PLANTA DE PRODUCCIÓ D’ÀCID FÒRMIC

Universitat Autònoma de Barcelona
ESCOLA D’ENGINYERIA
Treball de Fi de Grau
GRAU EN ENGINYERIA QUÍMICA

Tutor: Josep Anton Torà

CREUS BOSCH, JÚLIA
JOVELL HIDALGO, DANIEL
MIRANDA SALES, JOSELINE
TOSCA PRÍNCEP, ALBERT
TRIQUELL ROSADO, JOAN

Cerdanyola del Vallès, Juny de 2016
CAPÍTOL 3
CONTROL I INSTRUMENTACIÓ
PLANTA DE PRODUCCIÓ D’ÀCID FÒRMIC
### CAPÍTOL 3. CONTROL I INSTRUMENTACIÓ

<table>
<thead>
<tr>
<th>3.1. CARACTERÍSTIQUES DEL SISTEMA DE CONTROL</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1. INTRODUCCIÓ</td>
<td>5</td>
</tr>
<tr>
<td>3.1.2. DEFINICIONS I CONCEPTES BÀSICS RELATIU AL CONTROL DE PROCESSOS</td>
<td>5</td>
</tr>
<tr>
<td>3.1.3. OBJECTIUS DEL SISTEMA DE CONTROL</td>
<td>6</td>
</tr>
<tr>
<td>3.1.4. SENYALS I INSTRUMENTS D’UN SISTEMA DE CONTROL DE PROCESSOS</td>
<td>6</td>
</tr>
<tr>
<td>3.1.5. TÈCNIQUES DE CONTROL</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.2. NOMENCLATURA</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1. NOMENCLATURA DELS LLAÇOS DE CONTROL</td>
<td>16</td>
</tr>
<tr>
<td>3.2.2. NOMENCLATURA DE LA INSTRUMENTACIÓ</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.4. LLISTAT D’INSTRUMENTS I LLAÇOS DE CONTROL</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1. ÀREA 100</td>
<td>44</td>
</tr>
<tr>
<td>3.4.2. ÀREA 200</td>
<td>52</td>
</tr>
<tr>
<td>3.4.3. ÀREA 300</td>
<td>54</td>
</tr>
</tbody>
</table>
3.4.4. ÀREA 400.................................................................59
3.4.5. ÀREA 500.................................................................61
3.4.6. ÀREA 600.................................................................69

3.5. DESCRIPCIÓ I DIAGRAMES DELS LLAÇOS DE CONTROL..............................72
    3.5.1. ÀREA 100...............................................................72
    3.5.2. ÀREA 200...............................................................72
    3.5.3. ÀREA 300...............................................................91
    3.5.4. ÀREA 400...............................................................97
    3.5.5. ÀREA 500.............................................................105
    3.5.6. ÀREA 600.............................................................119

3.6. RECOMPTE DE SENYALS ..................................................125
    3.6.1. ADQUISICIÓ DE DADES (DAQ)..................................138

3.7. BIBLIOGRAFIA.....................................................................147
3.1. CARACTERÍSTIQUES DEL SISTEMA DE CONTROL

3.1.1. INTRODUCCIÓ

Una planta química integra un conjunt d’unitats de procés (reactors, intercanviadors de calor, bombes, columnes de destil·lació, absorbidors, evaporadors, tancs...) interrelacionats entre sí de manera esquemàtica i racional. L’objectiu d’aquesta planta és el convertir certes matèries primes en productes emprant fonts d’energia accessibles de la forma més econòmica possible.

Durant l’operació de la planta, és necessari assolir certs requeriments, des de la seguretat de la planta fins a les regulacions mediambientals, passant per les especificacions de producció, una avaluació econòmica favorable i les restriccions operacionals imposades als propis equips.

Per tal d’assolir tots els requeriments mencionats és necessari la implementació d’un sistema de monitorització contínua de l’operació química de la planta i un sistema d’intervenció externa (control) per tal de garantir els objectius operacionals. Això s’aconsegueix a través d’una sèrie d’equipaments com ara mesuradors, vàlvules, controladors, ordinadors i la pròpia intervenció humana que confeccionen, plegats, el sistema de control d’una planta química.

En aquest capítol es descriuen les diferents parts de l’estructura del sistema de control, des de la descripció i caracterització dels elements primaris i finals de control fins a l’arquitectura de control emprada per a aconseguir la implementació dels sistemes de control.

3.1.2. DEFINICIONS I CONCEPTES BÀSICS RELATIU AL CONTROL DE PROCESSOS

Per poden entendre el funcionament dels sistemes de control que es descriuen en el present capítol, és necessari uns coneixements mínims i bàsics del control en plantes químiques. Existeixen dos tipus de variables en el control de processos químics:

Variable d’entraïda: Mostra l’efecte dels voltants sobre el procés. Normalment fa referència a aquells factors que tenen influència sobre el procés. Un exemple d’una variable d’entraïda podria ésser el cabal de vapor que circula a través d’un intercanviador que pot afectar la quantitat d’energia que es subministra al procés. Hi ha efectes sobre el procés que són controlables o no, donant lloc a dos tipus diferents de variables d’entraïda:

Variable manipulada: Variable dels voltants que pot ser controlada per un operador o el sistema de control in-situ.

Pertorbacions: Entrades que no poden ser controlades per un operador o un sistema de control. Les pertorbacions, a la vegada, es poden classificar segons si son mesurables o no mesurables.

Variable de sortida: També anomenada variable controlada. Són variables de sortida del procés que tenen una afectació sobre els voltants. Un exemple d’una variable de sortida podria ésser la quantitat de CO\textsubscript{2} que es genera d’una reacció de combustió. Les variables de sortida poden, o no, ser mesurables.
Un altre concepte important a conèixer és el del punt de consigna o setpoint, que es defineix com el valor al qual es vol mantenir la variable controlada. La diferència entre el setpoint i el valor de la variable de procés en tot moment esdevé l’error o offset.

3.1.3. OBJECTIUS DEL SISTEMA DE CONTROL

Prèviament al disseny del sistema de control és necessari definir els objectius que es pretenen aconseguir de la implementació d’aquest. Existeixen tres necessitats bàsiques que un sistema de control ha de satisfar:

Eliminació de les pertorbacions externes: Cal entendre una pertorbació externa l’efecte dels voltants sobre el procés i que normalment està fora del control de l’operador (temperatura externa, variacions de cabal, concentracions dels components, etc.) essent necessari introduir un mecanisme de control que redueixi l’impacte negatiu que les pertorbacions poden tenir en l’operació del procés. Un exemple típic podria ser un reactor dissenyat per operar a 35°C on les condicions de temperatura ambiental oscil·len entre 10 i 30°C. Aquest fet comporta que es donin fenòmens de transferència del bioreactor cap als voltants que depèn d’una variable externa que no es pot manipular (la temperatura ambiental). El sistema de control del reactor tindrà doncs com a objectiu realitzar una aportació variable de calor per poder compensar les pèrdues energètiques i mantenir la temperatura del procés a les condicions de temperatura desitjades.

Estabilització del procés: Si bé alguns processos són auto-regulats, és dir, no necessiten intervenció externa per a la seva estabilització, el cas més habitual correspon a aquells que, evolucionant espontàniament, presenten una resposta inestable allunyant-se de les condicions de treball desitjades. Aquest comportament correspon a un procés inestable, fent que sigui necessari un control extern per a la seva estabilització. Un exemple típic esdevindria un procés, l’objectiu del qual és el creixement d’un microorganisme específic que es produeix a un pH òptim de 5. Els productes secundaris del creixement del microorganisme poden produir una acidificació del medi de cultiu. El sistema de control de pH actuarà em el sistema amb l’objectiu de contrarestar l’efecte dels productes de la fermentació i mantenir les condicions d’operació (pH) en les òptimes per al creixement del microorganisme.

Optimització del rendiment: Un problema habitual en els processos químics fa referència a la possibilitat i/o necessitat d’establir diferents condicions de treball al llarg del procés per anar obtenint, en cada moment, aquelles que permeten el major rendiment del mateix. Aquest és un aspecte que cada cop requereix d’una major atenció per conducir alguns processos; disposant d’un sistema de control que no mantingui únicament les consignes, sinó que s’adapti en cada moment a les condicions òptimes del procés per optimitzar l’eficiència del mateix.

3.1.4. SENYALS I INSTRUMENTS D’UN SISTEMA DE CONTROL DE PROCESSOS

El sistema de control de processos del present projecte està constituït per quatre tipus d’elements bàsics, la funció dels quals és necessari definir previ a la caracterització del sistema de control.
**Sensor:** Els sensors són instruments que mesuren les variables a controlar, les variables de pertorbació i les variables secundàries a partir de les quals s’interfereix en el valor d’altres que no puguin mesurar-se directament o que resulti massa car fer-ho. Els exemples més típics de sensors esdevenen els termoparells o els orificis mesuradors per mesurar un cabal.

**Transmissor o transductor:** L’efecte físic produït al sensor no acostuma a ser utilitzable com a senyal que pugui ésser processada pel controlador per calcular l’acció de control. És necessari, doncs, convertir la magnitud de l’efecte físic en una senyal elèctrica, pneumàtica o digital que pugui ser transmesa a distància sense veure’s afectada i que pugui ser utilitzada per un controlador, un registrador o un sistema de monitorització de qualsevol fabricant. Un exemple de transmissor esdevindria el transmissor de pressió diferència, que en el cas de l’orifici mesurador, convertiria la diferència de pressió existent entre les dues preses de pressió en una senyal estàndard elèctrica de 4-20 mA o pneumàtica 3-15 psi.

**Controlador:** El controlador rep la senyal corresponent a la variable mesurada i calcula l’acció de control d’acord amb l’algorisme de control (vegeu apartat 3.1.5 - TÉCNICIES DE CONTROL) que s’hi hagi programat. Aquest càlcul, es tradueix en un valor determinat de la senyal estàndard de sortida que s’envia a l’element final de control. Avui en dia, tots els controladors són digitals i estan equipats amb controladors AD (analògic-digital) i DA (digital analògic) per poder rebre senyals analògiques elèctriques, convertir-les en senyals digitals, processar-les i convertir-les de nou en senyals analògiques estàndard que s’envien als elements finals de control.

**Actuador o element final de control:** Esdevé l’element que manipula la variable de procés d’acord amb l’acció calculada pel controlador, la qual arriba en forma d’una senyal analògica estàndard com anteriorment s’ha esmentat. En processos químics, la variable de procés manipulada acostuma a ser un cabal d’un corrent i és per això que l’element actuador més utilitzat és la vàlvula de control. Tot i així, existeixen altres elements finals de control capaços de manipular els cabals, com ara les bombes, els compressors o les bufants dotats amb motors de velocitat variable anomenats variadors de freqüència.

### 3.1.5. TÉCNICIES DE CONTROL

Per dur a terme els objectius anteriorment descrits s’han desenvolupat o adaptat diferents metodologies de control. La primera i més emprada és el control *feedback* o control per retroalimentació:

**3.1.5.1. Control per retroalimentació**

La Figura 3-1 mostra l’esquema d’un control per retroalimentació. En aquest esquema de control, s’analitza a través d’un sensor la variable que es vol mantenir controlada i es comparen els valors obtinguts en cada moment amb un calor de consigna assignat per l’operador del sistema. A partir de l’error existent entre el valor desitjat i el real, un controlador fixa la actuació a realitzar al procés a través d’una modificació de la variable manipulada. Aquest tipus de control únicament realitza l’actuació quan ja s’ha produït una desviació respecte del valor desitjat i si es detecta error, per la qual cosa no evita desviacions sobre el valor desitjat sinó que intenta disminuir l’error produït.
Una millora d’aquesta metodologia, mantingint el mateix esquema de control, és el denominat control per cascada. Aquest tipus de control, que es presenta a la Figura 3-2, estableix dos bucles interconnectats entre sí: un bucle exterior que manté la variable a controlar i un bucle interior aplicat sobre una variable auxiliar.

La Figura 3-2 representa un sistema de control en cascada per l’oxigen dissolt en un fermentador, en el qual la variable d’actuació del bucle principal seria la consigna d’agitació per un bucle intern de la velocitat d’agitació del sistema. Qualsevol pertorbació que afectés a la velocitat d’agitació, i per extensió, a l’oxigen dissolt del sistema, seria eliminada pel llaç de control interior, a la vegada que el llaç exterior eliminaria variacions en les condicions del sistema (augment de consum d’oxigen, obturació del filtre d’entrada...).

La metodologia del control per retroalimentació es basa en la existència de bucles retroalimentats. En general, aquest tipus de control realitza la mesura de la variable controlada i en cas de discrepància, actuarà modificant alguna variable d’entrada al procés o variable manipulada.

Es poden diferenciar els següents elements en un llaç de control per retroalimentació:

- **Element sensor**: L’evolució de la variable a controlar s’adquireix normalment en forma de dades numèriques a partir dels elements sensors corresponents. Des del punt de vista del control aquelles variables més interessants són les que es poden obtenir en temps real.
Element condicionador i transmissor: La senyal produïda per l’element sensor no són utilitzables directament pel controlador: acostuma a ser una corrent o un voltatge amb una alta impedància i de extraordinàriament petita magnitud. Aquestes senyals poden presentar bastant soroll i estan subjectes a pertorbacions externes, fet que fa que sigui necessari un tractament previ a la seva utilització que proveeixen els elements condicionadors i transmissors.

Controlador: Es diferencien en general dos tipus d’actuacions respecte a la senyal d’error detectada:

- Independent de la magnitud de l’error (controlador ON/OFF).
- Funció de l’error (controlador P, PI, PID).

**Controlador ON/OFF:** És la configuració més senzilla de control automàtic. En aquest cas, la resposta del controlador és independent de la magnitud de l’error, senzillament quan es detecta la seva existència fa actuar, en tota la seva intensitat, l’element final. Tot i que aquest tipus de control va associada a una instrumentació senzilla i de baix cost, provoca la presència d’oscil·lacions importants en el sistema. Un altre problema associat a aquest tipus de control fa referència al límit de detecció de l’error o la magnitud de l’error necessària per a que actúi el sistema de control.

**Controladors PID:** Per eliminar els problemes associats de la resposta excessiva del controlador i a la seva falta de modulació, s’intenta ajustar la seva resposta en funció de la magnitud de l’error.

La primera de les possibilitats és introduir un mecanisme que respongui de forma proporcional a l’error (acció P). Això implica l’aparició d’un primer paràmetre de control a ajustar que correspon al guany. Un valor elevat del guany augmenta les oscil·lacions de la resposta, a la vegada que valors baixos fan la resposta més lenta.

Un dels problemes associats a aquest tipus de control correspon a l’error residual o offset: una vegada apareix la pertorbació, i allunyat el procés del valor desitjat, la acció del sistema de control tendeix a tornar al valor original fins a un cert punt, a partir del qual el sistema no pot tornar al valor inicial, apareixen l’error residual.
Per eliminar aquest problema, s’afegeix l’efecte integral, en el que la resposta té en compte l’error acumulat. Aquest tipus de control presenta les avantatges de l control proporcional eliminant a més a més, el problema de l’offset, tot i així, el fet d’afegir l’efecte integral augmenta la lentitud de la resposta del controlador, raó per la qual en alguns casos és necessari introduir un nou efecte que l’acceleri.

La forma més habitual correspon a l’addició d’un efecte derivatiu en el que la resposta és proporcional a la derivada de l’error.

