Impactes de la urbanització en la dinàmica dels aqüífers costaners
El cas del Maresme, Catalunya

Gerard Cantero
Jordi Castillo
Martí Rufí

Treball de Fi de Grau
Ciències Ambientals
Bellaterra, Febrer 2016

Tutors:
Jordi Garcia-Orellana
Almudena Hierro
Joan Rierdevall
Impactes de la urbanització en la dinàmica dels aqüifers costaners
Impactes de la urbanització en la dinàmica dels aqüífers costaners

“If there is magic on this planet, it is contained in water.”

Loren Eiseley (Antropòleg, ecologista i poeta estatunidenc)

Agraïments:

Gràcies al Dr. Jordi Garcia-Orellana, a la Dra. Almudena Hierro i al Dr. Joan Rieradevall pel seguiment exhaustiu que han fet del nostre projecte, mostrant-nos sovint el camí quan no érem capaços de trobar-lo. Gràcies a la gent de l’Agència Catalana de l’Aigua per la transferència de dades, en especial a la Mariona de Torres i al Josep Fraile (responsables de la Unitat de caracterització i control d’aigües costaneres), al Xavier Carreras (tècnic de la Unitat d’aigües subterrànies) i al Josep Villagrassa (tècnic de la Unitat de caracterització i control d’aigües costaneres) per la paciència i la transferència contínua de dades. Gràcies també al Servei meteorològic de Catalunya, al Joaquim Serra (Consell comarcal del Maresme), l’Antoni Sintas (MeteoArenys) i el Ramon Estrany (MeteoPremià) per les dades de pluviometria d’Argentona, Mataró, Arenys de Mar i Premià de Mar, respectivament. Gràcies també a la Irene Obis (Aigües Ter-Llobregat) i a la Núria Montserrat (Aigües de Mataró) per la resolució de dubtes referents a les seves empreses. Gràcies al Dr. Joan Bach, per l’ajuda en el model d’infiltració, i al Dr. Pere Serra i l’Institut Cartogràfic i Geològic de Catalunya per l’assessorament tècnic en sistemes d’informació geogràfics. Finalment, gràcies al lector, esperem que el contingut d’aquest projecte us sembli interessant.
Impactes de la urbanització en la dinàmica dels aqüífers costaners
Índex de continguts

1. **JUSTIFICACIÓ DEL PROJECTE** ... 13

2. **ANTECEDENTS** ... 15

 2.1 Introducció al coneixement de les aigües .. 16
 2.1.1 Les conques hidrogràfiques ... 16

 2.2 Els aqüífers ... 17
 2.2.1 Porositat, permeabilitat i transmissivitat .. 18
 2.2.2 Els fluxos d’aigua dolça al mar .. 19

 2.3. Evolució de la gestió dels aqüífers ... 21

 2.4 Marc legal ... 23
 2.4.1 Directiva Marc de l’Aigua .. 23

 2.5 La sobreexplotació d’aqüífers ... 25
 2.5.1 Causes de la sobreexplotació ... 26
 2.5.2 Conseqüències de la sobreexplotació .. 31

3. **OBJECTIUS** ... 35

 3.1 General .. 36

 3.2 Específics .. 36

4. **DESCRIPCIÓ DE L’ÀREA D’ESTUDI** .. 37

 4.1 La zona d’estudi: el Maresme ... 38
 4.1.1 Demografia ... 39
 4.1.2 Entorn socioeconòmic .. 40
 4.1.3 Climatologia .. 41
 4.1.4 Hidrologia .. 42
 4.1.5 Geologia ... 48
 4.1.6 Flora i fauna .. 49

 4.2 L’objecte d’estudi: els aqüífers ... 51

5. **METODOLOGIA** ... 53

 5.1 Canvi d’usos del sòl ... 54

 5.2 Dades de precipitació ... 55

 5.3 Càlcul de la Infiltració mitjançant el Mètode Racional 56

 5.4 Estudi dels aqüífers .. 57
 5.4.1 Zona continental ... 57
 5.4.2 Zona costanera ... 59

6. **RESULTATS** ... 61

 6.1 Usos del sòl ... 63
 6.1.1 Anàlisi dels resultats: Comarca del Maresme 69
 6.1.2 Anàlisi dels resultats: Àrea central ... 76
 6.1.3 Anàlisi dels resultats: Àrea nord .. 82
6.1.4 Anàlisi dels resultats: Àrea sud ..88

6.2 Hidrologia ..91
 6.2.1 Gestió de l’aigua ...91
 6.2.2 Precipitació ..93
 6.2.3 Anàlisi dels paràmetres dels aqüífers i de la zona costanera del Maresme ...96

7. DISCUSSIÓ ..117

 7.1 Anàlisi de les tendències dels usos del sòl. Relació amb diferents variables demogràfiques i socioeconòmiques. ...118
 7.1.1 Relació entre l’augment de la zona forestal i urbanitzada amb la disminució de la zona agrícola. Possibles escenaris. Relació de la zona agrícola amb l’aportació del sector agrari al PIB i al PIB Primari ...118
 7.1.2 Relació de la zona urbanitzada amb un creixement dispers de la urbanització119

 7.2 Relació entre la tendència dels usos del sòl i el balanç hídric de l’aqüífer ..121

 7.3 Relació entre la tendència dels usos del sòl i els nitrats a la zona continental ...125
 7.3.1 Nitrats, Nivells piezomètrics i Pluviometria ..127

 7.4 Relació entre la tendència dels usos del sòl i a la conductivitat a la zona continental.129

 7.5 Anàlisi i correlacions entre les evolucions dels paràmetres fisicoquímics a la zona costanera i els usos del sòl per zones ..131

 7.6 Anàlisi i correlacions entre les evolucions dels paràmetres fisicoquímics de la zona costanera.133

 7.7 Implicacions dels resultats obtinguts al projecte: ambientals, socials i econòmiques.142

8. CONCLUSIONS ...145

9. PERSPECTIVES ...149

10. BIBLIOGRAFIA I WEBGRAFIA ..161

 Bibliografia ...162
 Webgrafia ...166

11. ANNEXOS ..167

 11.1 Programació ..168
 11.2 Pressupost ..169
 11.3 Petjada de carboni del projecte ...170
Índex de Figures

Fig. 2.1 Tipus d’aqüífers. .. 17
Fig. 2.2 Interfase aigua dolça/aigua salada .. 18
Fig. 2.3 Esquema de la porositat. .. 18
Fig. 2.4 Principals vies de descàrrega a la costa, incloent la recirculació i l’aigua dolça......... 19
Fig. 2.5 Esquema secció lateral d’un qanat. .. 22
Fig. 2.6 Sistemes d’explotació d’aqüífers. ... 25
Fig. 2.7. Evolució de la població mundial ... 27
Fig. 2.8 Percentatge dels sectors segons Foursaté. ... 29
Fig. 2.9 Intrusió salina. ... 32

