathways of triple negative breast cancers	Regression of established tumour xenografts
Suman et al.	Psoralidin, an inhibitor of NOTCH1 signalling	Notch signalling pathway of ALDH ^{br} BCSCs	Growth arrest in both breast SCs and BCSCs

- The combination of retinoids and epigenetic modifiers is the most promising therapy.
- Targeting against the Notch and the TGFβ signalling of ALDH^{br} BCSCs inhibits their BCSC behaviour.
- Direct targeting against ALDHs inhibits BCSC behaviour.
- Further research is needed on the previously described targets and on the targeting of other ALDH-regulatory and functional signalling nathways
- Further research is needed regarding the distinction between ALDH^{br} BCSCs and ALDH^{br} normal breast SCs.

Conclusions:

- ALDHs are BCSC markers tightly related with the behaviour of BCSCs, where they play a functional role in the RA-signalling pathways, the self-protection against oxidative stress and the chemotherapy/radiotherapy resistance.
- ALDH1A3^{br} BCSCs are poor prognosis markers in breast cancer.
- 3. ALDH^{br} BCSCs are possible future therapeutic targets to overcome breast cancer.
- Rodriguez-Torres M, Allan AL. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clin Exp Metastasis. 2015:1-17.
- Xu X, Chai S, Wang P, et al. Aldehyde dehydrogenase and cancer stem cells. Cancer Lett. 2015;369:50-7.
- Januchowski R, Wojtowicz K and Zabel M. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed Pharmacother. 2013;67:669-80.
- ☐ Ginestier C, Wicinski J, Cervera N, et al. Retinoic signalling regulates breast cancer stem cell differentiation. Cell Cycle. 2009;8:3297-302.