L’addició de cadascun dels efectes fa augmentar en nombre de paràmetres a determinar, per la qual cosa és necessari molts cops recórrer a l’ús de metodologies establertes com poden ésser els mètodes de Ziegler-Nichols o Cohen-Coon.

El controlador PID, amb un ajust correcte dels seus paràmetres, proporciona el millor tipus de resposta essent el millor tipus de resposta seguint la metodologia de control per retroalimentació. Actualment és el que més àmpliament s’empra i es pot afirmar que es capaç de resoldre de forma satisfactòria el 80% de les aplicacions.

Element final de control: L’element final de control varia segons la variable a controlar. En el cas de l’agitació, la senyal de control actuarà sobre la regulació del motor d’agitació emprant variadors de freqüència, en el cas del pH, l’element final esdevindria una bomba dosificadora d’una solució àcida o bàsica. Tot i així, l’element de control més àmpliament emprat són les vàlvules de control que permeten variar el pas de fluids en funció de la senyal de control. Per a més informació relativa als tipus de vàlvules emprades en la realització del present projecte, vegeu el capítol 4: Canonades vàlvules i accessoris.

3.1.5.2. Control anticipatiu

Al control anticipatiu (Figura 3-3) s’analitza la pertorbació prèviament a l’entrada del sistema i es pren l’acció de control necessària per minimitzar el seu efecte. La dificultat per disposar de models suficients que permetin definir aquesta acció, juntament amb la pràctica impossibilitat d’identificar totes les pertorbacions possibles al sistema fan que aquest tipus de control no sigui emprat de forma individual, sinó que treballi sempre acoblat a un altre llac de control per retroalimentació que permeti en tot moment conèixer i ajustar les desviacions de la variable controlada.

3.1.5.3. Control adaptatiu

Més recentment s’han desenvolupat una sèrie de tècniques de control que sembla ser especialment idònies per a poder superar els problemes de control dels processos químics. El control adaptatiu consisteix en un estimador de paràmetres que permet la seva sintonia al llarg del procés i una algorisme de control. La sintonia dels paràmetres de control es realitza generalment a partir de mesures en línia del procés i d’un model de comportament del mateix.
Existeixen diferents tipus de control adaptatiu depenent de la forma en què es realitza la sintonia de paràmetres, essent els més emprats els controladors autosintonitzables (STR), el control amb un model de referència (MRAS) i el control predictiu (MPC).

Un controlador autosintonitzable com el que mostra la Figura 3-4 permet la adequació dels paràmetres del controlador (per exemple, un PID) a les variacions de les condicions d’operació. L’ajust dels paràmetres pot realitzar-se a partir dels efectes causats per petites desviacions provocades sobre la variable manipulada (en forma de polsos o esglaons).

En un control Split range o de rang dividit, la variable de sortida es divideix i s’envia a més d’un element final. El divisor decideix com es seqüencia la resposta de cada element final per tal com la resposta del controlador varia en un rang del 0 al 100%.

La Figura 3-5 mostra un exemple del principi de funcionament del control en rang dividit: el controlador PIC-01 controla la pressió del separator vapor líquid per hidrocarburs a través d’un
controlador de rang dividit amb la senyal de sortida dividida i enviada a dues vàlvules de control, PV-A i PV-B. Quan la pressió augmenta, el fluid s'envia a la unitat de crema; quan la pressió disminueix, s'introduueix gas de combustió per compensar la pressió en el sí del separator.

Els controls en Split-range són àmpliament emprats en molts processos industrials, com per exemple en el control de la temperatura d’un tanc que disposa d’un sistema calefactor i refrigerant a la vegada.

**Figura 3-5** Exemple d’aplicació d’un control en rang dividit

### 3.1.5.5. Control proporcional (ratio control)

El control proporcional és un tipus especial de control per retroalimentació on dos pertorbacions són mesurades i mantingudes de forma constant l’una respecte de l’altra. Aquest tipus de control s’empra amb freqüència en control del cabal de diversos corrents: tots dos cabals són mesurats però no tots dos poden ésser controlats. Aquell cabal que no està sota control s’anomena com a corrent salvatge (wild stream).

La **Figura 3-6** mostra un exemple d’implementació d’un control proporcional. Tots dos cabals dels corrents A i B són mesurats i es registra la seva proporció. Aquesta proporció es compara amb la proporció desitjada (consigna) i l’error entra les proporcions mesurades i desitjada constitueixen la senyal d’actuació de l’element final de control.

#### 3.1. ARQUITECTURA DEL SISTEMA DE CONTROL

La implementació del sistema de control es fa mitjançant dues aproximacions diferents: el control automàtic i el control per ordinador. De la implementació del sistema de control en dependran les variables a manipular o controlar, de les quals depèn la qualitat de control.

Definida la implementació del sistema de control, s’especifiquen els instruments de monitorització (vegeu apartat 3.3 - INSTRUMENTACIÓ) i control i es dissenyen els llaços de control dels equips (vegeu apartat 3.5 - DESCRIPCIÓ I DIAGRAMES DELS LLAÇOS DE CONTROL).
3.1.1. CONTROL AUTOMÀTIC

Es poden diferenciar dos grans grups que d’alguna forma, són successius en el temps i en el desenvolupament de la instrumentació necessària:

El primer grup correspon a les operacions que es realitzen mitjançant cicles o seqüències i que poden ser realitzades per elements mecànics o temporitzadors. Aquestes seqüències són controlades per elements electrònics i més recentment incorporades en les rutines dels ordinadors de control.

El segon grup fa referència als llaços de control clàssics en els quals la instrumentació utilitzada en el llaç de control és analògica.

3.1.2. CONTROL PER ORDINADOR

Durant els darrers anys, el control digital s’ha aplicat més en el control i supervisió dels processos industrials. Aquest fet, es deu a que al permetre una major automatització i coordinació en la operació de les plantes, suposen un increment en la productivitat del treball humà, una millora del control de qualitat i una millora del sistema de seguretat de la planta donat a que ajuden a reduir el nombre d’accidents.

3.1.2.1. Digital direct control (DDC)

Un sistema DDC és un sistema centralitzat en el que totes les mesures es duen a terme a la sala de control, de d’on un o diversos computadors exerceixen directament el control de tots els llaços de control existents a la planta i des d’on s’envien les senyals pneumàtiques per als actuadors, tal i com mostra la Figura 3-7.
Les mesures provinents de camp són senyals analògiques que es transformen en senyals digitals a la sala de control per a que puguin ser llegides per el computador, a la vegada que les senyals de comandament entregades per l’ordinador són convertides en senyals digitals abans de ser enviades als actuadors.

Tot i la flexibilitat en el disseny del sistema de control, en rendiment del mateix en el benentès que treballa molt pròxim al punt òptim d’operació i la seguretat al poder comprovar cada variable entre uns límits prefixats, la fallada de l’ordinador podria significar el total descontrol del procés. És per això que aquest tipus de control no s’empra actualment en la monitorització i control de processos industrials.

**Figura 3-7** Diagrama d’un sistema de control DDC (On C esdevé el controlador, S el sensor i A l’actuador)

### 3.1.2.2. Distributed control system (DCS) amb software SCADA

En un sistema de control distribuït, els computadors es distribueixen físicament al llarg de tota la planta, controlant cadascun d’ells una de les seves seccions. Al estar els controladors més a prop del procés, es prevenen els sorolls que es puguin originar en transmissions llargues i s’evita la congestió dels cables de control. Un esquema típic d’un sistema de control distribuït es presenta a la Figura 3-8.

La xarxa de comunicacions que interconnecta els computadors en un sistema de control distribuït rep el nom de pista de dades i empra una transmissió redundant per cable coaxial o per fibra òptica composta per 2 canals que porten simultàniament la mateixa informació. La comunicació entre els diferents computadors es realitza mitjançant un procés anomenat “fitxa circulant”, en el que d’acord a uns torns preestablerts, cada ordinador va transmetent a la xarxa, arribant la informació a la resta d’ordinadors, però essent captada només pel seu destinatari. Si un computador no té res a transmetre quan arriba el seu torn, cedeix el seu torn al següent computador.

Aquesta redundància entre controladors fa que siguin molt fiables en la seva actuació a la planta, evitant que el procés esdevingui inestable degut a una falta de control. És per això que són sistemes dedicat exclusivament el control de processos químics i de fabricació esdevenint així, el sistema de control designat pel control del procés de fabricació d’àcid fòrmic del grup ILANT.

El sistema de control distribuït amb software SCADA consisteix en múltiples dispositius anomenats Unitats Terminals Remotes (Remote Terminal Unit – RTU) enllaçats amb transmissors de
procés i elements finals de control, implementant funcions de control bàsiques com Start/Stop de motors i llàcots de control PID. Aquests dispositius de control es comuniquen digitalment amb una unitat mestra (Master Terminal Unit) a una ubicació central on els operadors poden monitoritzar i enviar consignes.

Figura 3-8 Diagrama d'un sistema de control distribuït

Els controladors Lògics Programables (PLCs) esdevenen aparells electrònics digitals que empren tècniques d’instrucció emmagatzemades internament per implementar funcions específiques tals com lògiques seqüencials, de temporització, de comptatge i aritmètiques pel control de màquines i processos a través dels controls analògics i digitals d’entrades i sortides. Aquest fet, els converteix en candidats ideals per a ser emprats om a dispositius RTU. Els PLCs moderns tenen tots els tipus de senyals I/O, dispositius de xarxa i algorismes de control suficients com per a operar com a terminals remotes.

L’adquisició de dades o de senyals, és a dir, la digitalització de senyals físiques en senyals elèctriques per al processament de la mateixa en una unitat remota és farà emprant mòduls de digitalització o targetes rempartides en el sí de la planta que, a més a més, permet estalviar en cablejat, manteniment i mà d’obra, donant a aquests mòduls poden estar interconnectats entre sí. Els mòduls de control remot d’entrades i sortides estaran connectades amb un cable BUS tipus Ethernet industrial al PLC.

La planta d’àcid fòrmic es constituirà per un únic PLC encarregat de rebre totes les senyals digitals provinents de les múltiples targetes remotes distribuïdes al voltant de la planta. Es tracta d’un PLC multi modular que permet la combinació de diferents mòduls de CPU (un per cada unitat de control) i diferents mòduls d’entrades digitals i analògiques. Cal considerar, a més a més, les senyals dels PLCs que incorporen de sèrie certs equips de la planta, conformant a grans trets i de forma més senzilla, un control distribuït com el que s’exemplifica en aquest punt.

El software SCADA, Supervisory Control and Acquisition Data, permet monitoritzar les variables de procés enviades pels sensors i les aplicacions que governen els PLCs, a més, permet fixar les alarmes pertinents a les variables de procés que hom consideri, fent que no sigui necessari disposar d’aquest tipus d’instrument en camp.
3.2. NOMENCLATURA

Per tal de caracteritzar els llaços de control i els elements que els conformen, es defineixen dos formats d’etiquetat i nomenclatura segons corresponguin a llaços de control o a instrumentació d’acord amb la norma internacional ISA (Instrument Society of America), que esdevé la societat que crea i actualitza permanentment les normes usades en la instrumentació emprada en tot procés, essent la norma internacional més usada per aquest propòsit.

3.2.1. NOMENCLATURA DELS LLAÇOS DE CONTROL

La nomenclatura dels llaços de control consisteix en tres termes separats per guions segons la forma A-B-C que ubiquen i identifiquen les propietats del llaç:

A fa referència a la variable controlada. Les abreviatures emprades per a caracteritzar les variables controlades del present projecte es recullen a la Taula 3-1.

Taula 3-1 Abreujament de les variables controlades segons la nomenclatura ISA

<table>
<thead>
<tr>
<th>ABREUJAMENT</th>
<th>VARIABLE CONTROLADA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Temperatura</td>
</tr>
<tr>
<td>F</td>
<td>Cabal</td>
</tr>
<tr>
<td>L</td>
<td>Nivell</td>
</tr>
<tr>
<td>P</td>
<td>Pressió</td>
</tr>
<tr>
<td>C</td>
<td>Conductivitat</td>
</tr>
</tbody>
</table>

B Designa l’equip sobre el que es realitza el control

C Fa referència al nombre el llaç de control. Aquest, a la vegada, està compost per tres díigits el primer dels quals designa l’àrea on es troba el llaç de control en qüestió i els dos darrers assignen el nombre del llaç de control.

Essent així, un exemple de nomenclatura de llaç de control esdevindria:

T-DC501-501

Fent referència a un llaç de control de temperatura de la column de destil·lació 501, essent el control número 1 de l’àrea 500.

3.2.2. NOMENCLATURA DE LA INSTRUMENTACIÓ

La nomenclatura emprada per a la instrumentació del present projecte esdevé en essència, el mateix codi alfanumèric que per al cas dels llaços de control, amb els canvis que a continuació es detallen:

A fa referència a l’àrea en la que s’ubica l’instrument en qüestió.
B Designa el tipus d’instrumentació. Les abreviatures emprades per a la caracterització dels diferents instruments que conformen al planta es presenta a la Taula 3.2.

C Fa referència al nombre del llàç de control on s’inclou l’instrument. La nomenclatura, en aquest cas, esdevé la mateixa que es descriu a l’apartat 3.2.1 -NOMENCLATURA DELS LLAÇOS DE CONTROL.

Essent així, un exemple de nomenclatura d’instrumentació esdevindria:

500-LC-501

Fent referència a un control de nivell localitzat a l’àrea 500 i que integra el llàç de control 501.

3.3. INSTRUMENTACIÓ

Sigui quina sigui l’estratègia de control seleccionada, per implementar físicament el sistema de control caldrà mesurar les variables del procés (nivell, cabals, temperatures, etc.), calcular les accions de control corresponents i manipular determinades variables d’entrada. La instrumentació que es requereix per a dur a terme les funcions esmentades es classifica en quatre tipus:

Elements primaris o sensors: Són aquells instruments de mesura o dispositius per mesurar les variables controlades o d’altres variables necessàries per al sistema de control.

Actuadors o elements finals: Són aquells dispositius capaços d’interferir en les variables manipulades del procés segons correspongui.

Sistemes de transmissió de informació: Són aquells instruments capaços d’enviar les senyals mesurades als controladors i les senyals de control als actuadors.

Controladors: O dispositius capaços de determinar les actuacions necessàries a partir de la informació obtinguda del procés i del comportament desitjat

El procés de mesura d’una variable consisteix en la comparació de la mateixa amb una unitat estàndard o patró de mesura. En la majoria dels casos, aquesta comparació es fa de forma directa, però en d’altres es realitza de forma indirecta emprant algun principi físicocalm que permeti relacionar la magnitud de la variable que es vol mesurar amb la magnitud d’una altra, més fàcilment mesurable.