Fig. 4.1 Blanes Font .. 39
Fig. 4.2 Serra de marina .. 40
Fig. 4.3 Percentatge d’ocupació al Maresme .. 41
Fig. 4.4 Precipitació i temperatura mitjana del Maresme ... 41
Fig. 4.5 Rieres del Maresme. ... 43
Fig. 4.6 Llevantada al Maresme .. 44
Fig. 4.7 Punts de captacció d’aigua del Maresme. ... 46
Fig. 4.8 Mapa geològic del Maresme ... 48
Fig. 4.9 Vegetació del Maresme. ... 50

Fig. 5.1 Àrees d’estudi del projecte. .. 55
Fig. 5.2 Càlcul de P0 a partir de NC ... 56
Fig. 5.3 Correcció de la P0 pel factor regional .. 56
Fig. 5.4 Situació i codis dels pous a l’àrea central. ... 58
Fig. 5.5 Situació i codis dels pous situats a l’àrea nord. .. 58
Fig. 5.6 Situació i codis dels pous a l’àrea sud. ... 59
Fig. 5.7 Situació dels punts de mostreig de la zona d’estudi .. 60

Fig. 6.1 Usos del sòl a la comarca del Maresme a l’any 1956. A dalt a l’esquerra, model digital
d’elevacions de la zona amb els usos del sòl representats. ... 64
Fig. 6.2 Usos del sòl a la comarca del Maresme a l’any 1990. A dalt a l’esquerra, model digital
d’elevacions de la zona amb els usos del sòl representats. ... 65
Fig. 6.3 Usos del sòl a la comarca del Maresme l’any 2000. A dalt a l’esquerra, model digital d’elevacions de la zona amb els usos del sòl representats. .. 66
Fig. 6.4 Usos del sòl a la comarca del Maresme l’any 2004. A dalt a l’esquerra, model digital d’elevacions de la zona amb els usos del sòl representats. .. 67
Fig. 6.5 Usos del sòl a la comarca del Maresme l’any 2010. A dalt a l’esquerra, model digital d’elevacions de la zona amb els usos del sòl representats. .. 67
Fig. 6.6 Evolució de la distribució dels usos del sòl a les darreres dècades. Maresme. Fracció respecte el mateix any (%). ... 68
Fig. 6.7 Variació anual dels usos del sòl en cada etapa (ha/year). Maresme.......................... 69
Fig. 6.8 Usos del Sòl a l’Àrea Central els anys 1956, 1990 i 2000 .. 74
Fig. 6.9 Usos del Sòl a l’Àrea Central els anys 2004 i 2010 ... 75
Fig. 6.10 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Central: Argentona,
Cabrera de Mar i Mataró. Fracció respecte el mateix any (%). .. 76
Fig. 6.11 Variació anual dels usos del sòl en cada etapa (ha/year). Àrea Central: Argentona, Cabrera de
Mar i Mataró. .. 77
Fig. 6.12 Usos del Sòl a l’Àrea Nord els anys 1956, 1990 i 2000...80
Fig. 6.13 Usos del Sòl a l’Àrea Nord els anys 2004 i 2010...81
Fig. 6.14 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Nord: Arenys de Mar, Arenys de Munt, Caldes d’Estrac i Sant Vicenç de Montalt. Fracció respecte el mateix any (%).82
Fig. 6.15 Variació anual dels usos del sòl en cada etapa (ha/any). Àrea Nord: Arenys de Mar, Arenys de Munt, Caldes d’Estrac i Sant Vicenç de Montalt...83
Fig. 6.16 Usos del Sòl a l’Àrea Sud els anys 1956, 1990 i 2000...86
Fig. 6.17 Usos del Sòl a l’Àrea Sud els anys 2004 i 2010...87
Fig. 6.18 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Sud: el Masnou, Alella i Teià. Fracció respecte el mateix any (%). ..88
Fig. 6.19 Variació anual dels usos del sòl en cada etapa (ha/any). Àrea sud: el Masnou, Alella i Teià.........89
Fig. 6.20 Distribució percentual d’entitats subministradores d’aigua del Maresme, amb un total de 30 municipis ..92
Fig. 6.21 Precipitació acumulada anualment (mm)...93
Fig. 6.22 Evolució de la precipitació (mm) a Mataró..94
Fig. 6.23 Evolució de la precipitació (mm) a Arenys de Mar ..95
Fig. 6.24 Evolució de la precipitació (mm) a Premià de Mar...95
Fig. 6.25 Mapa de situació dels pous estudats a l’àrea central...98
Fig. 6.26 Evolució de la conductivitat (µS·cm⁻¹) dels diferents pous estudats a l’àrea central.99
Fig. 6.27 Evolució de la concentració de nitrats (mg·L⁻¹) als pous estudats a l’àrea central.100
Fig. 6.28 Evolució del nivell piezomètric (m.s.n.m) als pous estudats a l’àrea central.101
Fig. 6.29 Evolució del nivell piezomètric anual (m.s.n.m) als pous estudats de l’àrea central.102
Fig. 6.30 Pous estudats a l’àrea nord ..103
Fig. 6.31 Evolució de la conductivitat (µS·cm⁻¹) als pous estudats de l’àrea nord104
Fig. 6.32 Evolució de la concentració de nitrats (mg·L⁻¹) als pous estudats de l’àrea nord105
Fig. 6.33 Evolució del nivell piezomètric (m.s.n.m) al Pou 08007-0153 (Arenys de Munt).................106
Fig. 6.34 Pous estudats a l’àrea sud ..106
Fig. 6.35 Evolució de la conductivitat (µS·cm⁻¹) al Pou 08118-0017 (El Masnou)..............................107
Fig. 6.36 Evolució de la concentració de nitrats (mg·L⁻¹) als pous estudats de l’àrea sud..................108
Fig. 6.37 Evolució del nivell piezomètric (m.s.n.m) als pous estudats de l’àrea sud..........................109
Fig. 6.38 Evolució del nivell piezomètric (m.s.n.m) als pous estudats de l’àrea sud110
Fig. 6.39 Evolució de la concentració de nitrats (mg·L⁻¹) a la desembocadura de la riera d’Argentona (àrea central). ..112
Fig. 6.40 Evolució de la concentració de nitrats (mg·L⁻¹) a la platja de Cavaïó (Arenys de Mar) (àrea nord). ...112
