A Novel Biorefinery Approach

Sustainable Production of Biofuels, Pharmaceuticals and Functional Food

Part I. Overall View of an Integrated Process

Corbera F., Jiménez M. & López A.

Biorefinery’s Fundamentals

Novel Features
- Multi-product facility with a renewable and sustainable feedstock
- Production of bulk chemicals, biofuels, food and specialities
- Market competitive products

Hypothesis Statements
- The by-products produced by a core process can be effectively used as feedstock for secondary processes.
- The integration of independent processes can significantly improve the economic feasibility of a non-profitable process.

Objectives
- Design an green ethanol production process fed by a lignocellulosic feedstock
- Use the CO₂ coming as algae plant to produce functional food and pharmaceuticals

Operational Scheme

1) Bioethanol plant: fed with corn stover, which is treated with a physical and biological pre-treatment to obtain the sugars within its structure. These sugars will feed a Zymomonas mobilis culture that will produce the ethanol. Using distillation columns and molecular sieves ethanol will be extremely purified.

2) Spirulina/APC plant: it is fed on Zarrouk medium and CO₂ produced in the raceway ponds and CPhycocyanine (C-PC) is obtained by homogenization and purification of the algae produced.

3) Biogas plant: it uses the biomass coming from the bottoms of the distillation columns. Upon this biomass an anaerobic digestion will be performed so as to transform this useless biomass into a valuable energetic resource.

Processes

Biocatalysts

- *Zymomonas mobilis*
- *Arthrobacter platensis*

Anaerobic consortia

- Hydrolytic/Acidogenic
 - Main genus: *Butyrivibrio, Propionibacterium, Cellvibrio, Clostridium*
 - Substrates: Complex organic components
 - Products: Short volatile acids (VFAs), formic, acetic, propionic, butyric and propionic acid.

- Acetogenic
 - Main genus: *Sequence and Syntrophobacter*
 - Substrates: Short volatile acids (VFAs)
 - Products: Acetates and H₂

- Methanogenic
 - Main species: *Methanobacterium sulci* and *M. mobilis*
 - Substrates: H₂, CO₂, lactic acid
 - Products: CH₄ and CO₂

Economic Analysis

Operational Cost Distribution

- Utilities, specifically standard power, implies the major annual cost for the biorefinery. Nevertheless, the biogas used and increased in the CHP engines mitigates this percentage, saving part of the utilities cost.

Annual Cost Composition

- The economic feasibility of the plant is subjected to the number of the integrated processes.
- A higher number of coupled processes implies an increase of the initial investment.
- Utilities and transport prices are the bottleneck of this project.
- The algae and the biogases processes are significantly sensible towards the environment and substrate conditions, respectively, which may cause them to fluctuate.

Results – Comparison between processes

- Three scenarios where studied: an single ethanol plant, a coupled algae an ethanol plant and a biorefinery of ethanol, algae and biogas. As result, the following matrices where formulated:

- The algae cost has the greatest impact upon ethanol’s price.
- The biogas process saves a considerable amount of energy, enough for significantly improve the economy’s plant.

Conclusions

- The economic feasibility of the plant is subjected to the number of the integrated processes.
- A higher number of coupled processes implies an increase of the initial investment.
- Utilities and transport prices are the bottleneck of this project.
- The algae and the biogases processes are significantly sensible towards the environment and substrate conditions, respectively, which may cause them to fluctuate.

References