Com la mesura s’ha d’enviar al controlador localitzat a certa distància, aquesta s'ha de fer de forma que pugui ésser transmesa i processada amb facilitat. La sèrie d’elements o dispositius que conformen el sistema de mesura d’una variable es presenta a la Figura 3-9.
**Taula 3-2 Abreujament de la instrumentació de control segons la nomenclatura ISA**

<table>
<thead>
<tr>
<th>ABREUJAMENT</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAH</td>
<td>Alarma de cabal alt</td>
</tr>
<tr>
<td>FAL</td>
<td>Alarma de cabal baix</td>
</tr>
<tr>
<td>FC</td>
<td>Controlador de cabal</td>
</tr>
<tr>
<td>FE</td>
<td>Sensor de cabal</td>
</tr>
<tr>
<td>FQ</td>
<td>Cabalimetre</td>
</tr>
<tr>
<td>FT</td>
<td>Transmissor de cabal</td>
</tr>
<tr>
<td>FIT</td>
<td>Transmissor de l’indicador de cabal</td>
</tr>
<tr>
<td>FCV</td>
<td>Vàlvula de regulació de cabal</td>
</tr>
<tr>
<td>HV</td>
<td>Vàlvula automàtica tot/res</td>
</tr>
<tr>
<td>LAH</td>
<td>Alarma d’alt nivell</td>
</tr>
<tr>
<td>LAL</td>
<td>Alarma de baix nivell</td>
</tr>
<tr>
<td>LC</td>
<td>Controlador de nivell</td>
</tr>
<tr>
<td>LE</td>
<td>Sensor de nivell</td>
</tr>
<tr>
<td>LT</td>
<td>Transmissor de nivell</td>
</tr>
<tr>
<td>LCV</td>
<td>Vàlvula de regulació de nivell</td>
</tr>
<tr>
<td>PAH</td>
<td>Alarma de pressió alta</td>
</tr>
<tr>
<td>PAL</td>
<td>Alarma de pressió baixa</td>
</tr>
<tr>
<td>PV</td>
<td>Vàlvula de control de pressió</td>
</tr>
<tr>
<td>PC</td>
<td>Controlador de pressió</td>
</tr>
<tr>
<td>PE</td>
<td>Sensor de pressió</td>
</tr>
<tr>
<td>PI</td>
<td>Indicador de pressió</td>
</tr>
<tr>
<td>PSV</td>
<td>Vàlvula d’alleujament de pressió</td>
</tr>
<tr>
<td>PT</td>
<td>Transmissor de pressió</td>
</tr>
<tr>
<td>PCV</td>
<td>Vàlvula autoreguladora de pressió</td>
</tr>
<tr>
<td>PZ</td>
<td>Disc de ruptura</td>
</tr>
<tr>
<td>SC</td>
<td>Variador de freqüència</td>
</tr>
<tr>
<td>TAH</td>
<td>Alarma de temperatura alta</td>
</tr>
<tr>
<td>TAL</td>
<td>Alarma de temperatura baixa</td>
</tr>
<tr>
<td>TC</td>
<td>Controlador de temperatura</td>
</tr>
<tr>
<td>TE</td>
<td>Sensor de temperatura</td>
</tr>
<tr>
<td>TI</td>
<td>Indicador de temperatura</td>
</tr>
<tr>
<td>TT</td>
<td>Transmissor de temperatura</td>
</tr>
<tr>
<td>TCV</td>
<td>Vàlvula de regulació de temperatura</td>
</tr>
<tr>
<td>ZS</td>
<td>Final de carrera</td>
</tr>
</tbody>
</table>

**Figura 3-9 Cadena de mesura en supervisió i control**

El primer element de la sèrie és l’element primari o sensor que, com ja s’ha esmentat abans, esdevé l’element en contacte amb la variable del procés que es mesura. El següent element és el transdutor, que és l’element que modifica la naturalesa de la senyal que proporciona el sensor per a que sigui més fàcilment processable o mesurable. El darrer element de la cadena és el transmissor, un dispositiu que converteix la senyal que proporciona el transdutor en una senyal estàndard que es transmet més fàcilment al sistema de control i que, al estar...
normalitzada, és compatible amb qualsevol instrument de control, independentment de la seva marca comercial o procedència.

3.3.1. ELEMENTS PRIMARIS O SENSORS

L’apartat següent pretén descriure acuradament cadascun dels elements primaris de control emprats pel grup ILANT en el sistema de control implementat a la planta de producció d’àcid fòrmic.

3.3.1.1. Mesura de la temperatura

La temperatura esdevé, juntament amb el cabal, la variable que es mesura amb major freqüència en la majoria de processos químics.

El rang de temperatures que es mesura en el present projecte és molt ampli, esdevenint una casuística per a la selecció del sistema de control de temperatura adient juntament amb el temps de resposta de l’instrument i les condicions ambientals en què es trobarà el sensor.

En el present projecte s’han emprat dos tipus de sensors de temperatura

TERMOPARELLS

Els termoparells esdevenen, juntament amb les termoresistències, els sensors de temperatura més emprats en processos químics industrials.

El principi físic d’un termoparell consisteix en què quan dos o més metalls diferents s’uneixen, es genera en el punt de d’unió una força electromotriu que és funció de la temperatura. Aquestes parelles normalment estan constituïdes de metalls tals com el ferro, el coure, el platí, el tungstè o alguns aliatges metàl·lics conformats pel níquel, el crom i el magnesi entre d’altres.

La Taula 3-3 senyala les característiques dels termoparells més emprats en la indústria química.

TERMORESISTÈNCIES

Les termoresistències empren l’increment de resistència elèctrica que experimenta un conductor al augmentar la seva temperatura com el principi físic subjacent de funcionament.

Les termoresistències més emprades són les de platí degut a la seva resistència a la corrosió i a la seva linealitat en un rang molt ampli de temperatures (de -270°C a 650°C). Les termoresistències es poden protegir d’un ambient corrosiu encapsulant-la en una baina metàl·lica de inconel o acer inoxidable, de forma que adquireix l’aspecte externa d’un termoparell.
Figura 3-10 A l’esquerra, termoparell tipus K. A la dreta, termoparell tipus T

Taula 3-3 Característiques dels diversos tipus de termoparells i adequació dels mateixos sense baina protectora

<table>
<thead>
<tr>
<th>TIPUS</th>
<th>DESCRIPCIÓ</th>
<th>RANG (ºC)</th>
<th>PRECISIÓ</th>
<th>ATMO SFERA</th>
<th>OXIDANT</th>
<th>ATMO SFERA</th>
<th>REDUCTORA</th>
<th>BUIT</th>
<th>TEMPERATURES CRIOGÈNIQUES</th>
<th>VAOIRS METÀL·LICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Cromel/Alumel</td>
<td>-270/1370</td>
<td>± 2,2ºC</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>J</td>
<td>Ferro/Constantà</td>
<td>-210/760</td>
<td>± 1ºC</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>No</td>
<td>Sí</td>
<td>Sí</td>
<td>No</td>
</tr>
<tr>
<td>T</td>
<td>Coure/Constantà</td>
<td>-270/400</td>
<td>± 2,2ºC</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>E</td>
<td>Cromel/Constantà</td>
<td>-270/1000</td>
<td>± 1ºC</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>B</td>
<td>Platí/Platí</td>
<td>0/1820</td>
<td>± 1ºC</td>
<td>Sí</td>
<td>No</td>
<td>Sí</td>
<td>No</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>R</td>
<td>Platí/Platí</td>
<td>-50/1770</td>
<td>± 1,5ºC</td>
<td>Sí</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

**TERMISTORS**

Els termistors es basen en la variació de la resistència elèctrica que experimenta un material semiconductor quan canvia la temperatura. Tot i que aquest tipus de sensors presenten una gran sensibilitat, la resposta del sensor no és lineal amb la temperatura, de forma que el cap l’aplicació d’aquest tipus de sensors es limita a casos en els que es requereixi una gran resolució en un rang estret de temperatures.

**PIRÒMETRES**

Els piròmetres són instruments capaços de mesurar la temperatura d’un objecte sense posar-se en contacte amb ell. El principi físic subjacent consisteix en que tots els cossos emeten radiació tèrmica i que la quantitat total d’energia radiada entre dues longituds d’ona depèn de la temperatura de l’objecte. Els piròmetres de radiació han de ser meticulosament calibrats, donats que certs elements com ara el CO₂ i l’aigua tenen una elevada capacitat per absorbir radiacions tèrmiques.
Es diferencien quatre tipus de piròmetres de radiació: de radiació total, òptics, de banda estreta i de dos colors.

La Taula 3-4 resum les característiques i les consideracions a tenir en compte a l’hora d’escollir un sensor de temperatura.

La Taula 3-4 mostra com una temperatura d’entre -195°C i 650°C, que comprèn la totalitat del rang de temperatures que conformen la planta de producció d’àcid fòrmic, pot ser mesurada per un termoparell o una termoresistència. Tot i que els termoparells abasten un rang més ampli que les termoresistències, aquests darrers tenen una major precisió: les termoresistències de platí són els sensors comercials intrínsecament més precisos que es poden trobar al mercat.

Pel que fa al temps de resposta, els termistors sense protecció responen quasi instantàniament que tota la resta. A més a més, cal considerar que per a termoparells i termoresistències protegits amb baines, el temps de resposta es multiplica per un factor comprès entre 3 i 10.

Finalment, tot i que el preu dels termoparells és notablement inferior, quan es compara el cost total del sistema de mesura d’aquests amb els dels termoparells, la diferència no esdevé tan àmplia, descartant els piròmetres que tenen un cost intrínsecament superior.
**Taula 3-4** Característiques generals dels sensors de temperatura

<table>
<thead>
<tr>
<th>CARACTERÍSTICA</th>
<th>TERMOPARELL</th>
<th>TERMISTOR</th>
<th>TERMORRESISTÈNCIA</th>
<th>PIRÓMETRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rang d’operació</td>
<td>-200 a 1700°C</td>
<td>-195 a 450°C</td>
<td>-250 a 650°C</td>
<td>-40 a 3000°C</td>
</tr>
<tr>
<td>Precisió tèpica</td>
<td>± 2,2°C</td>
<td>± 0,2°C</td>
<td>± 0,1°C</td>
<td>± 0,5%</td>
</tr>
<tr>
<td>Biaix</td>
<td>&lt;± 2,2°C l’any</td>
<td>&lt;± 1°C l’any</td>
<td>&lt;± 0,1°C l’any</td>
<td></td>
</tr>
<tr>
<td>Abast mínim (°C)</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>100 a 500</td>
</tr>
<tr>
<td>Abast màxim (°C)</td>
<td>Tot el rang</td>
<td>100</td>
<td>Tot el rang</td>
<td>100</td>
</tr>
<tr>
<td>Temps de resposta del 63% (s)</td>
<td>4-5</td>
<td>1</td>
<td>5-6</td>
<td></td>
</tr>
<tr>
<td>Linealitat</td>
<td>Bona</td>
<td>Pobre</td>
<td>Excel·lent</td>
<td>Molt pobre</td>
</tr>
<tr>
<td>Avantatges</td>
<td>-Capacitat de mesura a altes temperatures</td>
<td>-Màxima sensibilitat</td>
<td>- Gran precisió i estabilitat</td>
<td>-No requereix contacte amb el material</td>
</tr>
<tr>
<td></td>
<td>-Diversitat de materials per a diferents entorns</td>
<td>- Mida reduïda</td>
<td>- Senyal de sortida major que el termoparell</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Resposta ràpida</td>
<td>- Econòmic</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ràpida sense baina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconvenients</td>
<td>-Baixa senyal de sortida</td>
<td>-Abast molt reduït</td>
<td>-Fràgil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Subjecte a errors associats a cables d’extensió</td>
<td>-No pot mesurar a temperatures molt elevades</td>
<td>-Subjecte a errors de sobreescalfament</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Requereix compensació</td>
<td>-Abast molt reduït</td>
<td>-Fràgil</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Essent així, i atenent a les consideracions anteriorment esmentades, s’ha decidit emprar les termoresistències, per la seva precisió, el seu rang d’actuació i el cost relativament reduït que el sistema de mesura d’aquests representa.

3.3.1.2. Mesura del nivell

La mesura del nivell assolit per un líquid en un tanc o en un dipòsit esdevé una de les tasques més comunes de la indústria. Del grau de complexitat del mesurador en dependeran les propietats del líquid (viscositat, corrosió, sòlids en suspensió...).
El nivell es pot mesurar per mètodes directes o indirectes: els primers mesuren el desplaçament de la superficial del líquid mitjançant sistemes òptics, ultrasònics, flotadors, elèctrodes o d’altres. Els mètodes indirectes mesuren altres variables que estan intrínsecament relacionades amb el nivell tals com la pressió al fons del tanc, la força que s’exerceix sobre una boia, el grau d’inversió de la qual depèn del nivell...

**LECTURES TOT-RES**

Aquest tipus de lectures permeten determinar si el nivell d’un producte supera una determinada posició o si queda per sota d’aquesta. Proporciona una informació digital del tipus tot-res i no el valor de la variable.

La forma més habitual de realitzar aquestes mesures és emprant sondes de nivell que mesuren la resistència entre dos elèctrodes, un situat a la part inferior del tanc i l’altre a una distància determinada del fons. Depenent de quin nivell de líquid cobreixi o no a aquest segon elèctrode, la resistència del circuit serà baixa o alta respectivament.

Una altra forma de realitzar aquest tipus de lectures és mitjançant una barrera òptica que es interrompuda quan el producte la sobrepassa.

**LECTURES PROPORCIONALS**

Les lectures proporcionals permeten disposar d’una mesura de l’alçada d’un producte en el tanc. Les mesures proporcionals de nivells es poden realitzar de diverses formes:

**SISTEMES BASATS EN FLOTADORS:** Es basen en un flotador o boia que es desplaça en sentit vertical amb el nivell del líquid. En nivell es transmet per algun dels mètodes anteriorment explicats a una senyal elèctrica o neumàtica que serà la mesura de nivell.

**SISTEMES BASATS EN MESURES DE LA PRESSIÓ:** La pressió en el fons d’un recipient que contingui un líquid està directament relacionada amb el nivell de líquid dins del recipient. Aquest tipus de mesuradors estan compostos per un pont de Wheatstone que, sotmesos a la pressió del líquid, causa que el sensor flexioni, creant així una tensió captada per les galgues extensiomètriques que donen lloc a una senyal de sortida proporcional a la pressió aplicada que a la vegada, es relaciona directament amb el nivell de líquid del recipient.

**MESURES DE NIVELL PER VARIACIÓ DE LA CAPACITAT ELÈCTRICA:** La diferent capacitat elèctrica dels líquids respecte de l’aire permet mesurar el nivell dels mateixos considerant la variació de capacitat que es produeix entre dos elements conductors quan canvia el grau d’immersió d’aquests en el líquid. Els sensors basats en la capacitat elèctrica són el mesurador de nivell conductiu o resistiu i el mesurador de capacitat o sensor de radiofrequència.

**MESURES DE NIVELL PER DISPOSITIUS ULTRASÒNICS:** Aquest tipus de sensors emeten una senyal ultrasònica i mesuren el temps que triga la ona en viatjar fins a la superfície lliure del líquid i tornar al sensor una vegada reflectida al líquid. En aquest tipus de mesures, el sensor s’ha de situar de forma que l’emissió sigui perpendicular a la superfície lliure del líquid. El sensor
es pot disposar per sobre o per sota del nivell del líquid. Un dels problemes que planteja aquest tipus de sensor son les falses lectures causades pels rebots de la senyal a les paret del tanc, en un agitador, un deflector o qualsevol altre dispositiu intern del tanc.

**SELECCIÓ DEL SENSOR DE MESURA DE NIVELL**

Els sistemes basats en mesures de la pressió esdevenen els sistemes que s’empraran a la planta de producció d’àcid fòrmic del grup ILANT pel seu rang d’aplicacions i per els seu cost més assequible, juntament amb els sistemes basats en el principi de vibració. En la implementació de la planta, s’empraran mesuradors de nivell per pressió hidrostàtica per a la mesura del nivell continua i forquilles vibrants com a indicadors de nivell màxim i mínim.