Fig. 6.41 Evolució de la concentració de nitrats (mg·L⁻¹) a la platja d’Ocata (El Masnou) (àrea sud).112
Fig. 6.42 Evolució de la concentració de silicats (mg·L⁻¹) a la desembocadura de la riera d’Argentona (àrea central). ..113
Fig. 6.43 Evolució de la concentració de silicats (mg·L⁻¹) a la platja de Cavaïó (Arenys de Mar) (àrea nord). ...113
Fig. 6.44 Evolució de la concentració de silicats (mg·L⁻¹) a la Platja d’Ocata (El Masnou) (àrea sud).114
Fig. 6.45 Evolució de la salinitat (psu) a la desembocadura de la riera d’Argentona (àrea central)........114
Fig. 6.46 Evolució de la Salinitat (psu) a la platja de Cavaïó (Arenys de Mar) (àrea nord)..................115
Fig. 6.47 Evolució de la salinitat (psu) a la platja d’Ocata (El Masnou) (àrea sud).115
Fig. 6.48 Evolució de la concentració de clorofili-la (µg·L⁻¹) a la desembocadura de la riera d’Argentona (àrea central)...116
Fig. 6.49 Evolució de la concentració de clorofili-la (µg·L⁻¹) a la platja de Cavaïó (Arenys de Mar) (àrea nord) ...116
Fig. 6.50 Evolució de la concentració de clorofili-la (µg·L⁻¹) a la platja d’Ocata (El Masnou) (àrea sud)...116
Fig. 7.1 Comparació entre densitat i UDF (Factor quocient al llarg d’un eix temporal) .. 119
Fig. 7.2 Evolució temporal (eix X) del percentatge d’usos del sòl (agricola, forestal i urbà) (ha), precipitació llindar (mm) (volum mínim a partir del qual es comença a escoltar part de l’aigua precipitada) i coeficiència d’escolament calculats amb el mètode racional (linia vermelha de 7.2B), pluviometria anual (mm), recàrrega d’aigua a l’aquífer (hm³) i escolament d’aigua sobre sòl urbà (hm³) (eix Y) ... 120
Fig. 7.3 Volum de recàrregues a la comarca del Maresme. D’esquerra a dreta (7.3.1, 7.3.2, 7.3.3): recàrrega mitja estimada (2001 – 2002), recàrrega mitja estimada (2000 – 2008), recàrrega mitja estimada (2003 – 2004) ... 121
Fig. 7.4 Evolució temporal mitjana de la concentració de nitrats (mg·L⁻¹) per quatre etapes diferents a la zona continental. .. 123
Fig. 7.5 Evolució temporal (eix X) de les concentracions de nitrats (mg·L⁻¹) en funció de la distància al mar (A, B, C) i nivells piezomètrics en diferents àrees (D), volum de recàrrega (hm³) (linia vermelha) i precipitació anual (mm) (E) (eix Y) ... 127
Fig. 7.6 Evolució temporal (eix X) de la precipitació (mm), recàrrega d’aigua a l’aquífer (hm³) (linia vermelha), nivells piezomètrics (m.s.n.m) i conductivitat a 20ºC (µS·cm⁻¹) (eix Y) .. 129
Fig. 7.7 Evolució i tendències de nitrats (mg·L⁻¹) i silicats (mg·L⁻¹) a la desembocadura de la riera d’Argentona i usos del sòl a l’àrea central. ... 131
Fig. 7.8 Evolució i tendències de nitrats (mg·L⁻¹) i silicats (mg·L⁻¹) a la platja de Cavaió i usos del sòl de l’àrea nord. .. 132
Fig. 7.9 Evolució de les mitjanes de salinitat (psu) a diferents pous del Maresme i de la costa catalana. L’Estariit i la Badia dels Alfacs estan sota influència de rius. ... 133
Fig. 7.10 Evolució de la salinitat mitjana (psu) per etapes de 5 anys a cada punt de mostreig de la zona costanera del Maresme .. 133
Fig. 7.11 Evolució de la concentració de clorofil·la (µg·L⁻¹), nitrats (mg·L⁻¹) i silicats (mg·L⁻¹) a la desembocadura de la riera d’Argentona i a la Platja de Cavaió. .. 135
Fig. 7.12 Imatge de la Riera d’Argentona al seu pas per Mataró (19 de Novembre de 2015). ... 136
Fig. 7.13 Evolució de les mitjanes de concentracions de silicats (mg·L⁻¹) diferents punts de mostreig de Catalunya (Cadaqués, Gola del Ter, Platja d’Aro, Blanes Calella de la Costa, Argentona, Cavaió, Ocata, Sitges, Altafulla, Montroig del Camp, Ametlla de Mar i Els Alfacs). .. 137
Fig. 7.14 Evolució de les mitjanes de concentracions de clorofil·la (µg·L⁻¹) a diferents punts de mostreig de Catalunya (Cadaqués, Gola del Ter, Platja d’Aro, Blanes Calella de la Costa, Argentona, Cavaió, Ocata, Sitges, Altafulla, Montroig del Camp, Ametlla de Mar i Els Alfacs). .. 137
Fig. 7.15 Evolució de les mitjanes de concentracions de nitrats (mg·L⁻¹) a la zona costanera del Maresme i Camp Mitjà. .. 138
Fig. 7.16 Distribució geogràfica de les platges i camp mitjans analitzats ... 139
Fig. 7.17 Evolució de les mitjanes de nitrats (mg·L⁻¹) a 2 punts de costa i 2 punts de camp mitjà. 139
Fig. 7.18 Evolució de les mitjanes de silicats (mg·L⁻¹) a 2 punts de costa i 2 punts de camp mitjà. 139
Fig. 7.19 Evolució de les mitjanes de clorofil·la (µg·L⁻¹) a 2 punts de costa i 2 punts de camp mitjà. 140
Fig. 7.20 Relació entre silicats (mg·L⁻¹) i salinitat (psu) a diferents punts del Maresme. .. 141
Fig. 7.21 Relació entre silicats (mg·L⁻¹) i salinitat (psu) a diferents punts de Catalunya sense influència de rius. .. 141
Fig. 7.22 Evolució de les captures (kg) a diferents llotges de al província de Barcelona. 143
Impactes de la urbanització en la dinàmica dels aqüífers costaners
Índex de taules

