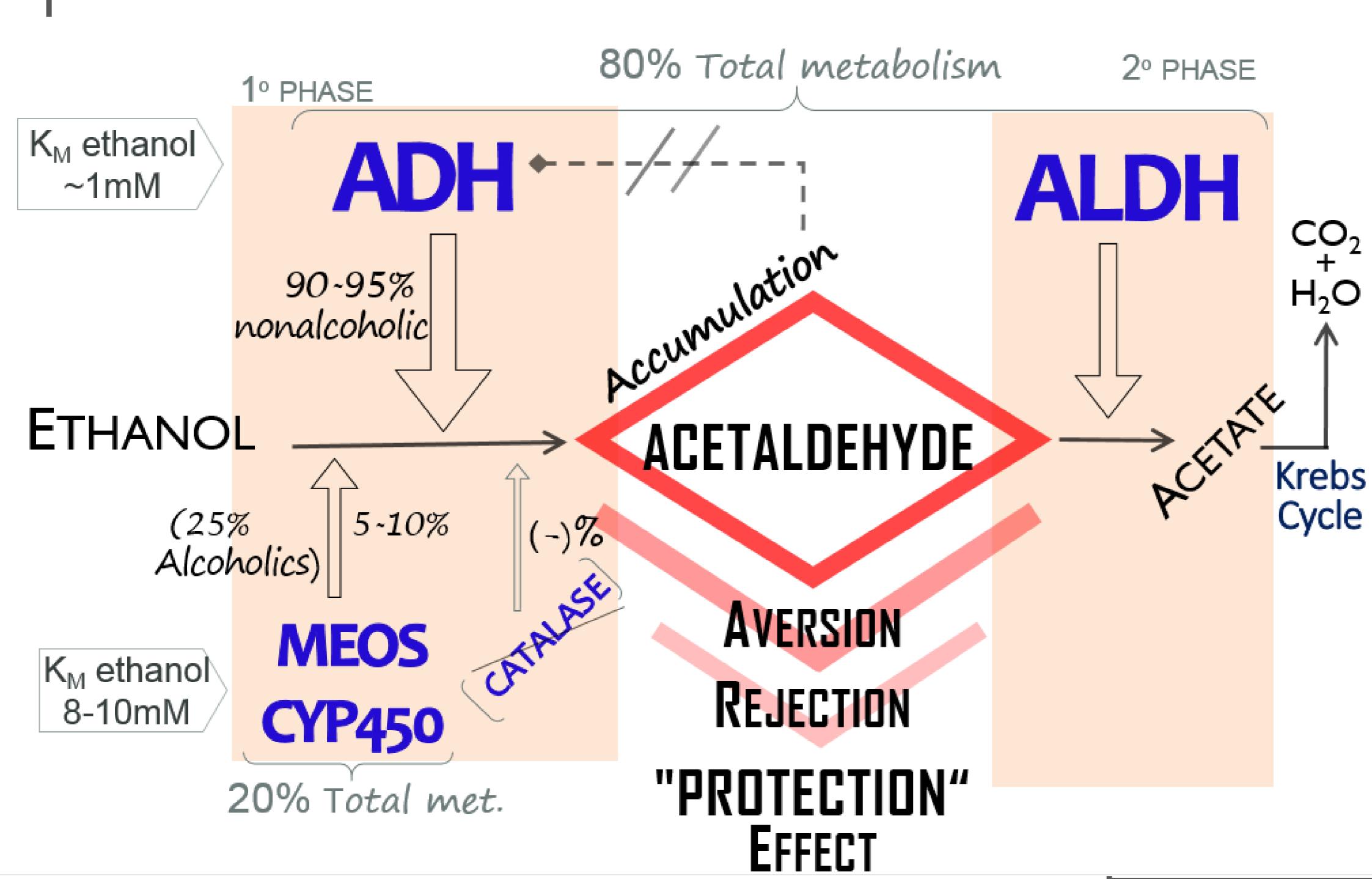


CONSEQUENCES OF THE DIFFERENT ENZYME ALLELES REGARDING ALCOHOL TOLERANCE AMONG POPULATIONS.