En els sistemes de pressió hidrostàtica, el líquid al tanc actua sobre el diafragma del sensor. A mesura que el nivell de líquid al tanc augmenta, la gravetat fa que la pressió augmenti de forma proporcional a la columna de nivell de líquid, que esdevé a efectes pràctics, el nivell de líquid del tanc. En un tanc atmosfèric, la pressió es troba continuament compensada en relació a l’aire de l’ambient. Essent així, el nivell de gas que es troba a la zona superior del tanc no afecta a la mesura del nivell. Tot i així, en adició a la pressió que exerceix la columna de líquid sobre el sensor, la pressió ambiental també actua sobre el diafragma de l’element mesurador. En mesures de nivells del líquid a pressions atmosfèriques, el sensor esdevé un sensor de pressió manomètrica.

Per les alarmes de nivell màxim i nivell mínim, s’han implementat forquilles vibrants, que fan servir el principi de vibració, que estableix una correlació entre la oscil·lació i l’esmorteïment en el medi. Aquest tipus de forquilles, són excitades fins a la seva freqüència de ressonància, de forma que quan un líquid entra en contacte amb les forquilles, és produïda una atenuació de la freqüència d’oscil·lació del sistema, que permet determinar si el líquid ha assolit un determinat nivell.

**Figura 3-13** A l’esquerra, principi de funcionament d’un sistema de mesura de nivell per pressió hidrostàtica per tans. A la dreta, principi de funcionament d’un sistema de forquilles vibrants

### 3.3.1.3. Mesura de la pressió

Els elements primaris per a la mesura de la pressió són dispositius que tradueixen la pressió en un moviment mecànic que posteriorment es converteix a una senyal elèctrica o pneumàtica.
Són instruments que es situen a prop del procés que es deformen o es desplacen com a conseqüència de de la diferència entre la pressió que es vol mesurar i una de referència, que generalment és la atmosfèrica.

Es distingeixen dos tipus d’elements primaris: els de columna de líquid i els elàstics:

**COLUMNÀRIA DE LÍQUID**

La pressió es pot mesurar a partir de la diferència de l’alçada d’un líquid en un tub en U. Aquest tipus de dispositiu mesura la pressió diferencial entre els dos extrems del tub en U, però és possible emprar un tub en U tancat per un extrem en el que s’ha fet el buit.

**ELEMENTS ELÀSTICS**

En aquests dispositius, la diferència de pressió actua sobre una superfície elàstica, resultant en una força neta sobre aquesta que produeix un desplaçament o una deformació proporcional a la força aplicada. Entre aquests elements, es troben les manxes, els tubs Bourdon i els diafragmes

- **Les manxes** són elements amb una paret prima i plegades de tal forma que només permeten moviments a axials. La diferència de pressió entre l’interior i l’exterior de la manxa fa que aquesta es desplaci de forma proporcional a la pressió exercida.
- **Els tubs Bourdon** són tubs corbats i tancats per l’extrem oposat a la boca de connexió amb el procés. Quan la pressió a l’interior del tub augmenta, el tub tendeix a redreçar-se produint un desplaçament a l’extrem, que es tradueix en un moviment d’una agulla sobre una escala o sobre una senyal elèctrica o pneumàtica estàndard.
- **Els diafragmes** són discs flexibles format per plecs concèntrics per augmentar la seva capacitat de deformació en sentit transversal al pla del disc. Els diafragmes separen dues càmeres, una de les quals es connecta al procés i l’altra a una pressió de referència. La diferència de pressió entre ambdues càmeres provoca una deformació del diafragma en el sentit perpendicular a la superfície d’aquest.

**SELECCIÓ DEL SENSOR DE MESURA DE PRESSIÓ**

Aprofitant els elements primaris de mesura de cabal i el principi de funcionament que emprend, és possible realitzar mesures de pressió emprant la mateixa instrumentació.

La pressió pot ésser continuament mesurada en tàncs i canonades per les quals hi circula un fluid emprant cel·les de pressió ceràmiques absolutes i manomètriques. En aquest tipus de cel·les, un material conductor de l’electricitat s’aplica en un substrat ceràmic formant així, un condensador elèctric.

Al aplicar-se la pressió, el diafragma es deforma, provocant canvis en la capacitat que permet mesurar la variació de la pressió. Existeixen cel·les ceràmiques absolutes, que esdevenen
un sistema tancat que mesura els canvis de pressió respecte del buit, a diferència de les cel··les manomètriques, un sistema obert permet la compensació de la pressió entre l’ambient i l’interior de la cel··la, fent que els valors de pressió que mesura la cel··la siguin relatius a la pressió ambiental.

La mesura de la pressió diferencial en un tanc o recipient tancat també resulta d’utilitat i, de la mateix amanera que amb les cel··les de pressió, també pot aprofitar-se els mètodes de mesura den pressió diferencial.

La mesura de la pressió diferencial en un recipient tancat no es veu afectada per la pressió atmosfèrica: el sensor diferencial mesura la pressió de la columna de líquid i la pressió de caps de recipient. Tots dos valors es transmeten al transmissor per capil·laritat d’una línia d’oli que, en rebre les dues dades, calcula la pressió del tanc o recipient com la diferència entre tots dos valors.

Figura 3-14 Principi de funcionament d’un mesurador de pressió diferencial

3.3.1.4. Mesura del cabal

La mesura de cabals volumètrics i/o màssics de corrents de líquid gas, vapor, o mesclles bifàsiques líquid-vapor esdevé un procés molt freqüent en plantes químiques. Per desgràcia, el mesurador de cabal universal que sigui capaç de fer front a totes les aplicacions amb suficient pressió, sense problemes de manteniment, per qualsevol rang de cabal i sense ocasionar una pèrdua de càrrega significativa.

Per tal d’abastir la totalitat de camps d’operació, existeixen al mercat diversos tipus de mesuradors de cabal:

MESURADORS DE PRESSIÓ DIFERENCIAL

Un cabalímetre de pressió diferencial consisteix en una restricció de la canonada que redueix l’àrea de pas. Al augmentar la velocitat del fluid, i per conseqüència la seva energia cinètica, disminueix la pressió estàtica. La pressió diferencial resultant de la conversió parcial en energia cinètica, es mesura mitjançant preses de pressió situades a ambdòs costats de la restricció. Aquesta diferència de pressió es funció del quadrat del cabal, de propietats del fluid
(densitat, viscositat...), de com sigui aquesta restricció i de la distància a la que es situin les preses de pressió respecte de la restricció.

La pressió diferencial produïda pel sensor de caudal es mesurada generalment per un transmissor electrònic de pressió diferencial el qual genera una senyal elèctrica estàndard de 4-20mA. Existeixen tres tipus de mesuradors que operen sota aquest principi:

PLACA D’ORIFICI: El cabalímetre de placa d’orifici esdevé en essència, una placa plana en la que es practica un orifici pel que circula el fluid. És el mesurador de pressió diferencial més simple i econòmic, tot i que requereix de trams llargs de canonada abans i després de la placa i que provoca una pèrdua de càrrega irrecuperable elevada.

TUB VENTURI: El tub venturi està constituit per una secció tronco-cònica convergent d’entrada, una constricció i una secció tronco-cònica divergent de sortida. Aquest tipus de mesurador presenta una pèrdua irrecuperable de pressió molt inferior de l’orifici mesurador i pot ser emprat per fluids bruts amb partícules en suspensió en no tenir orificis on es puguin acumular els sòlids, tot i que també requereixen de trams de canonada llargs i són sensiblement més cars que els orificis degut a la seva construcció més elevada.

TOVERA: Una tovera té una secció d’entrada el-líptica o radial que evita la possibilitat de que no es dipositi brutícia sobre l’element mesurador. Al no tenir una secció divergent de sortida provoca una pèrdua de càrrega superior als tubs venturi, però inferior als orificis mesuradors. S’acostumen a emprar per a mesurar cabals de vapor d’aigua a elevades velocitats i també per fluids agressius o lletades. El cost és notablement inferior al tub venturi.

![Figura 3-15](image-url)
MESURADORS LINEALS

Aquest tipus de mesuradors generen una senyal proporcional a la velocitat mitjana del fluid a la canonada:

MESURADOR D’ULTRASONIS: Existeixen diferents tipus de mesuradors que pertanyen a aquest grup. Els més habituals són els anomenats de “diferència de temps” que es basen en el temps que triga el so en recórrer una certa trajectòria en el sentit del flux i en el sentit contrari. Els mesuradors d’ultrasons consten de parells de sensors un davant de l’altre al tub de mesura. Cada sensor pot alternativament emetre i rebre una senyal ultrasònica: el temps que triga en arribar un impuls d’un sensor a un altre (temps de trànsit) està continuament mesurat. Quan no hi circula cap fluid, els temps que es registren són els mateixos per a tots els sensors. En el moment en què el fluid hi circula per l’interior del mesurador, els temps de trànsit varien escurçant-se si la senyal circula a co-corrent del fluid o allargant-se si aquesta s’envia en direcció contrària a la direcció de circulació del fluid, de forma que els sensors tenen diferents temps de trànsit, esdevenint un element que es relaciona de forma proporcional amb la velocitat de circulació del fluid.

MESURADOR ELECTROMAGNÈTIC: Aquest tipus de mesuradors es basen en la llei de Faraday que estableix que quan un conductor circula a través d’un camp magnètic, s’indueix una força electromotriu que es proporcional al a la velocitat relativa entre el conductor i el camp. El mesurador electromagnètic esdevé doncs, un rodet construït en un material no magnètic. El líquid és el conductor elèctric. La velocitat relativa entre el conductor i el camp és la velocitat mitjana del fluid, que es relaciona amb el voltatge induït sobre el mateix segons la llei de Faraday.

MESURADOR DE TURBINA: Els mesuradors de turbina s’emeten principalment per mesurar cabals de líquids, tot i que hi ha dissenys especials apropiats per a gasos. Un cabalímetre de turbina esdevé essencialment un rotor amb diversos àpex que giren per l’acció d’un fluid per l’acció del fluid entorn a un eix suportat per uns coixinets. La velocitat angular de rotació és proporcional al cabal volumètric.

MESURADOR DE REMOLÍ: Un cabalímetre de remolí consisteix en un obstacle no aerodinàmic situat en el sí d’un corrent. En obstacles d’aquest tipus es produeix la separació de la capa limit i la formació de remolins a la zona de baixes pressions, sota de l’obstacle. Aquests remolins es desprènens alternativament de les diferents cares de l’obstacle amb una freqüència proporcional a la velocitat del fluid. Quan es desprèn un remoli d’una de les cares de l’obstacle augmenta la velocitat en aquesta regió i disminueix la pressió, a la vegada que a la cara oposada succeeix exactament el contrari; com a conseqüència, les oscil·lacions de pressió i velocitat tenen una freqüència idèntica a la de la formació dels remolins. Mesurant la freqüència de les oscil·lacions de velocitat o pressió es pot conèixer en el cabal volumètric.

ROTÀMETRES: Un rotàmetre és un mesurador de cabal d’àrea variable que consisteix bàsicament en un tub tronco-cònic vertical amb la boca menor a la part inferior. En el seu interior hi ha un flotador que es desplaça verticalment i que es situa en una posició d’equilibri per a cada cabal de fluid.
MESURADORS D’INSERCIÓ

Els mesuradors d’inserció són dispositius petits que s’introdueixen a la canonada per mesurar la velocitat local en un o diversos punts d’una secció transversal de flux. Provoquen una pèrdua de càrrega menyspreable i són molt econòmics per mesurar grans cabals si bé manquen d’una gran precisió. La senyal que genera l’element primari és proporcional al quadrat de la velocitat. A aquest tipus de mesuradors pertanyen:

**TUB PITOT:** El tub Pitot és un dispositiu que mesura la velocitat del fluid en el punt de la secció tranversal de flux on s’instal·la. En essència, consisteix en dos tubs oberts: un amb la boca d’entrada orientada perpendicularment a les línies de corrent del fluid (tub d’impacte) i un altre amb la boca d’entrada orientada paral·lelament a les línies de corrent. El primer transmet la pressió total o pressió d’estancament i el segon la pressió estàtica, independent de la velocitat del fluid. La diferència entre totes dues pressions és la pressió dinàmica, que es proporcional al quadrat de la velocitat del fluid.
**TUB ANNUBAR**: El tub Annubar és una modificació del tub de Pitot consistent en dos tubs. El tub d’impacte, que mesura la pressió total, presenta quatre boques al llarg del diàmetre de la canonada connectades a una mateixa càmera tubular de forma que es mesura la pressió total mitjana de les quatre localitzacions radials. El tub que mesura la pressió estàtica es troba darrere el tub d’impacte, amb la boca centrada a l’eix de la canonada. El tub Annubar presenta major precisió que el tub Pitot, presenta també una baixa pèrdua de càrrega i s’empra per mesurar petits i grans cabals de líquids i gasos nets.

**MESURADORS DE CABAL MàSSIC**

Actualment ja no és necessari inferir conèixer el cabal màssic a partir del cabal volumètric, donat que existeixen cabalímetres amb suficient precisió i fiabilitat que mesuren directament el cabal màssic i que són independents de la pressió, la temperatura i el pes específic del fluid.

Un dels mesuradors de cabal màssic més emprats és el mesurador de cabal Coriolis. Aquest mesurador consisteix d’un tub ubicat a la part interior del cabalímetre que està constantment oscil·lant, degut a l’acció d’elements excitadors. Si no hi ha cap flux, el tub de mesura oscil·la de forma uniforme. El mesurador consta de sensors ubicats a l’entraida i a la sortida del tub oscil·latori que permeten registrar de forma precisa l’oscil·lació d’aquest. Tan aviat com el fluid circula per l’interior del tub, el tub es comença a doblegar com a conseqüència de la inèrcia del fluid. Degut a l’efecte Coriolis, l’entraida i la sortida oscil·len en direccions diferents al mateix temps. El sensor recull aquest canvi d’oscil·lació en termes de temps i espai. Aquest canvi en la oscil·lació és la mesura directa de la quantitat de líquid o gas que circula per l’interior d’un tub: a major velocitat i major quantitat circuli pel tub, major serà l’oscil·lació d’aquest.
SELECCIÓ DEL MESURADOR DE CABAL

De cara a determinar el tipus de mesurador adient, és necessari tenir en compte com a primer factor la compatibilitat entre les característiques del servei i el tipus de mesurador. Per avaluar a questa compatibilitat és necessari tenir en compte la pressió i la temperatura d’operació, la viscositat del fluid, la presència o no de sòlids en suspensió...La Taula 3-5 mostra una informació resumida sobre l’adecuació de diferents tipus de cabalímetres a diferents condicions de servei a la vegada que la A partir de les dades presentades i considerant el seu extens rang d’aplicacions, el cabalímetre emprat per excel·lència al procés de producció d’àcid fòrmic del grup ILANT esdevindrà el mesurador d’efecte Coriolis que si bé el seu cost resulta elevat, la caiguda de pressió del fluid que circula no resulta significativa i el seu cost de manteniment és reduït. Aquest tipus de mesuradors a més a més, presenten l’avantatge que permeten mesurar tant cabals volumètrics com màssics tant per gasos com per líquids, abastint la totalitat de les necessitats de mesura de cabal de la planta d’àcid fòrmic.

Taula 3-6 amplia la informació proporcionant dades útils per a la implementació dels elements mesuradors de cabal.