Taula 2.1 Síntesi de la Directiva Marc de l’Aigua ... 23
Taula 2.2 Diferents àmbits legislatius referents a l’aigua ... 24
Taula 2.3 Passos cap a la terciarització .. 29
Taula 2.4 Contaminants en l’aigua subterrània ... 34

Taula 4.1 Superfície, població i densitat del Maresme (2014) .. 38
Taula 4.2 Nom i àrea dels municipis del Maresme ... 38
Taula 4.3 Evolució demogràfica del Maresme ... 39
Taula 4.4 Afiliacions al règim general de la S.S. segons ubicació del compte de cotització. Per sectors (2014) ... 40
Taula 4.5 Afiliacions al règim d’autònoms de la S.S. segons ubicació del compte de cotització. Per sectors (2014) ... 40
Taula 4.6 Depuradores del Maresme .. 47
Taula 4.7 Característiques de la massa número 18 ... 51
Taula 4.8 Municipis inclosos en la Conca Hidrogràfica “Les Rieres del Maresme” 51

Taula 5.1 Valors mitjans de litologia per cada ús del sòl ... 56

Taula 6.1 Evolució de la distribució dels usos del sòl a les darreres dècades. Maresme. Superfície total (ha) ... 69
Taula 6.2 Variació anual dels usos del sòl en cada etapa (ha·any⁻¹). Maresme 70
Taula 6.3 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Argentona, Cabrera de Mar i Mataró. Superfície total (ha) ... 76
Taula 6.4 Variació anual dels usos del sòl en cada etapa (ha·any⁻¹). Àrea Argentona, Cabrera de Mar i Mataró ... 77
Taula 6.5 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Arenys de Mar, Arenys de Munt, Caldes d’Estrac i Sant Vicenç de Montalt. Superfície total (ha) ... 82
Taula 6.6 Variació anual dels usos del sòl en cada etapa (ha/any). Àrea Arenys de Mar, Arenys de Munt, Caldes d’Estrac i Sant Vicenç de Montalt .. 83
Taula 6.7 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Masnou, Alella i Teià. Superfície total (ha) ... 88
Taula 6.8 Variació anual dels usos del sòl en cada etapa (ha·any⁻¹). Àrea Masnou, Alella i Teià... 89
Taula 6.9 Relació de municipis del Maresme i Entitats Subministradores d’Aigua .. 91
Taula 6.10 Evolució del volum d’aigua aportat per la xarxa ATLL a la comarca del Maresme. Font: Irene Obis, Cap de Relacions Institucionals i Comunicació, ATLL ... 92
Taula 6.11 Inventari de pous .. 97
Taula 6.12 Inventari de punts de mostreig costaners .. 111

Taula 7.1 Taula resum del quocient UDF .. 119
Taula 7.2 Àmbits i nivells d’implicació del projecte ... 142
Impactes de la urbanització en la dinàmica dels aqüifers costaners
1. JUSTIFICACIÓ DEL PROJECTE

El projecte Impactes de la urbanització en la dinàmica dels aqüífers costaners, el cas del Maresme proposa un estudi transversal que interrelaciona els canvis en els usos del sòl i diferents variables tant dels aqüífers com de la zona costanera. Les implicacions i conseqüències d’aquesta interrelació són un pilar fonamental del projecte.

La demanda de recursos naturals ha augmentat substancialment des de mitjans del segle XX i es comença a fer visible a moltes parts del planeta el deteriorament dels ecosistemes (Millenium Ecosystem Assessment, 2005). La conscienciació i l’augment dels moviments socials a favor de la protecció de la natura han provocat que les institucions desenvolupin una sèrie de polítiques per tal de protegir el medi ambient. Un exemple a l’àmbit europeu és la Directiva Marc de l'Aigua (2000/60/CE) (DOCE, 2000) (DMA), sent el nostre referent per tal d’assolir objectius de sostenibilitat pel que fa a la gestió de l’aigua i en la que es fonamenta aquest document.

Per a realitzar un projecte d’aquestes característiques cal partir d’una visió holística i incloure tot el conjunt de variables necessàries i claus a l’hora d’analitzar la problemàtica. Així, ens centrem en valorar l’importància de la descàrrega submarina d’aigües subterrànies (Submarine Groundwater Discharge – SGD) per part dels aqüífers costaners, i com aquesta es veu afectada per una de les nostres variables evolutives principals: els usos del sòl. És essencial doncs, entendre els diferents vectors que conviuen arran de mar: social, econòmic i ambiental, per poder comprendre que els aqüífers costaners estan sotmesos a una gran pressió, pel que cal estudiar el seu funcionament (Foster, 2001).

El litoral d’arreu del món i més concretament el del Mar Mediterrani ha sofert durant la segona meitat del segle XX l’arribada de milers d’habitants a primera línia de costa, fet que ha implicat una gran i, massa sovint, incontrolada urbanització. Aquest procés ha provocat que haguem de generar i preveure els efectes de l’ordenació territorial i planificació urbanística. El projecte posa sobre la taula els possibles impactes de la urbanització en els fluxos de descàrrega d’aigua subterrània al mar. Així doncs, pretén aportar dades concretes per contribuir a trobar mètodes i protocols que ajudin a avaluar els avantatges i els inconvenients envers la gestió integral del litoral que és, en aquest sentit, bàsica per a realitzar una bona gestió de la problemàtica (DMA).

El concepte de gestió integral del litoral és de vital importància pel futur de les nostres àrees costaneres. Per aconseguir una gestió correcta cal desenvolupar polítiques directes que ajudin a controlar i regular tots els paràmetres que afecten al cicle hidrològic i a la dinàmica dels aqüífers, afectats per causes antròpiques. Incloure en un sol pla de gestió tots els vectors involucrats com són la gestió forestal, la gestió agrícola, la planificació urbanística, la gestió del litoral i la gestió
de l’aigua, no oblidant una part tan important com la hidrogeològica, serà clau en un futur per tal d’assolir la sostenibilitat dels territoris litorals.

Així doncs, l’objectiu d’aquest projecte és trencar amb la visió simplista d’un element mar, i una altra terra, diferenciats i independents, i donar dades i solucions per tal d’enfortir una visió més real de la dependència recíproca que tenen aquests dos elements.

Per dur a terme el projecte s’ha escollit la comarca del Maresme, caracteritzada per un accelerat procés d’urbanització, presència d’aqüífers explotats i un litoral deteriorat per l’acció antròpica. Els límits polítics de la comarca, que fan que sigui una zona allargada i abocada al mar amb una conca hidrològica aïllada, fan encara més interessants i extrapolables a d’altres àrees els resultats que es puguin derivar d’aquest projecte.

El treball s’ha dividit en diversos blocs. Inicialment tenim uns antecedents del projecte per tal d’introduir la problemàtica a abordar i entendre les variables que cal considerar per poder assolir els objectius del projecte. Després de revisar en detall els objectius ens centrem en la descripció de la zona d’estudi on s’exposaran les principals característiques de la comarca del Maresme per tal d’entendre la seva idoneïtat per desenvolupar el projecte. Seguidament es descriuen els mètodes emprats per poder obtenir els resultats necessaris per així discutir, en la part final, les diferents hipòtesis plantejades i obtenir unes conclusions sobre l’impacte de la urbanització del litoral en la dinàmica dels aqüífers costaners i els fluxos d’aigua al mar, i les seves possibles implicacions ambientals, socials i econòmiques.
2. ANTECEDENTS

A continuació, a l’apartat d’antecedents, es donen les bases teòriques per poder entendre el projecte i les seves implicacions.
2.1 Introducció al coneixement de les aigües

L’aigua que arriba del cel, hi torna d’una o altra manera, tancant l’anomenat cicle hidrològic. La saviesa popular dipositada en els refranys també detecta el fenomen: “l’aigua sempre va als rius, i dels rius al mar”. Tot això és cert, però cal matisar-ho. Mentre que part de l’aigua de les precipitacions, sigui en forma líquida o sòlida, és restituïda amb rapidesa a l’atmosfera per evaporació, una altra part ho fa diferidament, amb la transpiració dels vegetals que utilitzen l’aigua del sòl. La resta circula fins el mar per camins amb velocitats canviants, renovant al seu pas reserves naturals d’aigua (en la superfície, els llacs i embassaments, i en el subsòl, els aqüífers). Finalment, són els mars i els oceans els grans dipòsits que subministren, per evaporació, l’aigua als núvols, els quals són transportats per la dinàmica atmosfèrica fins als continents, on tenen lloc les precipitacions. El cicle, així, torna a començar.