Lorena Olmo Pérez

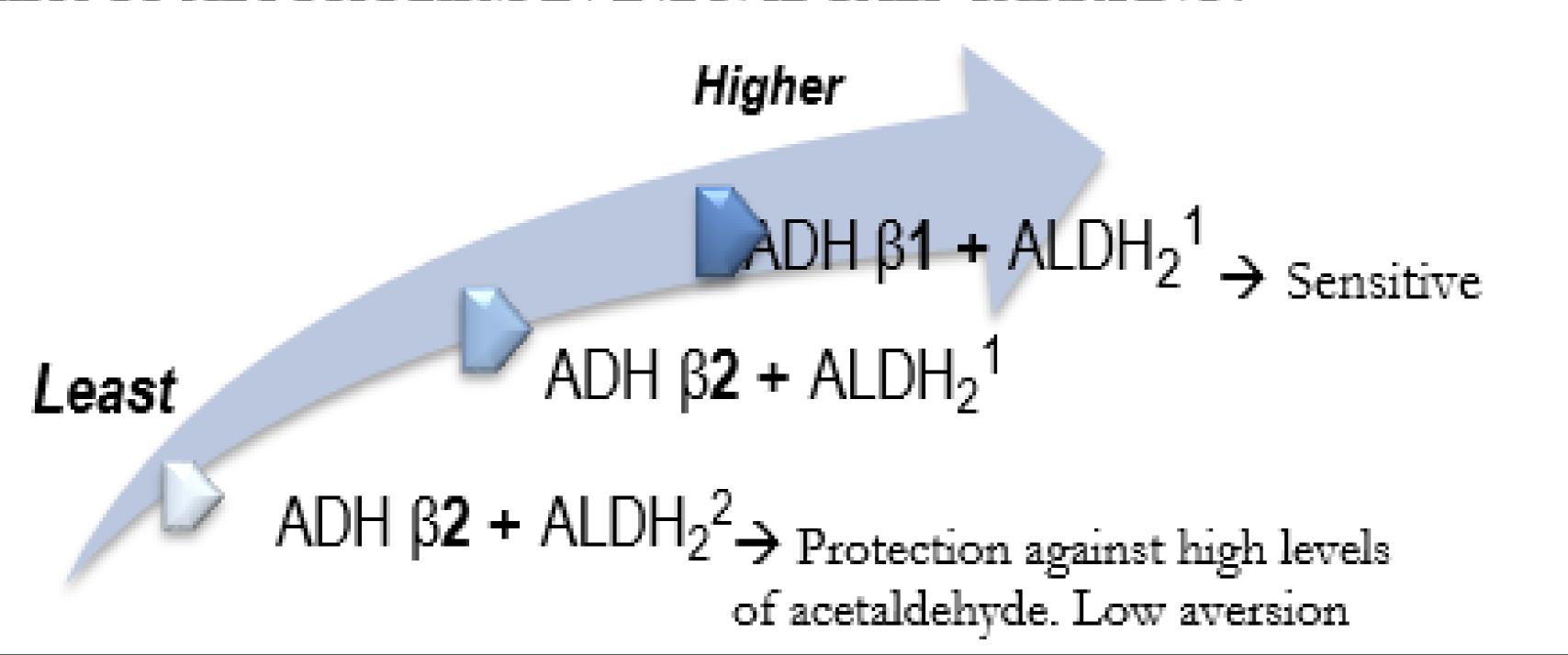
OBJECTIVES


THE PURPOSES OF THIS STUDY ARE THE FOLLOWING:

- 1. To give a deeply explanation of the procedure of the ethanol's metabolism.
- 2. TO KNOW THE POLYMORPHISM THAT THESE ENZYMES REPRESENT AND THE FLUCTUATION DURING THE PROCESS.
- 3. TO UNDERSTAND THE DIFFERENCES BETWEEN SUSCEPTIBILITY, RESISTANCE AND THE ADDICTIVE BEHAVIORS THAT APPEAR AMONG THE POPULATION RACES VERSUS THE ALCOHOL CONSUME.
- 4. To show the effect of the interaction of the polymorphic enzyme genes.

PROPERTIES ALCOHOL DEHYDROGENASE							
	αα	β1 β1	β2β2	β3β3	γ1γ1	γ2 γ2	ππ
K _m ethanol (mM)	4,2	0,049	0,94	24	1	0,63	34
V _{max} (min⁻¹)	27	9,2	400	300	87	35	20
pH optimum	10,5	10,5	8,5	7,0	10,5	10,5	10,5
			((Crabb et al.	. 1987: B	osron et al.	. 1993)

ADH2 FREQUENCY						
	% ADH ₂ ¹ (β_1)	% ADH ₂ ² (β ₂)	% ADH ₂ ³ (β_3)			
White Americans	>95	<5	< 5			
African-Black	85	<5	15			
European white	85	15	< 5			
Japanese Asian	15	85	< 5			


(Bosron et al. (1993) & Crabb (1995).

c2 CYP450 ALLELE FREQUENCY				
Population	CYP450 c2 allele frequency (%)			
Asian	24			
Afro-American	0,3-1			
White Brazilians	7			
No White Brazilia	ans 3			
Stephens (1994), Wang et	t al. (1999), Rossini et al. (2006).			

ALDH22 FREQUENCYPOPULATIONALDH22 FREQUENCYAsian40 %OtherLow or nonexistentAlcoholic2%Nonalcoholic40 %(Stoil (1988), Xiao (1995), Lieber (1997), Yokoyama (1999)

RISK OF ALCOHOLISM IN INDIVIDUALS CARRYING.

PROPERTIES ALDH ISOENZYMES						
ACETALDEHYDE KM	NAD ⁺ KM					
30 μΜ	8 μΜ	- Low contribution.				
3μM	70 μM	- Principal responsik				
	1	- Lower activity for acetaldehyde				
		for acetaldehyde				
†		- Not important				
	ACETALDEHYDE KM	ACETALDEHYDE KM NAD ⁺ KM 30 μM 8 μM				

(Sanchis et al. (1999), Perozich et al., (1999), Escarabajal (2003).

Conclusions

- 1. Alcohol degradation consists in two steps. Alcohol toxicity is due to acetaldehyde, an intermediate product.
- 2. The responsible enzymes of the metabolism are: ADH (main enzyme in the first step), MEOS, Catalase and aldehyde dehydrogenase (ALDH) (main enzyme in the second step). All of them present polymorphism with different kinetic properties that metabolize the toxic.
- 3. The ADH β2 and C2 allele of CYP450 have higher oxidative capacity, that produce more acetaldehyde accumulation. Due to its low oxidation activity, ALDH₂² inactive has the same effect. Accumulation of acetaldehyde causes people are less tolerant, causing a protective effect to alcoholism.
- 4. High oxidative capacity Allele and ALDH combination implies faster ethanol removal and better toxicity tolerance versus the ALDH inactive carrier. That's why humans with this combination consume more alcohol quantity and have bigger alcoholism risk.
- 5. This enzymes are common in Asiatic population. ALDH inactive is very low or nonexistent in Other populations. That explains the low tolerance to alcohol of the Asian population.