Taula 3-5 Comptabilitat entre cabalímetres i condicions de servei (R=Recomanat, L=Us amb limitacions i NR=No recomanat)

<table>
<thead>
<tr>
<th>MESURADOR</th>
<th>LÍQUID NET</th>
<th>LÍQUID BRUT</th>
<th>LÍQUID VISCÓS</th>
<th>LÍQUID CORROSSIU</th>
<th>LLETADA</th>
<th>GAS NET</th>
<th>GAS BRUT</th>
<th>VAPOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orifici</td>
<td>R</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>R</td>
<td>NR</td>
<td>R</td>
</tr>
<tr>
<td>Tovera</td>
<td>R</td>
<td>L</td>
<td>NR</td>
<td>L</td>
<td>NR</td>
<td>R</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Venturi</td>
<td>R</td>
<td>L</td>
<td>NR</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Electromagnètic</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Turbina</td>
<td>R</td>
<td>NR</td>
<td>L</td>
<td>L</td>
<td>NR</td>
<td>R</td>
<td>NR</td>
<td>R</td>
</tr>
<tr>
<td>Remolins</td>
<td>R</td>
<td>L</td>
<td>NR</td>
<td>L</td>
<td>NR</td>
<td>R</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>Ultrasons</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>R</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Rotàmetre</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NR</td>
<td>R</td>
<td>NR</td>
<td>L</td>
</tr>
<tr>
<td>Pitot</td>
<td>R</td>
<td>NR</td>
<td>NR</td>
<td>L</td>
<td>NR</td>
<td>R</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Anubbar</td>
<td>R</td>
<td>L</td>
<td>NR</td>
<td>L</td>
<td>NR</td>
<td>R</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td>Coriolis</td>
<td>R</td>
<td>R</td>
<td>L</td>
<td>R</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>
A partir de les dades presentades i considerant el seu extens rang d’aplicacions, el cabalímetre emprat per excel·lència al procés de producció d’àcid fòrmic del grup ILANT esdevindrà el mesurador d’efecte Coriolis que si bé el seu cost resulta elevat, la caiguda de pressió del fluid que circula no resulta significativa i el seu cost de manteniment és reduït. Aquest tipus de mesuradors a més a més, presenten l’avantatge que permeten mesurar tant cabals volumètrics com màssics tant per gasos com per líquids, abastint la totalitat de les necessitats de mesura de cabal de la planta d’àcid fòrmic.

Taula 3-6 Dades útils de cabalímetres (F=cabal màssic, LS=Límit superior de l’escala, A=Alt, M=Mig, B=Baix)

<table>
<thead>
<tr>
<th>MESURADOR</th>
<th>MIDAS DISPONIBLE (polzades)</th>
<th>PRECISSIÓ</th>
<th>RANG DE CABAL</th>
<th>CAIGUDA DE PRESSIÓ</th>
<th>COST RELATIU</th>
<th>TRAM DE CANONADA RECTA</th>
<th>TIPOS DE SORTIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orifici</td>
<td>&gt;1</td>
<td>±1 a 2% LS</td>
<td>3:1</td>
<td>A</td>
<td>B</td>
<td>10-30</td>
<td>Quadrática</td>
</tr>
<tr>
<td>Tovera</td>
<td>&gt;2</td>
<td>±1 a 2% LS</td>
<td>3:1</td>
<td>A</td>
<td>M</td>
<td>10-30</td>
<td>Quadrática</td>
</tr>
<tr>
<td>Venturi</td>
<td>&gt;2</td>
<td>±1 a 2% LS</td>
<td>3:1</td>
<td>B</td>
<td>A</td>
<td>5-10</td>
<td>Quadrática</td>
</tr>
<tr>
<td>Electromagnètic</td>
<td>&gt;0,1</td>
<td>±0,5 F a 2% LS</td>
<td>10:1</td>
<td>B</td>
<td>A</td>
<td>5-10</td>
<td>Lineal</td>
</tr>
<tr>
<td>Turbina</td>
<td>&gt;0.25</td>
<td>±1% F</td>
<td>10-35:1</td>
<td>A</td>
<td>M</td>
<td>10-20</td>
<td>Lineal</td>
</tr>
<tr>
<td>Remolins</td>
<td>&gt;0.5</td>
<td>±0.5 a 1.5% F</td>
<td>10-20:1</td>
<td>M</td>
<td>M</td>
<td>10-20</td>
<td>Lineal</td>
</tr>
<tr>
<td>Ultrasons</td>
<td>&gt;0.5</td>
<td>±1% F a ±5% LS</td>
<td>10:1</td>
<td>B</td>
<td>M</td>
<td>5-20</td>
<td>Lineal</td>
</tr>
<tr>
<td>Rotàmetre</td>
<td>&lt;3</td>
<td>±0.5 F a ±1% LS</td>
<td>10:1</td>
<td>M</td>
<td>B</td>
<td>Cap</td>
<td>Lineal</td>
</tr>
<tr>
<td>Pitot</td>
<td>&gt;3</td>
<td>±5% LS</td>
<td>3:1</td>
<td>B</td>
<td>B</td>
<td>20-30</td>
<td>Quadrática</td>
</tr>
<tr>
<td>Anubbar</td>
<td>&gt;0.5</td>
<td>±1,25% LS</td>
<td>3:1</td>
<td>B</td>
<td>B</td>
<td>10-20</td>
<td>Quadrática</td>
</tr>
<tr>
<td>Coriolis</td>
<td>&lt;10</td>
<td>±0,2 a 1% F</td>
<td>25:1</td>
<td>M</td>
<td>A</td>
<td>Cap</td>
<td>Lineal</td>
</tr>
</tbody>
</table>

3.3.2. ELEMENTS FINALS DE CONTROL

Els elements finals de control esdevenen els instruments que finalment modifiquen alguna característica del procés segons el criteri dictat pel controlador. A la implementació del procés de producció d’àcid fòrmic, com en la majoria de plantes químiques, la majoria de les variables a manipular esdevenen cabals de corrents de procés. Per aquest efecte l’element de control més emprat és, amb molta diferència, les vàlvules de control o vàlvules de regulació automàtiques. En determinats casos, també s’han emprat com a elements finals de controls equips d’impulsió capaços de cedir major o menor energia al fluid en funció de la senyal de control. Aquest concepte s’implementa a través de bombes dotades d’un motor de velocitat variable (variador de freqüència) la velocitat de gir de la qual és proporcional a la senyal procedent del control.
A grans trets, una vàlvula de control consta bàsicament de dos components: el cos i l’actuador. En el cos es troben els components que realment regulen el pas del fluid modificant l’àrea de pas. És un receptacle amb elements interns que, al estar en contacte amb el fluid, ha de satisfacer els requeriments de resistència mecànica de pressió, resistència a la temperatura i a la corrosió. La forma geomètrica i constructiva del cos es la que determina realment el tipus de vàlvula. L’altre element bàsic d’una vàlvula és l’actuador, la missió del qual és regular la força necessària per a moure els components interns del cos i provocar així un canvi en l’obertura de la vàlvula. Existeixen diversos tipus d’actuadors, amb avantatges i inconvenients per a cada aplicació específica.

En el present projecte, les vàlvules de control que s’han emprat són les vàlvules de seient i les vàlvules de papallona.

VÀLVULES DE SEIENT: Anomenades així perquè el cos de la vàlvula conté l’obturador i el seient d’una forma més o menys esfèrica. El desplaçament vertical de l’obturador respecte del seient, on està l’orifici de pas, augmenta o disminueix l’àrea de pas. La gamma de mides, materials, rating i accessoris es molt àmplia, la qual cosa permet abastir la totalitat dels camps d’aplicació de la indústria química. Tot i així, aquest tipus de vàlvules presenten l’inconvenient de provocar una pèrdua de càrrega del fluid que hi circula, particularment quan el cabal és gran, i el seu preu acostuma a ser elevat.

VÀLVULES DE PAPALLONA: Les vàlvules de papallona són vàlvules anomenades rotatives l’ús de les quals s’ha ampliat en els darrers anys degut al seu baix cost, el seu disseny simple i l’elevat valor de K_v que presenten (constant específica de la vàlvula que determina la pèrdua de càrrega per un determinat cabal). Una vàlvula de papallona consta d’un anell més o menys ample a dins del qual girar transversalment un disc circular. La vàlvula pot tancar completament gràcies a un anell de goma encastat al cos anular. Un servomotor exterior fa girar l’eix del disc exercint el seu parell màxim quan la vàlvula està completament oberta. El camp d’aplicació típic de les vàlvules de papallona es caracteritza per elevats cabals (mides de vàlvula de 2 a 36 polzades o majors) i pressions estàtiques baixes o moderades.

La informació detallada de les vàlvules de regulació emprades en el disseny de la planta, així com les vàlvules tot/res es recull al capítol 4 del present projecte: Canonades, vàlvules i accessoris.

3.3.3. FULLS D’ESPECIFICACIONS DELS ELEMENTS PRIMARS I FINALS DE CONTROL

A continuació es presenten els fulls d’especificacions de cadascun dels tipus d’elements primaris i finals de control emprats en la realització del present projecte. S’especifica el full tipus d’un element en concret, donat que la resta d’elements al llarg del procés esdevenen, en essència, els mateixos.
### PLANTA DE PRODUCCIÓ D’ÀCID FÒRMIC

**CAPÍTOL 3 – CONTROL I INSTRUMENTACIÓ**

<table>
<thead>
<tr>
<th>Full 1-2</th>
<th></th>
</tr>
</thead>
</table>

**FULL D’ESPECIFICACIONS MESURADOR DE CABAL**

<table>
<thead>
<tr>
<th>REVISAT PER:</th>
<th>Dep. Qualitat</th>
<th>ÀREA:</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA:</td>
<td>20/06/2016</td>
<td>PLANTA:</td>
<td>Planta d’Àcid Fòrmic</td>
</tr>
<tr>
<td>APROVAT PER:</td>
<td>Direc. Tècnica</td>
<td>LOCALITZACIÓ:</td>
<td>Igualada</td>
</tr>
</tbody>
</table>

#### IDENTIFICACIÓ

<table>
<thead>
<tr>
<th>DENOMINACIÓ</th>
<th>Cabalímetre</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÍTEM</td>
<td>600-FT-607</td>
</tr>
<tr>
<td>LLAÇ DE CONTROL</td>
<td>n.a</td>
</tr>
<tr>
<td>SENYAL ENVIADA</td>
<td>Sala de control</td>
</tr>
<tr>
<td>FLUID</td>
<td>Àcid fòrmic 90% pes</td>
</tr>
<tr>
<td>ESTAT</td>
<td>Líquid</td>
</tr>
</tbody>
</table>

#### CONDICIONS DE SERVEI

<table>
<thead>
<tr>
<th>TEMPERATURA (°C)</th>
<th>MÍNIMA</th>
<th>NORMAL</th>
<th>MÀXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSIÓ (KPA)</td>
<td>n.a</td>
<td>101,3</td>
<td>n.a</td>
</tr>
<tr>
<td>DENSITAT (KG/M3)</td>
<td>n.a</td>
<td>1220</td>
<td>n.a</td>
</tr>
</tbody>
</table>

#### DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>ELEMENT DE MESURA</th>
<th>Efecte coriolis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIMENTACIÓ</td>
<td>85-260V AC a 45-65 Hz; 16 a 62V DC</td>
</tr>
<tr>
<td>SENYAL DE SORTIDA</td>
<td>4-20 mA</td>
</tr>
<tr>
<td>VARIABLE MESURADA</td>
<td>Cabal d’àcid fòrmic d’entrada</td>
</tr>
<tr>
<td>PRECISIÓ</td>
<td>±0,05%</td>
</tr>
<tr>
<td>TEMPS DE RESPOSTA (ts) (ms)</td>
<td>100</td>
</tr>
<tr>
<td>INDICADOR EN CAMP</td>
<td>Sí</td>
</tr>
<tr>
<td>CALIBRAT</td>
<td>Sí</td>
</tr>
</tbody>
</table>

#### DADES DE CONSTRUCCIÓ

<table>
<thead>
<tr>
<th>ELEMENT SENSOR</th>
<th>Efecte coriolis</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNEXIÓ A PROCÉS</td>
<td>Brides estàndard segons EN 1092-1 (DIN 2051)</td>
</tr>
<tr>
<td>TEMPERATURA MÀXIMA (°C)</td>
<td>200</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td>Vegeu esquema adjunt</td>
</tr>
<tr>
<td>MATERIAL EN CONTACTEAMB EL FLUID</td>
<td>AISI 904L</td>
</tr>
<tr>
<td>DENSITAT MÀXIMA (Kg/m³)</td>
<td>5000</td>
</tr>
<tr>
<td>PRESSIÓ MÀXIMA (KPa)</td>
<td>1000000</td>
</tr>
<tr>
<td>PES (KG)</td>
<td>5,0</td>
</tr>
</tbody>
</table>

#### DADES D’INSTAL-LACIÓ

| T AMBIENT MàX (°C) | 60 |
| T AMBIENT MÍN (°C) | -20 |
| FILTRE REDUCTOR | No |
| DISTÀNCIA AL CONTROLADOR (m) | n.a |

<table>
<thead>
<tr>
<th>POSICIÓ</th>
<th>HORIZONTAL</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPER</td>
<td>VERTICAL</td>
<td>X</td>
</tr>
<tr>
<td>EMPRESA</td>
<td>Endress+Hauser</td>
<td></td>
</tr>
<tr>
<td>MODEL</td>
<td>Promine Promass 80F</td>
<td></td>
</tr>
</tbody>
</table>
FULL D’ESPECIFICACIONS
MESURADOR DE CABAL

Dimensions in SI units

<table>
<thead>
<tr>
<th>DN</th>
<th>A</th>
<th>A*</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>L</th>
<th>dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>75</td>
<td>266</td>
<td>341</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>75</td>
<td>266</td>
<td>341</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>75</td>
<td>266</td>
<td>341</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>105</td>
<td>271</td>
<td>376</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>141</td>
<td>283</td>
<td>424</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>80</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>200</td>
<td>305</td>
<td>505</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>254</td>
<td>324</td>
<td>578</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>150</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>378</td>
<td>362</td>
<td>740</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>250</td>
<td>227</td>
<td>207</td>
<td>187</td>
<td>168</td>
<td>160</td>
<td>548</td>
<td>390</td>
<td>938</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
### CAPÍTOL 3 – CONTROL I INSTRUMENTACIÓ

#### FULL D’ESPECIFICACIONS
SENSOR DE TEMPERATURA

<table>
<thead>
<tr>
<th>REVISAT PER:</th>
<th>Dep. Qualitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA:</td>
<td>20/06/2016</td>
</tr>
<tr>
<td>APROVAT PER:</td>
<td>Direc. Tècnica</td>
</tr>
<tr>
<td>ÀREA:</td>
<td>600</td>
</tr>
<tr>
<td>PLANTA:</td>
<td>Planta d’Àcid Fòrmic</td>
</tr>
<tr>
<td>LOCALITZACIÓ:</td>
<td>Igualada</td>
</tr>
<tr>
<td>DENOMINACIÓ:</td>
<td>Sonda de temperatura</td>
</tr>
<tr>
<td>ÍTEM</td>
<td>600-TE-601</td>
</tr>
<tr>
<td>LLAÇ DE CONTROL</td>
<td>T-T601-601</td>
</tr>
<tr>
<td>SENYAL ENVIADA</td>
<td>Controlador 600-TC-601</td>
</tr>
<tr>
<td>FLUID</td>
<td>Àcid fòrmic 90% pes</td>
</tr>
<tr>
<td>ESTAT</td>
<td>Liquid</td>
</tr>
<tr>
<td>TEMPERATURA (°C)</td>
<td>MÍNIMA 8</td>
</tr>
<tr>
<td></td>
<td>NORMAL 25</td>
</tr>
<tr>
<td></td>
<td>MÀXIMA 48</td>
</tr>
<tr>
<td>PRESSIÓ (KPA)</td>
<td>n.a</td>
</tr>
<tr>
<td></td>
<td>101,3</td>
</tr>
<tr>
<td>DENSITAT (KG/M3)</td>
<td>n.a</td>
</tr>
<tr>
<td></td>
<td>1220</td>
</tr>
</tbody>
</table>