2.1.1 Les conques hidrogràfiques

Esbrinar el perquè la majoria de rius porten aigua sense interrupció, fins i tot en llargs períodes amb absència de pluges, sempre ha estat una difícil aspiració per aquells que buscaven una explicació per comprendre el cicle hidrològic.

Els dipòsits naturals d’aigua que, quan plou, són recarregats per la pluja, així com els llacs i els estanys o la neu i les glaceres, a més de les formacions geològiques permeables del subsòl, regulen i permeten la constància en les aportacions als rius. L’abast d’aquesta funció reguladora té una relació directa amb la capacitat dels dipòsits (Dahan et al., 2007), i en aquest sentit val a dir que són les aigües de procedència subterrània la reserva més important.

En períodes poc humits, o en èpoques on hi domina l’evaporació (estiu), el cabal dels rius procedeix de les reserves hidràuliques de la conca, les quals inclouen l’aigua emmagatzemada en els aqüífers mitjançant les seves sortides naturals, puntuals o difuses (fonts), i la fusió de la neu i el gel a l’alta muntanya. Per altra banda, en les estacions humides les aportacions d’aigües subterrànies disminueixen la seva proporció respecte al total, per tornar a augmentar quan acaba l’efecte de les pluges. En resum podem dir que el cabal dels rius té dos components: l’escorrentia superficial ràpida i directe com a resposta a les pluges, que pot ser nul·la en les estacions seques, i l’escorrentia subterrània, més constant i estructurada (Le Moine et al., 2008). Així doncs cal entendre amb detall aquestes dues components ja que són les principals fonts que intervenen en la dinàmica dels aqüífers (Foster, 1988; Howard et al., 2007).
2.2 Els aqüífers

Els aqüífers han estat definits com formacions geològiques que emmagatzemen i alliberen l’aigua, amb la particularitat, respecte als altres jaciments minerals, del caràcter mòbil i renovable de les aigües que arriben i saturen el medi permeable (existeixen recursos i reserves) (Batu, 1998). Altres formacions, tot i ser transmissores (permeables) no poden rebre ni descarregar els fluids que contenen; l’estancament del flux és total (només existeixen reserves).

Les aigües dins d’un medi aqüífer poden obeir dos models genèrics i un d’intermedi: o bé estan en contacte directe amb l’atmosfera mitjançant els buits del terreny fins a la superfície (cas dels aqüífers anomenats lliures), o bé estan separades o aïllades per terrenys poc permeables suprajacents (situació dels aqüífers confinats o captius), o bé, si les condicions són intermèdies i l’aïllament imperfecte a través d’aqüitards (formacions geològiques que emmagatzemen aigua i la transmeten lentament), reben el nom d’aqüífers semiconfinats o semicaptius (Fig. 2.1).

Els aqüífers formen embassaments subterrànis on l’aigua hi circula molt lentament, cm/dia en els més superficials a cm/any en els profunds. Podem agrupar els aqüífers lliures en dos grans tipus:

-Aqüífers no consolidats detritics: estan constituïts per sorres i graves procedents de rius. Tot i que normalment la seva extensió és reduïda tenen un gran interès ecològic i econòmic per la seva particular situació. Quan disposen de grans espessors tenen capacitat per a molts recursos. Tenen porositats i permeabilitats altes que els permeten emmagatzemar i transmetre aigua amb facilitat.

-Aqüífers consolidats carbonatats i granítics: l’aigua s’emmagatzema en els forats creats per l’esquerdament i la diagènesi de la roca i en els originats per processos de dissolució del material. Aquests aqüífers solen tenir una xarxa de fissures i conductes en les zones costaneres que pot arribar a permetre fluxos molt importants.
Els aqüífers lliures es recarreguen en les zones interiors i transporten i descarreguen el flux d’aigua dolça per diferents mecanismes en les zones costaneres.

Centrant-nos en el nostre estudi, cal parlar dels aqüífers costaners que, tot i no deixar d’estar dins dels models d’aqüífer lliure anteriorment explicats, tenen algunes singularitats. Així com el mar és un sistema més sensible que el terrestre, els aqüífers costaners són molt més delicats i vulnerables que els continentals degut a la seva interacció amb els mars i/o oceans, a través de la interfase aigua dolça / aigua salada (Fig. 2.2). També, el fet que moltes zones litorals estiguin urbanitzades fa que aquests aqüífers pateixin una pressió antròpica que pot fer variar el seu comportament natural.

2.2.1 Porositat, permeabilitat i transmissivitat

La porositat, és a dir, els espais oberts i buits dins les roques, determina la capacitat d’emmagatzematge, la qual no coincideix amb la de drenatge, que sempre serà més petita.

La permeabilitat és un l’altre paràmetre que d’una o altra manera mesura la resistència al moviment de l’aigua o fluid a través de la roca.

En medis granulars amb flux laminar la permeabilitat és el factor de proporcionalitat entre el cabal que passa per una secció de roca i el gradient hidràulic (llei de Darcy), i té les dimensions d’una velocitat. Si el règim és turbulent, cosa que només pot passar en medis fissurats o carstificats i a les rodalies de captacions d’aigües subterrànies (com pous o galeries), la proporcionalitat serà entre el cabal i, aproximadament, l’arrel quadrada del gradient hidràulic. En qualsevol cas, no costa gaire d’imaginar com són de considerables les dificultats en caracteritzar els paràmetres hidràulics de medis de tot tipus on la permeabilitat és direccional i de vegades estratificada.
2.2.2 Els fluxos d’aigua dolça al mar.

Com hem vist a l’apartat 2.2, alguns aqüífers lliures desemboquen al mar. Aquest aspecte de la seva dinàmica és molt important com anirem veient més endavant. Ho fan a través de fluxos subterranis d’aigua dolça (Fig. 2.5), que van aportant a ritmes lents però constants aigua carregada de nutrients al mar.

La descàrrega submarina d’aigües subterrànies (SGD), representa tots i cada un dels fluxos d’aigües continentals costaneres als fons marins, independentment de la composició del fluid o la força impulsora (Brunett et al., 2003).

Aquests fluxos d’aigua dolça es caracteritzen pels baixos caudals, que fan difícil la seva detecció i quantificació. Tot i així, degut a que aquestes corrents es produeixen al llarg de zones molt grans, s’aconsegueix un flux total significatiu. La descàrrega de líquids, ja sigui procedent de la terra o compostos de la recirculació de l’aigua de mar, reaccionen amb els components dels sediments. Aquestes reaccions poden incrementar considerablement les concentracions de nutrients, carboni i metalls en els fluids. Aquests líquids són, per tant, una font de components bioquímics molt important pels ecosistemes costaners dels oceans (Burnett et al. 2003).

Existeixen varies estimacions de la importància de la SGD en el balanç hídric mundial, concretament s’estima que representa entre un 0.2 a 10% del caudal dels rius (Garrels i Cosod II, 1987).