### CONDICIONS DE SERVEI

<table>
<thead>
<tr>
<th>TEMPERATURA (°C)</th>
<th>MÍNIMA</th>
<th>NORMAL</th>
<th>MÀXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSIÓ (KPA)</td>
<td>n.a</td>
<td>101,3</td>
<td>n.a</td>
</tr>
<tr>
<td>DENSITAT (KG/M3)</td>
<td>n.a</td>
<td>1220</td>
<td>n.a</td>
</tr>
</tbody>
</table>

### DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>ELEMENT DE MESURA</th>
<th>Termorresistència</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIMENTACIÓ</td>
<td>20-250V DC/AC, 50/60 Hz</td>
</tr>
<tr>
<td>SENYAL DE SORTIDA</td>
<td>4-20 mA</td>
</tr>
<tr>
<td>VARIABLE MESURADA</td>
<td>Temperatura tanc àcid fòrmic</td>
</tr>
<tr>
<td>PRECIÓSI</td>
<td>±0,1°C</td>
</tr>
<tr>
<td>TEMPS DE RESPOSTA (ts) (s)</td>
<td>21</td>
</tr>
<tr>
<td>INDICADOR EN CAMP</td>
<td>Sí</td>
</tr>
<tr>
<td>CALIBRAT</td>
<td>Sí</td>
</tr>
</tbody>
</table>

### DADES DE CONSTRUCCIÓ

<table>
<thead>
<tr>
<th>ELEMENT SENSOR</th>
<th>Termorresistència</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONEXIÓ A PROCÈS</td>
<td>Rosca mascle G 1/2 DIN / BSP</td>
</tr>
<tr>
<td>TEMPERATURA MÀXIMA (°C)</td>
<td>600</td>
</tr>
<tr>
<td>ALCADA/DIÀMETRE (mm)</td>
<td>10/3 (IL/ØX)</td>
</tr>
<tr>
<td>MATERIAL EN CONTACTE AMB EL FLUID</td>
<td>AISI 316L</td>
</tr>
<tr>
<td>DENSITAT MÀXIM (Kg/m³)</td>
<td>n.a</td>
</tr>
<tr>
<td>PRESSIÓ MÀXIMA (KPa)</td>
<td>75000</td>
</tr>
<tr>
<td>PES (KG)</td>
<td>1,78</td>
</tr>
</tbody>
</table>

### DADES D’INSTAL-LACIÓ

| T AMBIENT MÀX (°C) | 100 |
| T AMBIENT MÍN (°C) | -40 |
| FILTRE REDUCTOR    | No  |
| DISTÀNCIA AL CONTROLADOR (m) | n.a |
| POSICIÓ            | HORIZONTAL |
| HORIZONTAL         | VERTICAL   |
| SUPORT             | n.a        |
| EMPRESA            | Endress+Hauser |
| MODEL              | Omnigrad M TR10 |
**FULL D’ESPECIFICACIONS SENSOR DE TEMPERATURA**

<table>
<thead>
<tr>
<th>REVISAT PER:</th>
<th>Dep. Qualitat</th>
<th>ÀREA:</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA:</td>
<td>20/06/2016</td>
<td>PLANTA:</td>
<td>Planta d’Àcid Fòrmic</td>
</tr>
<tr>
<td>APROVAT PER:</td>
<td>Direc. Tècnica</td>
<td>LOCALITZACIÓ:</td>
<td>Igualada</td>
</tr>
</tbody>
</table>

![Diagram](attachment:image.png)
### FULL D'ESPECIFICACIONS
**SENSOR DE NIVELL EN UN PUNT**

<table>
<thead>
<tr>
<th>REVISAT PER:</th>
<th>Dep. Qualitat</th>
<th>ÀREA:</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA:</td>
<td>20/06/2016</td>
<td>PLANTA:</td>
<td>Planta d'Àcid Fòrmic</td>
</tr>
<tr>
<td>APROVAT PER:</td>
<td>Direc. Tècnica</td>
<td>LOCALITZACIÓ:</td>
<td>Igualada</td>
</tr>
</tbody>
</table>

#### IDENTIFICACIÓ
- **DENOMINACIÓ:** Forquilla vibrant de detecció de líquid
- **ÍTEM:** 600-LSH-633
- **LLAÇ DE CONTROL:** n.a
- **SENYAL ENVIADA:** Sala de control
- **FLUID:** Àcid fòrmic 90% pes
- **ESTAT:** Líquid

#### CONDICIONS DE SERVEI

<table>
<thead>
<tr>
<th>TEMPERATURA (ºC)</th>
<th>MÍNIMA</th>
<th>NORMAL</th>
<th>MÀXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>35</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRESSIÓ (KPA)</th>
<th>MÍNIMA</th>
<th>NORMAL</th>
<th>MÀXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.a</td>
<td>101,3</td>
<td>n.a</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DENSITAT (KG/M3)</th>
<th>MÍNIMA</th>
<th>NORMAL</th>
<th>MÀXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.a</td>
<td>1120</td>
<td>n.a</td>
<td></td>
</tr>
</tbody>
</table>

#### DADES D'OBERACIÓ
- **ELEMENT DE MESURA:** Forquilla vibrant
- **ALIMENTACIÓ:** 19-253V AC, H0/60Hz o 19-55V DC
- **SENYAL DE SORTIDA:** Pols
- **VARIABLE MESURADA:** Nivell de líquid en un punt
- **PRECISIÓ:** n.a
- **TEMPS DE RESPOSTA (t90):** n.a
- **INDICADOR EN CAMP:** No
- **CALIBRAT:** Sí

#### DADES DE CONSTRUCCIÓ
- **ELEMENT SENSOR:** Forquilla vibrant
- **CONEXIÓ A PROCÉS:** Brida DN25-DN100
- **TEMPERATURA MÀXIMA (ºC):** 150
- **ALÇADA/DIÀMETRE (mm):** Vegeu esquema adjunt
- **MATERIAL EN CONTACTE AMB EL FLUID:** AISI 316L
- **DENSITAT MÍNIMA (Kg/m³):** 500
- **PRESSIÓ MÀXIMA (KPA):** 4000
- **PES (KG):** 0,6

#### DADES D’INSTAL·LACIÓ
- **T AMBIENT MÀX (ºC):** 80
- **T AMBIENT MÍN (ºC):** -50
- **FILTRE REDUCTOR:** No
- **DISTÀNCIA AL CONTROLADOR (M):** n.a

### CONTROL I INSTRUMENTACIÓ

<table>
<thead>
<tr>
<th>POSICIÓ</th>
<th>HORIZONTAL</th>
<th>VERTICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPORT</td>
<td>n.a</td>
<td></td>
</tr>
</tbody>
</table>

#### EMPRESA
- Endress+Hauser

#### MODEL
- Liquiphant M FTL51C
Full d’especificacions
Sensor de Nivell en un punt

<table>
<thead>
<tr>
<th>REVISAT PER:</th>
<th>Dep. Qualitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA:</td>
<td>20/06/2016</td>
</tr>
<tr>
<td>PLANTA:</td>
<td>Planta d’Àcid Fòrmic</td>
</tr>
<tr>
<td>APROVAT PER:</td>
<td>Direc. Tècnica</td>
</tr>
<tr>
<td>LOCALITZACIÓ:</td>
<td>Igualada</td>
</tr>
</tbody>
</table>

Dimensions:
- Ø85
- max. 76
- max. 155
- min. 115
- max. 20.6
## Identificació
- **Denominació**: Sensor de nivell + sensor de pressió
- **Ítem**: 400-LT-403
- **Llaç de Control**: F-R401-403
- **Senyal Enviada**: Controlador
- **Fluid**: Formiat de metil, aigua, metanol, àcid fòrmic (mescla reacció)
- **Estat**: Líquid

## Condicions de servei

<table>
<thead>
<tr>
<th></th>
<th>Mínima</th>
<th>Normal</th>
<th>Màxima</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Temperatura (°C)</strong></td>
<td>100</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td><strong>Pressió (KPA)</strong></td>
<td>n.a</td>
<td>20000</td>
<td>n.a</td>
</tr>
<tr>
<td><strong>Densitat (kg/m³)</strong></td>
<td>n.a</td>
<td>886.4</td>
<td>n.a</td>
</tr>
</tbody>
</table>

## Dades d’operació
- **Element de Mesura**: Cel·la de pressió piezoresistiva i diafragma de metall soldat
- **Alimentació**: 11,5-30V DC
- **Senyal de sortida**: 4-20mA HART
- **Variable Mesurada**: Pressió absoluta, pressió manomètrica, nivell de líquid
- **Precisió**: 0,075%
- **Temps de Resposta (ms)**: 590
- **Indicador en camp**: Sí
- **Calibrat**: Sí

## Dades de Construcció
- **Element Sensor**: Cel·la de pressió piezoresistiva i diagrama de metall soldat
- **Connexió a procés**: Higiència
- **Temperatura màxima (°C)**: 150
- **Alçada/diàmetre (mm)**: Vegeu esquema adjunt
- **Material en contacte amb el fluid**: AISI 316L
- **Densitat màxim (kg/m3)**: n.a
- **Pressió màxima (KPA)**: 400
- **Pès (KG)**: 2,49

## Dades d’instal·lació
- **T ambient màx (°C)**: -20
- **T ambient mín (°C)**: 85
- **Filtre Reductor**: No
- **Distància al Controlador (m)**: n.a
- **Posició**: Horitzontal
- **Support**: Vertical
- **Empresa**: Endress+Hauser
- **Model**: Cerabar PMP51
El sensor de nivell esdevé l’element de mesura de la pressió de canonades i tancs en el benentès que la mesura de la pressió hidrostàtica permet obtenir en nivell d’una columna de líquid a partir de la densitat del medi i la constant de la gravetat segons:

\[ P = \rho g h \]
<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>FULL D'ESPECIFICACIÓ DE VÀLVULA DE CONTROL DE TIPUS SEIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-LCV-101</td>
<td></td>
</tr>
<tr>
<td>ÀREA</td>
<td>100</td>
</tr>
<tr>
<td>PLANTA</td>
<td>Àcid Fòrmic</td>
</tr>
<tr>
<td>LOCALITAT</td>
<td>Igualada</td>
</tr>
<tr>
<td>DATA</td>
<td>20/06/2016</td>
</tr>
<tr>
<td>REVISAT PER:</td>
<td>Departament de Qualitat</td>
</tr>
</tbody>
</table>

**DADES GENERALS**

- **DENOMINACIÓ**: Vàlvula de regulació de tipus seient
- **LLAÇ DE CONTROL**: T-E01-101
- **SEÑAL REBUDA DE**: 100-TC-101

**CONDICIONS DE SERVEI**

<table>
<thead>
<tr>
<th>CODI DE FLUID</th>
<th>FP1</th>
<th>ESTAT</th>
<th>Líquid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MÍNIM</td>
<td>OPERACIÓ</td>
</tr>
<tr>
<td>CABAL (Kg/h)</td>
<td>3466</td>
<td></td>
<td>4331</td>
</tr>
<tr>
<td>TEMPERATURA (°C)</td>
<td>10,00</td>
<td></td>
<td>20,00</td>
</tr>
<tr>
<td>PRESSIÓ (bar)</td>
<td>0,5000</td>
<td></td>
<td>1,000</td>
</tr>
<tr>
<td>DENSITAT (kg/m³)</td>
<td>990,0</td>
<td></td>
<td>998,8</td>
</tr>
</tbody>
</table>

**DADES D'OPERACIÓ**

- **POSICIÓ MANUAL**: Sí
- **POSICIÓ DE FALLADA**: Tancada

**DADES DE CONSTRUCCIÓ**

- **PRESSIÓ NOMINAL (bar)**: 1 - 51
- **MATERIAL DEL COS**: ASTM A217 Grau WC6
- **TIPUS D’ACTUADOR**: Pneumàtic de ressort-dialfragma
- **PRESSIÓ MÀXIMA D’ALIMENTACIÓ (bar)**: 5
- **TEMPERATURA DE TREBALL (°C)**: -29 - 316
- **DIÀMETRE NOMINAL (in)**: 1,00
- **FINAL DE CARRERA**: Sí
- **FUNCIONAMENT**: Obertura ràpida/isopercentual modificat

**DADES D'INSTAL-LACIÓ**

- **TEMPERATURA AMBIENT (°C)**: -10 - 50
- **DIÀMETRE DE LA CONDUCCIÓ (in)**: 1 - 8
- **POSICIÓ ACTUADOR**: Vertical
- **MODEL**: Sèrie 2700A
- **FABRICANT**: NORRISEAL
## Control i Instrumentació

### Planta de Producció d'Àcid Fòrmic

#### Capítol 3 – Control i Instrumentació

<table>
<thead>
<tr>
<th>ÍTEM</th>
<th>300-TCV-313</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÀREA</td>
<td>300</td>
</tr>
<tr>
<td>PLANTA</td>
<td>Àcid Fòrmic</td>
</tr>
<tr>
<td>LOCALITAT</td>
<td>Igualada</td>
</tr>
<tr>
<td>DATA</td>
<td>20/06/2016</td>
</tr>
<tr>
<td>REVISAT PER</td>
<td>Departament de Qualitat</td>
</tr>
</tbody>
</table>

#### Dades Generals

<table>
<thead>
<tr>
<th>DENOMINACIÓ</th>
<th>Vàlvula de regulació de tipus papallona</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLÀC DE CONTROL</td>
<td>T-E303-313</td>
</tr>
<tr>
<td>SEÑAL REBUDA DE</td>
<td>300-TCV-313</td>
</tr>
</tbody>
</table>

#### Condicions de Servei

<table>
<thead>
<tr>
<th>CODI DE FLUID</th>
<th>SS2</th>
<th>ESTAT</th>
<th>GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMÈTRES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CABAL (Kg/h)</td>
<td>1210</td>
<td>1512</td>
<td>1814</td>
</tr>
<tr>
<td>TEMPERATURA (°C)</td>
<td>106.7</td>
<td>133,4</td>
<td>160,1</td>
</tr>
<tr>
<td>PRESSIÓ (bar)</td>
<td>2,000</td>
<td>3,000</td>
<td>4,000</td>
</tr>
<tr>
<td>DENSITAT (kg/m³)</td>
<td>1,000</td>
<td>1,600</td>
<td>2,000</td>
</tr>
</tbody>
</table>

#### Dades d'Operació

| POSICIÓ MANUAL | Si |
| POSICIÓ DE FALLADA | Tancada |

#### Dades de Construcció

| PRESSIÓ NOMINAL (bar) | 10 - 200 |
| MATERIAL DEL COS      | A216 WCC |
| TIPUS D’ACTUADOR      | Pneumàtic |
| PRESSIÓ MÀXIMA D’ALIMENTACIÓ (bar) | 4 |
| TEMPERATURA DE TREBALL (°C) | -196 - 1000 |
| DIÀMETRE NOMINAL (in)  | 3 |
| FINAL DE CARRERA      | Si |
| FUNCIONAMENT           | Obertura ràpida/Regulació |

#### Dades d’Instal·lació

| TEMPERATURA AMBIENT (°C) | -15 |
|                         | 50  |
| DIÀMETRE DE LA CONDUCCIÓ (mm) | 80 -2500 |
| POSICIÓ ACTUADOR        | Vertical |
| MODEL                   | LEUSCH Type LTR 43 |
| FABRICANT               | SAMSON  |
3.4. LLISTAT D’INSTRUMENTS I LLAÇOS DE CONTROL

L’apartat següent recull el llistat dels llaços de control de la planta d’àcid fòrmic distribuïts per àrees, així com els elements primari i final anàlegs al llaç i el punt de consigna de la variable sobre la que actuen.