Fig. 2.4 Principals vies de descàrrega a la costa, incloent la recirculació i l’aigua dolça. Font: USGS
• Importància de la SGD

Hidrològica:
La utilització del aqüífers costaners pot ser una font rellevant d’aigua potable, particularment en regions on l’accés a l’aigua dolça és limitat o inexistent, i la dessalinització d’aigua de mar sigui la única possibilitat d’abastiment (Bakken et al., 2011). Tot i així, una sobreexplotació podria causar problemes i primer és necessari conèixer l’aqüífer i els seus processos hidrogeològics, incloent una estimació acurada de l’aigua dolça de la SGD (Werner et al., 2011). Un coneixement detallat del rol que juga la SGD en els ecosistemes costaners (llacunes i zones humides) també és necessari per entendre la degradació del medi i poder prendre decisions dins la gestió integral del litoral (Zekster et al., 2007).

Biogeoquímica:
La SGD és reconeguda com un important mecanisme de transferència de material des de la terra fins el mar (Moore, 1996a, 1999). La concentració de nutrients, metalls, carboni, etc., és normalment més gran en l’aigua subterrània que en la superficial i té una elevada contribució en el flux de constituents dissolts a les costes (Brunett et al., 2006).

Fluxos de nutrients:
Els estudi de fluxos de nutrients normalment només es fixen en les fraccions inorgàniques de nitrats, fosfats i silicats. Centrar-se només amb aquests pot infraestimar les entrades biodispersibles de nutrients (Santos et al., 2009). Les fonts principals d’entrada de nutrients (nitrats i fosfats) a l’aigua subterrània de la costa són via natural, a través de la descomposició o la dissolució mineral, i via antropogènica a través de fertilitzants i aigües residuals (Slomp i Van Capellen, 2004). La major font de silicats és el substrat rocós mateix (roques, sediments i sorres) (Knee and Paytan, 2011). Alguns estudis han detectat que la SGD és la major font de nutrients a les costes, particularment a àrees on la SGD és la única via de connexió entre la terra i el mar; com illes volcàniques (Hwang et al., 2005a; Street et al., 2008), àrees càrstiques (Garcia-Solsona et al., 2010a; Young et al., 2008) o àrees amb rieres (Shellenbarger et al., 2006), però també a àrees on els rius hi són presents (Liu et al., 2012).

Fluxos de metalls traça:
Els metalls traça (p.e. Ag, Cd, Co, Cu, Fe, Hg, Ni, Pb o Zn) poden enriquir-se naturalment a les aigües subterrànies degut a la seva interacció prolongada amb els metalls que conté el substrat de l’aqüífer, particularment a àrees on la composició i les condicions favoreixen la dissolució de importants quantitats de metalls (Knee and Paytan, 2011). Les activitats humanes també poden augmentar les concentracions de metalls traça a través de la mineria, de les aigües residuals o a conseqüència de la restauració de terres contaminades (Chen and Jiao, 2007).
El metalls traça dissolts aportats per la SGD són utilitzats com a micronutrients pels ecosistemes (Torres et al., 2008). Aquests fluxos també ajuden al creixement del fitoplàncton (Garcés et al., 2011) i seguint la cadena trònica també es poden acumular en humans (Laurier et al., 2007).

Flux de Carboni:

S'ha demostrat que la SGD és una via rellevant de transferència de carboni des de la terra fins el mar, tan de carboni inorgànic (DIC) (Basterretxea et al., 2014), com de carboni orgànic (DOC) (Santos et al., 2009). Aquest flux de carboni a les costes és molt important per l’activitat biològica (Knee and Payton, 2011).

Hi ha d’altres raons també destacables de la SGD com poden ser la utilització de diferents metalls traça per estudiar diversos aspectes dels oceans i el clima o per estudiar la contaminació fecal que està entrant a les costes via SGD (Boehm et al., 2004).

2.3. Evolució de la gestió dels aqüífers

Durant mil·lennis l’èsser humà ha necessitat l’aigua per sobreviure i evolucionar. La interacció de l’home amb els aqüífers doncs, ve de ben antic. A Mesopotàmia, per exemple, es feien pous a mesura que avançaven pel desert (Kresic et al., 2010). Així, poc a poc, teixien les rutes que en el futur les caravanes nòmades aprofitarien i on amb el pas dels anys s’hi anirien creant assentaments i ciutats. Algunes d’aquestes ciutats han perdurat fins l’actualitat i ara es troben, com moltes d’altres, immerses dins la difícil tasca de gestionar l’aigua.

La gestió de l’aigua sempre ha estat motiu de conflictes (Gleick, 1993). Les societats havien d’adaptar-se a les situacions canviants que generava la seva pròpia evolució i la climatologia de la regió on vivien. Aquest fet, a la vegada, feia treballar el seu enginy per crear nous mètodes per extreure l’aigua o per traslladar-la des de punts allunyats fins allà on estaven els seus assentaments.

Amb el desenvolupament de l’agricultura i el regadiu la gestió de l’aigua es va anar complicant i van començar a aparèixer diferents tipus d’administradors i diferents mètodes per fer els sistemes de distribució a les ciutats més eficients.

Els qanats (Fig. 2.6) en són un exemple, documentats des de l’any 1000 A.C. a la zona del Pròxim Orient i utilitzats encara actualment, són pous excavats linealment fins arribar a la capa freàtica. L’aigua ajudada per la pendent de la zona flueix cap a fora a través d’un túnel excavat horitzontalment (Alemohammad et al., 2010). Segons el geògraf romà Strabo (63 A.C fins 21 A.C.) van construir sistemes per dur l’aigua des de rius i pous llunyans creant grans i extensos sistemes de distribució i clavegueram (Kohout, 1966), amb aqüeductes impressionants que encara perduren. També hi ha evidències de l’aproveitament de l’aigua que descarregava directament al mar (Brunett et al., 2006). L’imperi romà, pare de l’actual cultura de l’aigua ja l’utilitzava: a través de tubs de cuir transportava l’aigua dolça des d’una font submarina fins la ciutat (Kohout, 1966).
Actualment la meitat de la població mundial viu en ciutats, i d’aquí 20 anys quasi 5000 milions de persones ja viuran en àrees urbanes (Nacions Unides, 2009). Aquest gran creixement de la població fa que la gestió de l’aigua i el seu sanejament sigui d’allò més important (DMA, 2000). L’aigua subterrània és molt important en termes econòmics i socials, el 50% de l’aigua urbana està extreta dels aqüífers, i 1000 milions de persones a Àsia i 150 milions a Amèrica Llatina en depenen directament (Clarke, Lawrence & Foster, 1995).

“La urbanització suposa una oportunitat per una gestió de l’aigua més eficient i un accés millorat a l’aigua potable i al sanejament. Al mateix temps, els problemes, sovint, s’agreugen dins les ciutats i, a l’actualitat, sobrepassen la nostra capacitat d’aportar solucions”

(Ban Ki-moon, Secretari General de les Nacions Unides)

Tot i el desenvolupament tecnològic actual de depuració i sanejament i el gran desenvolupament en infraestructures de distribució d’aigua, la humanitat es troba immersa en un gran repte per solucionar els problemes generats pel gran creixement demogràfic actual i la concentració de la població en ciutats i àrees metropolitanes (Wild et al., 2010).