A més a més, també es presenta un llistat distribuït per àrees dels elements sensors i finals, incloent-hi el llaç de control en el que es situen, la variable sobre la que actuen i el tipus d’actuació dels mateixos.

3.4.1. ÀREA 100

Taula 3-7 Llistat llaços de control àrea 100

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>LLAÇ DE CONTROL</th>
<th>TIPIUS</th>
<th>VARIABLE CONTROLADA</th>
<th>ELEMENT PRIMARI</th>
<th>ITEM</th>
<th>VARIABLE MANIPULADA</th>
<th>ELEMENT FINAL</th>
<th>ÍTEM</th>
<th>CONSIGNA</th>
</tr>
</thead>
</table>
## Taula 3-8 | Llistat instrumentació àrea 100

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>ÍTEM</th>
<th>VARIABLE CONTROLADA</th>
<th>DESCRIPCIÓ</th>
<th>SITUACIÓ</th>
<th>ACTUACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-105A</td>
<td>100-ZS-1001</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-105A</td>
<td>100-SC-1005</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-105A</td>
<td>100-PI-1009</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-105B</td>
<td>100-ZS-1002</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-105B</td>
<td>100-SC-1006</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-105B</td>
<td>100-PI-1010</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-105A/B</td>
<td>100-FT-1013</td>
<td>Cabal fluid</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-101</td>
<td>100-HV-1015</td>
<td>Pas metanol</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-101</td>
<td>100-LSH-1023</td>
<td>Nivell tanc</td>
<td>Sensor nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-101</td>
<td>100-LAH-1031</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-101</td>
<td>100-LET-1027</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-101</td>
<td>100-LAL-1035</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-101</td>
<td>100-HV-1016</td>
<td>Pas metanol</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-102</td>
<td>100-HV-1017</td>
<td>Pas metanol</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-102</td>
<td>100-LSH-1024</td>
<td>Nivell tanc</td>
<td>Sensor nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-102</td>
<td>100-LAH-1032</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-102</td>
<td>100-LET-1028</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-102</td>
<td>100-LAL-1036</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-102</td>
<td>100-HV-1018</td>
<td>Pas metanol</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-103</td>
<td>100-HV-1019</td>
<td>Pas metanol</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-103</td>
<td>100-LSH-1025</td>
<td>Nivell tanc</td>
<td>Sensor nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-103</td>
<td>100-LAH-1033</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
</tbody>
</table>

Data: 20-06-2016
Localitat: Igualada
<table>
<thead>
<tr>
<th>EQUIP</th>
<th>ÍTEM</th>
<th>VARIABLE CONTROLADA</th>
<th>DESCRIPCIÓ</th>
<th>SITUACIÓ</th>
<th>ACTUACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-103</td>
<td>100-LT-1029</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-103</td>
<td>100-LAL-1037</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-103</td>
<td>100-HV-1020</td>
<td>Pas metanol</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-104</td>
<td>100-HV-1021</td>
<td>Pas metanol</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-104</td>
<td>100-LSH-1026</td>
<td>Nivell tanc</td>
<td>Sensor nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-104</td>
<td>100-LAH-1034</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-104</td>
<td>100-LT-1030</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-104</td>
<td>100-LAL-1038</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-104</td>
<td>100-HV-1022</td>
<td>Pas metanol</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-101A</td>
<td>100-ZS-1003</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-101A</td>
<td>100-SC-1007</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-101A</td>
<td>100-PI-1011</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-101B</td>
<td>100-ZS-1004</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-101B</td>
<td>100-SC-1008</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-101B</td>
<td>100-PI-1011</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-101A/B</td>
<td>100-FT-1014</td>
<td>Cabal fluid</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-106A</td>
<td>100-ZS-1039</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-106A</td>
<td>100-SC-1042</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-106A</td>
<td>100-PI-1045</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-106B</td>
<td>100-ZS-1043</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-106B</td>
<td>100-SC-1043</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-106B</td>
<td>100-PI-1046</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
</tbody>
</table>
## Llistat d’Instrumentació

### Full 3 de 7

**A-100 Emmagatzemament de Matèries Primes**

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>ÍTEM</th>
<th>VARIABLE CONTROLADA</th>
<th>DESCRIPCIÓ</th>
<th>SITUACIÓ</th>
<th>ACTUACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-106A/B</td>
<td>100-FT-1048</td>
<td>Cabal fluid</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-105</td>
<td>100-HV-1050</td>
<td>Pas solució metòxid</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-105</td>
<td>100-LSH-1054</td>
<td>Nivell tanc</td>
<td>Sensor nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-105</td>
<td>100-LAH-1056</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-105</td>
<td>100-LT-1058</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-105</td>
<td>100-LAL-1060</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-105</td>
<td>100-HV-1051</td>
<td>Pas solució metòxid</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-106</td>
<td>100-HV-1052</td>
<td>Pas solució metòxid</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-106</td>
<td>100-LSH-1055</td>
<td>Nivell tanc</td>
<td>Sensor nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-106</td>
<td>100-LAH-1057</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-106</td>
<td>100-LT-1059</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-106</td>
<td>100-LAL-1061</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-106</td>
<td>100-HV-1053</td>
<td>Pas solució metòxid</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-102</td>
<td>100-ZS-1041</td>
<td>Obertura谭 Tancament vàlva</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-102</td>
<td>100-SC-1044</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-102</td>
<td>100-PI-1047</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-102</td>
<td>100-FT-1049</td>
<td>Cabal fluid</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-108A</td>
<td>100-ZS-1062</td>
<td>Obertura谭 Tancament vàlva</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-108A</td>
<td>100-SC-1065</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-108A</td>
<td>100-PI-1068</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-108B</td>
<td>100-ZS-1063</td>
<td>Obertura谭 Tancament vàlva</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-108B</td>
<td>100-SC-1066</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>EQUIP</td>
<td>ÍTEM</td>
<td>VARIABLE CONTROLADA</td>
<td>DESCRIPCIÓ</td>
<td>SITUACIÓ</td>
<td>ACTUACIÓ</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>P-108B</td>
<td>100-PI-1069</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-108A/B</td>
<td>100-FT-1071</td>
<td>Cabal fluid</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-107</td>
<td>100-HV-1073</td>
<td>Pas alcohol benzílic</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-107</td>
<td>100-LSH-1077</td>
<td>Nivell tanc</td>
<td>Sensor nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-107</td>
<td>100-LAH-1079</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-107</td>
<td>100-LT-1081</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-107</td>
<td>100-LAL-1083</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-107</td>
<td>100-HV-1074</td>
<td>Pas alcohol benzílic</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-108</td>
<td>100-HV-1075</td>
<td>Pas alcohol benzílic</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-108</td>
<td>100-LSH-1078</td>
<td>Nivell tanc</td>
<td>Sensor nivell alt</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-108</td>
<td>100-LAH-1080</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-108</td>
<td>100-LT-1082</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-108</td>
<td>100-LAL-1084</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-108</td>
<td>100-HV-1076</td>
<td>Pas alcohol benzílic</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-104</td>
<td>100-ZS-1064</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-104</td>
<td>100-SC-1067</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-104</td>
<td>100-PI-1070</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-104</td>
<td>100-FT-1072</td>
<td>Cabal fluid</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-107A</td>
<td>100-ZS-1085</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-107A</td>
<td>100-SC-1089</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-107A</td>
<td>100-PI-1093</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-107B</td>
<td>100-ZS-1086</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>EQUIP</td>
<td>ÍTEM</td>
<td>VARIABLE CONTROLADA</td>
<td>DESCRIPCIÓ</td>
<td>SITUACIÓ</td>
<td>ACTUACIÓ</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------------------------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>P-108B</td>
<td>100-SC-1090</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-108B</td>
<td>100-PI-1094</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-108A/B</td>
<td>100-FT-1097</td>
<td>Cabal fluid</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-109</td>
<td>100-HV-1099</td>
<td>Pas solució alcohol benzílic</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-109</td>
<td>100-LSH-1103</td>
<td>Nivell tanc</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-109</td>
<td>100-LAH-1105</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-109</td>
<td>100-LT-1107</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-109</td>
<td>100-LAL-1109</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-109</td>
<td>100-HV-1100</td>
<td>Pas alcohol benzílic</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-110</td>
<td>100-HV-1101</td>
<td>Pas solució alcohol benzílic</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-110</td>
<td>100-LSH-1104</td>
<td>Nivell tanc</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-110</td>
<td>100-LAH-1106</td>
<td>Nivell tanc</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-110</td>
<td>100-LT-1108</td>
<td>Nivell tanc</td>
<td>Sensor de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-110</td>
<td>100-LAL-1110</td>
<td>Nivell tanc</td>
<td>Alarma de nivell baix</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>T-110</td>
<td>100-HV-1102</td>
<td>Pas alcohol benzílic</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-103A</td>
<td>100-ZS-1087</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-103A</td>
<td>100-SC-1091</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-103A</td>
<td>100-PI-1095</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-103B</td>
<td>100-ZS-1088</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-103B</td>
<td>100-SC-1092</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-103B</td>
<td>100-PI-1096</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-103A/B</td>
<td>100-FT-1098</td>
<td>Cabal fluid</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>EQUIP</td>
<td>ÍTEM</td>
<td>VARIABLE CONTROLADA</td>
<td>DESCRIPCIÓ</td>
<td>SITUACIÓ</td>
<td>ACTUACIÓ</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>P-109A</td>
<td>100-ZS-1111</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-109A</td>
<td>100-SC-1114</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-109A</td>
<td>100-PI-1117</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-109B</td>
<td>100-ZS-1112</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-109B</td>
<td>100-SC-1115</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-109B</td>
<td>100-PI-1118</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-111</td>
<td>100-HV-1128</td>
<td>Pas monòxid de carboni</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-111</td>
<td>100-PI-1120</td>
<td>Pressió tanc</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-111</td>
<td>100-LI-1124</td>
<td>Nivell tanc</td>
<td>Indicador de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-111</td>
<td>100-HV-1129</td>
<td>Pas monòxid de carboni</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-112</td>
<td>100-HV-1130</td>
<td>Pas monòxid de carboni</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-112</td>
<td>100-PL-1121</td>
<td>Pressió tanc</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-112</td>
<td>100-LI-1125</td>
<td>Nivell tanc</td>
<td>Indicador de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-112</td>
<td>100-HV-1131</td>
<td>Pas monòxid de carboni</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-113</td>
<td>100-HV-1132</td>
<td>Pas monòxid de carboni</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-113</td>
<td>100-PI-1122</td>
<td>Pressió tanc</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-113</td>
<td>100-LI-1126</td>
<td>Nivell tanc</td>
<td>Indicador de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-113</td>
<td>100-HV-1122</td>
<td>Pas monòxid de carboni</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-114</td>
<td>100-HV-1134</td>
<td>Pas monòxid de carboni</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>T-114</td>
<td>100-PI-1123</td>
<td>Pressió tanc</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-114</td>
<td>100-LI-1127</td>
<td>Nivell tanc</td>
<td>Indicador de nivell</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>T-114</td>
<td>100-HV-1135</td>
<td>Pas monòxid de carboni</td>
<td>Vàlvula automàtica tot/res</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>EQUIP</td>
<td>ÍTEM</td>
<td>VARIABLE CONTROLADA</td>
<td>DESCRIPCIÓ</td>
<td>SITUACIÓ</td>
<td>ACTUACIÓ</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>C-101</td>
<td>100-ZS-1113</td>
<td>Obertura/Tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>C-101</td>
<td>100-SC-1117</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>C-101</td>
<td>100-PI-1121</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
</tbody>
</table>
### Taula 3-9: Llistat llaços de control àrea 200

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>LLAÇ DE CONTROL</th>
<th>TIPUS</th>
<th>VARIABLE CONTROLADA</th>
<th>ELEMENT PRIMARI</th>
<th>ITEM</th>
<th>VARIABLE MANIPULADA</th>
<th>ELEMENT FINAL</th>
<th>ÍTEM</th>
<th>CONSIGNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-202</td>
<td>L-E202-201</td>
<td>Feedback</td>
<td>Nivell E-202</td>
<td>Cel-la piezo resistiva i diafragma de metall soldat</td>
<td>200-LS-201</td>
<td>Cabal fluid refrigerant (entraida)</td>
<td>Vàlvula de control</td>
<td>200-LCV-201</td>
<td>316 mm</td>
</tr>
<tr>
<td>R-201</td>
<td>F-R201-203</td>
<td>Feedback combinat</td>
<td>Cabals d’entrada reactor</td>
<td>Cabalímetres d’efecte coriolis</td>
<td>200-FQ-203A 200-FQ-203B</td>
<td>Cabals d’entrada reactor</td>
<td>Vàlvula de control</td>
<td>200-FCV-203A 200-FCV-203B</td>
<td>227 m³/h 25,0 m³/h</td>
</tr>
<tr>
<td>R-201</td>
<td>L-R201-204</td>
<td>Feedback</td>
<td>Nivell R-201</td>
<td>Cel-la piezo resistiva i diafragma de metall soldat</td>
<td>200-LS-204</td>
<td>Sortida de líquid del reactor</td>
<td>Vàlvula de control</td>
<td>200-LCV-204</td>
<td>6,50 m</td>
</tr>
<tr>
<td>R-201</td>
<td>P-R201-205</td>
<td>Feedback</td>
<td>Pressió R-201</td>
<td>Cel-la piezo resistiva i diafragma de metall soldat</td>
<td>200-PS-205</td>
<td>Sortida de gas del reactor</td>
<td>Vàlvula de control</td>
<td>200-PV-205</td>
<td>45,0 bar</td>
</tr>
<tr>
<td>R-201</td>
<td>T-R201-206</td>
<td>Cascada</td>
<td>Temperatura R-201</td>
<td>Tèrmo resistències</td>
<td>200-TS-206A 200-TS-206B</td>
<td>Cabal fluid refrigerant</td>
<td>Vàlvula de control</td>
<td>200-TCV-206</td>
<td>90 °C</td>
</tr>
<tr>
<td>E-201</td>
<td>L-E201-207</td>
<td>Feedback</td>
<td>Nivell E-201</td>
<td>Cel-la piezo resistiva i diafragma de metall soldat</td>
<td>200-LS-207</td>
<td>Cabal fluid refrigerant (entraida)</td>
<td>Vàlvula de control</td>
<td>200-LCV-207</td>
<td>316 mm</td>
</tr>
<tr>
<td>E-201</td>
<td>T-E201-208</td>
<td>Feedback</td>
<td>Temperatura fluid sortida E-201</td>
<td>Tèrmo resistència</td>
<td>200-TS-208</td>
<td>Cabal fluid refrigerant (sortida)</td>
<td>Vàlvula de control</td>
<td>200-TCV-208</td>
<td>10,0 °C</td>
</tr>
<tr>
<td>PS-201</td>
<td>P-PS201-209</td>
<td>Feedback</td>
<td>Pressió PS-201</td>
<td>Cel-la piezo resistiva i diafragma de metall soldat</td>
<td>200-PS-209</td>
<td>Sortida de gas del separat</td>
<td>Vàlvula de control</td>
<td>200-PV-209</td>
<td>10,0 bar</td>
</tr>
<tr>
<td>PS-201</td>
<td>L-PS201-210</td>
<td>Feedback</td>
<td>Nivell PS-201</td>
<td>Cel-la piezo resistiva i diafragma de metall soldat</td>
<td>200-LS-210</td>
<td>Sortida de líquid del separat</td>
<td>Vàlvula de control</td>
<td>200-LCV-210</td>
<td>0,650 m</td>
</tr>
<tr>
<td>E-203</td>
<td>T-E203-211</td>
<td>Feedback</td>
<td>Temperatura fluid sortida E-203</td>
<td>Tèrmo resistència</td>
<td>200-TS-211</td>
<td>Cabal fluid refrigerant (entraida)</td>
<td>Vàlvula de control</td>
<td>200-TCV-211</td>
<td>30,0 °C</td>
</tr>
</tbody>
</table>
### Taula 3-10: Llistat instrumentació àrea 200