El paper dels aqüífers doncs, és fonamental ja que actuen com un gran reservori d’aigua per aquestes ciutats. Cal que aquesta nova cultura de l’aigua proposada actualment passi a formar part dels nous models de gestió de l’aigua, per tal d’assolir nivells de sostenibilitat adequats a les noves condicions a la que estan sotmesos.
2.4 Marc legal

Actualment la regulació de les aigües està molt desenvolupada tan a nivell europeu com estatal i autonòmic. Aquesta importància en la legislació ha crescut notòriament durant les darreres dècades amb la conscienciació i importància que té l’aigua per a diferents usos, no només de boca. Tot seguit es fa un recull del conjunt de la legislació que regula els aqüífers de l’àrea d’estudi d’aquest projecte.

2.4.1 Directiva Marc de l’Aigua

La Directiva Marc de l’Aigua (Directiva 2000/60/CE de 22 de desembre del 2000) és l'eina legal que estableix un marc comunitari d’actuació en l’àmbit de la política d’aigües. L’objectiu principal no només se centra a satisfacer la demanda creixent (usos i explotació), sinó també a equilibrar els diferents usos que en fem amb la necessitat pròpia del medi i la seva conservació (rius, aqüífers, etc.) (ACA 2003).

<table>
<thead>
<tr>
<th>Taula 2.1 Síntesi de la Directiva Marc de l’Aigua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Continguts</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Font: Elaboració pròpia a partir de ACA 2003 (Conceptes i principis bàsics de la DMA).
La Directiva marc de l'aigua (2000/60/CE) s'ha transposat a la normativa estatal mitjançant la modificació de Llei 46/1999, i el text refós de la Llei d'aigües 1/2001, de 20 de juliol, per l'article 129 de la Llei 62/2003, de 30 de desembre, de mesures fiscals, administratives i de l'ordre social (BOE núm. 313, de 31 de desembre de 2003) (ACA 2003).

A part de la DMA, trobem diferent legislació per l’aigua. A la pàgina següent s’exposen les diferents normatives corresponents a cada àmbit legislatiu.

Taula 2.2 Diferents àmbits legislatius referents a l’aigua

<table>
<thead>
<tr>
<th>Àmbit</th>
<th>Normativa</th>
</tr>
</thead>
</table>
| Àmbit europeu | - Directiva 2000/60/CE, de 22 de desembre de l'any 2000, del Parlament Europeu i del Consell.
 - Directiva 91/271/CEE sobre el tractament d’aigües residuals urbanes.
 - Directiva 98/83/CE, del Consell, de 3 de novembre de 1998, relativa a la qualitat de les aigües destinades al consum humà. |
| Àmbit espanyol | - Reial Decret 140/2003, de 7 de febrer, pel qual s'estableixen els criteris sanitaris de la qualitat de l'aigua de consum humà.
 - Reial Decret 1138/1990, de 14 de setembre, aprova la Reglamentació Tècnico sanitària per a abastament i control de la qualitat de les aigües potables.
 - Reial decret legislatiu 1/2001, de 20 de juliol, pel qual s'aprova el Text refós de la Llei d'aigües.
 - Reial decret 849/1986, d'11 d'abril, pel qual s'aprova el Reglament del domini públic hidràulic. |
| Àmbit Català | - Decret Legislatiu 3/2003, de 4 de novembre, pel qual s'aprova el Text refós de la legislació en matèria d'aigües de Catalunya.
 - Decret 188/2010, de 23 de novembre, d'aprovació del Pla de gestió del districte de conca fluvial de Catalunya.
 - Decret 130/2003, de 13 de maig, pel qual s'aprova el Reglament dels serveis públics de sanejament. |

Font: Amigó et al., 2014.
2.5 La sobreexplotació d’aqüífers

La utilització de les aigües subterrànies arreu del món ha provocat un seguit de problemes, alguns irreparables. Fins i tot s’han inutilitzat aqüífers, amb el corresponent impacte socioeconòmic, i moltes vegades ecològic, damunt les regions implicades i sempre com a reflex d’una manca d’ordenació, control i gestió de l’explotació. Els problemes presentats són bàsicament de tres tipus, encara que els uns siguin conseqüència dels altres: sobreexplotació, contaminació de les aigües subterrànies en totes les seves variants, i efectes laterals causats tant per l’explotació com per l’abandonament o disminució de les extraccions.

La sobreexplotació, que comporta treure més aigua de la que entra al sistema aqüífer, suposa un consum continuat de reserves reflectit en un descens no estabilitzat del nivell freàtic o piezomètric, fins el punt que les sortides naturals del sistema deixen de ser funcionals (disminueix o s’anul·la el cabal dels rius), o bé, en el cas d’aqüífers connectats amb la mar, l’aigua marina envaixeix el medi permeable terra endins segons el procés conegut sota el nom d’intrusió marina.

Aquest plantejament evidencia un complicat problema de desenvolupament dels recursos hidràulics, atesa la interrelació de les aigües superficials i subterrànies dins de la unitat del cicle hidrològic (Javier Ibáñez et al., 2008). L’any 1920 Meinzer va introduir el concepte de rendiment segur, definint-lo com “el volum d’extraccions raonables de l’aqüífer per a la utilització humana”. Més tard, l’any 1945 Conkling va matisar l’anterior definició deixant-la en els següents termes: “el rendiment segur és el volum anual d’aigües subterrànies extretes d’un aqüífer que no excedeixen o superen la recarrega anual mitjana, que no minven el nivell de la capa freàtica fins a cotes on el cost permisible de bombeig sigui superat, i que no baixen el nivell de la capa freàtica fins a cotes que indueixen a la intrusió d’aigües de qualitat no desitjable”.

La gran explotació dels aqüífers gràcies als sistemes moderns d’extracció d’aigües en pous, es produeix a partir de la dècada dels 50.
Les antigues doctrines de Meinzer han hagut de ser adaptades en funció de les ensenyances acumulades pels resultats comprovats en l'explotació d'aqüífers. Seguint aquesta línia, Mandel (1975) va proposar distingir tres classes de sobreexplotació: l'explotació de les reserves d'una sola vegada a fort ritme fins a arribar a l'equilibri corresponent al valor considerat de rendiment segur; la sobreexplotació no destructiva, que és la produïda quan s'arriba més enllà dels límits abans esmentats, encara que l'aqüífer sofreix danys reparables a terme mitjà; i la sobreexplotació destructiva, a la qual s'aboca un aqüífer quan es mantenen les extraccions excessives durant molt de temps, que el fan pràcticament inexploitable, bé per degradació de la qualitat química de les aigües o bé per motius econòmics derivats de l'elevació des d'una gran fondària de les aigües subterrànies (aquest cas extrem i freqüent és conegut amb el nom de mineria d'aigües).

La Figura 2.6 serveix per entendre el concepte de rendiment segur i sobreexplotació no destructiva (dibuix B), i el de sobreexplotació destructiva (dibuix C). El dibuix A ens mostra el comportament de les aigües en condicions normals.