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>ÍTEM</th>
<th>VARIABLE CONTROLADA</th>
<th>DESCRIPCIÓ</th>
<th>SITUACIÓ</th>
<th>ACTUACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-201A</td>
<td>200-ZS-212</td>
<td>Obertura/Tancament válvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>C-201A</td>
<td>200-SC-216</td>
<td>Velocitat motor compressor</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>C-201A</td>
<td>200-PI-220</td>
<td>Pressió del compressor</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>C-201B</td>
<td>200-ZS-213</td>
<td>Obertura/Tancament válvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>C-201B</td>
<td>200-SC-217</td>
<td>Velocitat motor compressor</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>C-201B</td>
<td>200-PI-221</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>C-202A</td>
<td>200-ZS-214</td>
<td>Obertura/Tancament válvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>C-202A</td>
<td>200-SC-218</td>
<td>Velocitat motor compressor</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>C-202A</td>
<td>200-PI-222</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>C-202B</td>
<td>200-ZS-215</td>
<td>Obertura/Tancament válvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>C-202B</td>
<td>200-SC-219</td>
<td>Velocitat motor compressor</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>C-202B</td>
<td>200-PI-223</td>
<td>Pressió del compressor</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>R-201</td>
<td>200-LSL-226</td>
<td>Nivell reactor carbonilació</td>
<td>Sensor de nivell baix</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>R-201</td>
<td>200-LSH-227</td>
<td>Nivell reactor carbonilació</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>R-201</td>
<td>200-LAH-230</td>
<td>Nivell reactor carbonilació</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>R-201</td>
<td>200-PZ-232</td>
<td>Pressió reactor carbonilació</td>
<td>Disc de ruptura</td>
<td>Camp</td>
<td>N.A</td>
</tr>
<tr>
<td>R-201</td>
<td>200-LSHH-228</td>
<td>Nivell reactor carbonilació</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>R-201</td>
<td>200-LAHH-231</td>
<td>Nivell reactor carbonilació</td>
<td>Alarma de nivell alt</td>
<td>Camp</td>
<td>Sonora</td>
</tr>
<tr>
<td>E-203</td>
<td>200-FT-224</td>
<td>Cabal entrada bescanviador</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>E-203</td>
<td>200-TT-225</td>
<td>Temperatura entrada bescanviador</td>
<td>Transmissor de temperatura</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>PS-201</td>
<td>200-PS-229</td>
<td>Nivell separador de fases</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
</tbody>
</table>

**PLANTA DE PRODUCCIÓ D’ÀCID FÓRMIC**

**CAPÍTOL 3 – CONTROL I INSTRUMENTACIÓ**

| Data: 20-06-2016 | Localitat: Igualada |
### Taula 3-11: Llistat llaços de control àrea 300

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>LLÀC DE CONTROL</th>
<th>TIPUS</th>
<th>VARIABLE CONTROLADA</th>
<th>ELEMENT PRIMARI</th>
<th>ITEM</th>
<th>VARIABLE MANIPULADA</th>
<th>ELEMENT FINAL</th>
<th>ÍTEM</th>
<th>CONSIGNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-301</td>
<td>L-E301-301</td>
<td>Feedback</td>
<td>Nivell E-301</td>
<td>Cel·la piezo resistiva i diafragma de metall soldat</td>
<td>300-LS-301</td>
<td>Cabal fluid refrigerant (entrada)</td>
<td>Vàlvula de control</td>
<td>300-LCV-301</td>
<td>397 mm</td>
</tr>
<tr>
<td>E-301</td>
<td>T-E301-302</td>
<td>Feedback</td>
<td>Temperatura fluid sortida E-302</td>
<td>Termorresistència</td>
<td>300-TS-302</td>
<td>Cabal fluid refrigerant (sortida)</td>
<td>Vàlvula de control</td>
<td>300-TCV-302</td>
<td>59,1 °C</td>
</tr>
<tr>
<td>PS-301</td>
<td>P-PS301-303</td>
<td>Feedback</td>
<td>Pressió PS-301</td>
<td>Cel·la piezo resistiva i diafragma de metall soldat</td>
<td>300-PS-303</td>
<td>Sortida de gas del separador</td>
<td>Vàlvula de control</td>
<td>300-PV-303</td>
<td>1,20 bar</td>
</tr>
<tr>
<td>PS-301</td>
<td>L-PS301-304</td>
<td>Feedback</td>
<td>Nivell PS-301</td>
<td>Cel·la piezo resistiva i diafragma de metall soldat</td>
<td>300-PS-304</td>
<td>Sortida de líquid del separador</td>
<td>Vàlvula de control</td>
<td>300-LCV-304</td>
<td>0,525 m</td>
</tr>
<tr>
<td>DC-301</td>
<td>T-DC301-305</td>
<td>Control rang divídit</td>
<td>Temperatura caps de columna DC-301</td>
<td>Termorresistència</td>
<td>300-TS-305</td>
<td>Cabal fluid refrigerant condensador Cabal reflux columna destilació</td>
<td>Vàl·vules de control</td>
<td>300-TCV-305A</td>
<td>31,6 °C</td>
</tr>
<tr>
<td>DC-301</td>
<td>L-DC301-306</td>
<td>Feedback</td>
<td>Nivell tanc de reflux columna DC-301</td>
<td>Cel·la piezo resistiva i diafragma de metall soldat</td>
<td>300-LS-306</td>
<td>Cabal destil·lat</td>
<td>Vàlvula de control</td>
<td>300-LCV-306</td>
<td>0,54 m</td>
</tr>
<tr>
<td>DC-301</td>
<td>P-DC301-307</td>
<td>Feedback</td>
<td>Pressió columna DC-301</td>
<td>Cel·la piezo resistiva i diafragma de metall soldat</td>
<td>300-LS-308</td>
<td>Cabal sortida</td>
<td>Vàl·vula de control</td>
<td>300-PV-307</td>
<td>1,01 bar</td>
</tr>
<tr>
<td>BT-303</td>
<td>L-BT303-308</td>
<td>Feedback</td>
<td>Nivell BT-303</td>
<td>Cel·la piezo resistiva i diafragma de metall soldat</td>
<td>300-LS-308</td>
<td>Cabal sortida tanc</td>
<td>Vàl·vula de control</td>
<td>300-LCV-308</td>
<td>2,38 m</td>
</tr>
<tr>
<td>EQUIP</td>
<td>LLÀC DE CONTROL</td>
<td>TIPUS</td>
<td>VARIABLE CONTROLADA</td>
<td>ELEMENT PRIMARI</td>
<td>ITEM</td>
<td>VARIABLE MANIPULADA</td>
<td>ELEMENT FINAL</td>
<td>ÍTEM</td>
<td>CONSIGNA</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>E-304</td>
<td>T-E304-309</td>
<td>Feedback</td>
<td>Temperatura fluid sortida E-304</td>
<td>Termorresistència</td>
<td>300-TS-309</td>
<td>Cabal sortida fluid de procés</td>
<td>Vàlvula de control</td>
<td>300-TCV-309</td>
<td>110 °C</td>
</tr>
<tr>
<td>BT-301</td>
<td>L-BT301-310</td>
<td>Feedback</td>
<td>Nivell BT-301</td>
<td>Cel-la piezoresistiva i diafragma de metall soldat</td>
<td>300-LS-310</td>
<td>Cabal sortida tanc</td>
<td>Vàlvula de control</td>
<td>300-LCV-310</td>
<td>2,23 m</td>
</tr>
<tr>
<td>E-302</td>
<td>T-E302-311</td>
<td>Feedback</td>
<td>Temperatura fluid sortida E-302</td>
<td>Termorresistència</td>
<td>300-TS-311</td>
<td>Cabal sortida fluid de procés</td>
<td>Vàlvula de control</td>
<td>300-TCV-311</td>
<td>89,1 °C</td>
</tr>
<tr>
<td>BT-302</td>
<td>L-BT302-312</td>
<td>Feedback</td>
<td>Nivell BT-302</td>
<td>Cel-la piezoresistiva i diafragma de metall soldat</td>
<td>300-LS-312</td>
<td>Cabal sortida tanc</td>
<td>Vàlvula de control</td>
<td>300-LCV-312</td>
<td>1,09 m</td>
</tr>
<tr>
<td>E-303</td>
<td>T-E303-313</td>
<td>Feedback</td>
<td>Temperatura fluid sortida E-303</td>
<td>Termorresistència</td>
<td>300-TS-313</td>
<td>Cabal sortida fluid de procés</td>
<td>Vàlvula de control</td>
<td>300-TCV-313</td>
<td>110 °C</td>
</tr>
</tbody>
</table>
## Taula 3-12 Llistat instrumentació àrea 300

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>ÍTEM</th>
<th>VARIABLE CONTROLADA</th>
<th>DESCRIPCIÓ</th>
<th>SITUACIÓ</th>
<th>ACTUACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-301</td>
<td>300-LSH-314</td>
<td>Nivell PS-301</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>DC-301</td>
<td>300-FT-320</td>
<td>Cabal entrada DC-301</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>DC-301</td>
<td>300-FT-321</td>
<td>Cabal retorn destil-lat DC-301</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>DC-301</td>
<td>300-FT-320</td>
<td>Cabal destil-lat DC-301</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>DC-301</td>
<td>300-FT-321</td>
<td>Cabal residu DC-301</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>DC-301</td>
<td>300-LSH-315</td>
<td>Nivell líquid DC-301</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>DC-301</td>
<td>300-TT-326</td>
<td>Temperatura vapor DC-301</td>
<td>Termorresistència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>DC-301</td>
<td>300-TT-327</td>
<td>Temperatura residu DC-301</td>
<td>Termorresistència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-301A</td>
<td>300-ZS-333</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-301A</td>
<td>300-SC-343</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-301A</td>
<td>300-PI-353</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-301B</td>
<td>300-ZS-334</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-301B</td>
<td>300-SC-344</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-301B</td>
<td>300-PI-354</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-304A</td>
<td>300-ZS-335</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-304A</td>
<td>300-SC-347</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-304A</td>
<td>300-PI-359</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-304B</td>
<td>300-ZS-336</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-304B</td>
<td>300-SC-348</td>
<td>Velocitat motor bomba</td>
<td>Indicador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-304B</td>
<td>300-PI-360</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-304A/B</td>
<td>300-FT-322</td>
<td>Cabal fluid procés</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>BT-302</td>
<td>300-LSH-318</td>
<td>Nivell BT-302</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
</tbody>
</table>

Data: 20-06-2016

Localitat: Igualada
<table>
<thead>
<tr>
<th>EQUIP</th>
<th>ÍTEM</th>
<th>VARIABLE CONTROLADA</th>
<th>DESCRIPCIÓ</th>
<th>SITUACIÓ</th>
<th>ACTUACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>BT-302</td>
<td>300-PI-332</td>
<td>Pressió BT-302</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>BT-302</td>
<td>300-PZ-329</td>
<td>Pressió BT-302</td>
<td>Disc de ruptura</td>
<td>Camp</td>
<td>N.A</td>
</tr>
<tr>
<td>P-306A</td>
<td>300-ZS-343</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-306A</td>
<td>300-SC-355</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-306A</td>
<td>300-PI-367</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-306B</td>
<td>300-ZS-344</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-306B</td>
<td>300-SC-356</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-306B</td>
<td>300-PI-368</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-306A/B</td>
<td>300-FT-325</td>
<td>Cabal fluid procés</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>BT-303</td>
<td>300-LSH-316</td>
<td>Nivell BT-303</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>BT-303</td>
<td>300-PZ-328</td>
<td>Pressió BT-331</td>
<td>Disc de ruptura</td>
<td>Camp</td>
<td>N.A</td>
</tr>
<tr>
<td>BT-302</td>
<td>300-PI-330</td>
<td>Pressió BT-303</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-305A</td>
<td>300-ZS-337</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-305A</td>
<td>300-SC-349</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-305A</td>
<td>300-PI-361</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-305B</td>
<td>300-ZS-338</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-305B</td>
<td>300-SC-350</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-305B</td>
<td>300-PI-362</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-305A/B</td>
<td>300-FT-323</td>
<td>Cabal fluid procés</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>BT-301</td>
<td>300-LSH-317</td>
<td>Nivell BT-301</td>
<td>Sensor de nivell alt</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>BT-301</td>
<td>300-PI-331</td>
<td>Pressió BT-301</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-302A</td>
<td>300-ZS-341</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
</tbody>
</table>

Data: 20-06-2016
Localitat: Igualada
### Llista d'Instrumentació

<table>
<thead>
<tr>
<th>EQUIP</th>
<th>ÍTEM</th>
<th>VARIABLE CONTROLADA</th>
<th>DESCRIPCIÓ</th>
<th>SITUACIÓ</th>
<th>ACTUACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-302A</td>
<td>300-SC-353</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-302A</td>
<td>300-PI-365</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-302B</td>
<td>300-ZS-342</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-302B</td>
<td>300-SC-354</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-302B</td>
<td>300-PI-366</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-302A/B</td>
<td>300-FT-324</td>
<td>Cabal fluid procés</td>
<td>Transmissor de cabal</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-303A</td>
<td>300-ZS-339</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-303A</td>
<td>300-SC-351</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-303A</td>
<td>300-PI-363</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-303B</td>
<td>300-ZS-340</td>
<td>Obertura/tancament vàlvula</td>
<td>Final de carrera</td>
<td>Camp</td>
<td>Pneumàtica</td>
</tr>
<tr>
<td>P-303B</td>
<td>300-SC-352</td>
<td>Velocitat motor bomba</td>
<td>Variador de freqüència</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
<tr>
<td>P-303B</td>
<td>300-PI-364</td>
<td>Pressió de la bomba</td>
<td>Indicador de pressió</td>
<td>Camp</td>
<td>Elèctrica</td>
</tr>
</tbody>
</table>