2.5.1 Causes de la sobreexplotació

El creixement demogràfic i la urbanització del litoral són les causes de l’augment de l’explotació dels aqüífers costaners. Com hem vist anteriorment en d’altres apartats, aquests són molt vulnerables i poden patir tota mena de trastorns de la seva dinàmica si no se’n fa una bona gestió. En els següents subapartats es presenten les claus que ens ajuden a entendre quins són els detonants de la sobreexplotació.

- Creixement demogràfic i del sòl urbà

És una qüestió coneguda la tendència que ha seguit l’evolució demogràfica durant els darrers 60 anys: la població es duplica cada 28 anys (segons els índexs de creixement actuals). Aquesta dada ens fa adonar-nos que el creixement demogràfic actual és desmesurat comparat amb els 195.000 anys que fa que l’Homo sapiens habita a la Terra (restes trobades més antigues a Etiòpia - Homes de Kibish).

Per exemplificar aquestes dades, presentem la Figura 2.7, la qual comença l’any 1960.
Aquesta explosió demogràfica no és conseqüència de l’atzar, sinó que es pot explicar mitjançant 3 factors bàsics que han canviat o mantingut el seu comportament en les darreres dècades:

- **Disminució de la mortalitat**
- **Disminució de la mortalitat infantil**
- **Manteniment de les taxes de natalitat**

Els dos primers punts són fàcilment explicats gràcies a les innovacions i la popularització de les medicines. Cal destacar el paper rellevant de les vacunes en la disminució de la mortalitat infantil: 170‰ el 1939 a 65‰ el 1970.

El manteniment de les taxes de natalitat s’ha d’enfocar des de la perspectiva del tercer món i relacionar-lo amb el punt anterior. El manteniment de la lògica de família nombrosa als països del 3r món és deguda en primer lloc a l’assignació de tasques familiars (cuidar els ancians i els nadons) a la família en sí, en lloc de a l’Estat. En segon lloc, la poca persecució de les institucions estatals al treball (sovint explotació) infantil també afecten al manteniment de les taxes de natalitat en les darreres dècades.

Paral·lelament a l’explosió demogràfica desenvolupada en els anteriors paràgrafs, es duen a terme una sèrie de processos que acabaran desencadenant una urbanització massiva del litoral, una de les causes de la sobreexplotació d’aqüífers.

Un d’aquests processos és l’àxode rural:

“**Abandó del camp per una part de la població o per la totalitat. La poca flexibilitat tradicional de l’economia agrícola hi fa difícil l’absorció d’un creixement demogràfic, fins i tot feble, i sempre s’han donat situacions episòdiques d’emigració, en general cap a les ciutats”**

Definició d’Àxode Rural a l’Enciclopèdia catalana

Així doncs, l’àxode rural representa bàsicament un abandonament del camp. En la majoria de situacions, aquesta “fugida” del camp és en direcció a les ciutats.
La causa majoritària d’això té a veure amb una de les èpoques de canvi econòmic i social de la història: la Revolució Industrial, iniciada a la Gran Bretanya.

Les oportunitats pel que fa al treball que oferien les ciutats, conjuntament amb les innovacions tecnològiques a l’agricultura, les quals representaven una necessitat de treball humà inferior, provoquen un moviment migratori de caire interestatal cap a les noves ciutats industrials, que veuen augmentada la seva població d’una manera substancial.

Aquestes noves ciutats i colònies industrials, es trobaven molt sovint situades al litoral (el port suposava un bon enllaç per al comerç), al costat de rius (per aprofitar l’energia hidràulica) o al costat d’estacions de ferrocarril (per les necessitats catalanes d’importar carbó per a fer funcionar les màquines de vapor) (Funcas, 2007).

Així doncs, Espanya i Catalunya (com a principal motor econòmic de l’Estat) esdevenien països amb una alta industrialització (Cabana, 2008).

Avançant a través dels anys, la industrialització es manté tant a Catalunya com en la gran part dels països desenvolupats fins a aproximadament la dècada dels 1970, quan el concepte de globalització comença a prendre importància.

“Sèrie complexa de processos que es produeixen simultàniament en l’àmbit econòmic, polític, tecnològic, cultural i ecològic i que abasten la major part de les regions del planeta.”

Definició de Globalització a l’Enciclopèdia Catalana

La globalització descobreix a les empreses l’opció de deslocalitzar les seves plantes de producció dels països desenvolupats a països en vies de desenvolupament, amb unes expectatives salarials notablement més baixes, disminuint així els costos de producció.

Paradoxalment, la majoria d’aquests productes seguirien tenint com a mercat potencial els països desenvolupats.

Així doncs, si el sector industrial es trasllada en bloc a altres ubicacions, quina serà a partir d’ara l’ocupació dels treballadors i les treballadores dels països desenvolupats?

- **Terciarització de l’economia**

La hipòtesi del Tres Sectors divideix l’economia en 3 sectors clarament diferenciats:
- Sector primari o agrícola i ramader
- Sector secundari o industrial
- Sector terciari o de serveis

Segons expressa Fourastié en el seu treball *The Great Hope of the Twentieth Century* (1949), la predominància d’un sector en valors percentuals sobre els dos altres indica un grau de desenvolupament determinat per un Estat. Així, una dominància del sector primari indicaria subdesenvolupament, mentre que una dominància del sector terciari indica un elevat grau de desenvolupament, al qual l’economista francès atribueix també un increment del nivell d’educació, del nivell de vida o de seguretat.

Segons Fourastié, tots els Estats segueixen un camí guiat cap a la terciarització de la seva economia (Taula 2.3).

Taula 2.3 Passos cap a la terciarització

<table>
<thead>
<tr>
<th>Etapa del procés</th>
<th>Sector primari (%)</th>
<th>Sector secundari (%)</th>
<th>Sector terciari (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional Civilizations</td>
<td>70</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Transitional period</td>
<td>40</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Tertiary civilization</td>
<td>10</td>
<td>20</td>
<td>70</td>
</tr>
</tbody>
</table>

Font: *The Great Hope of the Twentieth Century*

Fig. 2.8 Percentatge dels sectors segons Fourastié. Font: Elaboració pròpia mitjançant les dades del treball The Greatest Hope of the Twentieth Century (1949) de Jean Fourastié.
Així doncs, teòricament, les zones més desenvolupades tindran en el sector terciari un important percentatge d’ocupació. En el subapartat Entorn socioeconòmic de l’apartat Descripció de l’àrea d’estudi, veurem com prenent d’exemple la comarca del Maresme, aquesta teoria es demostra també a la pràctica.

- **Urbanització massiva del litoral**

El fet que gran part de les zones costaneres turístiques s’han urbanitzat massivament (sovint amb total descontrol) durant les darreres dècades és una realitat.

Primer la pesca i la navegació com a puntals, i més tard el despertar de la necessitat turística, han fet que un gran nombre d’espais litorals veiessin augmentada la seva demanda per canviar la qualificació del sòl a urbanitzable. Això doncs, ha comportat la venda de parcel·les conreables que s’han convertit en habitatges, infraestructures o hotels, disminuint així el gruix del sector primari de la regió. En gran part, aquest canvi d’usos del sòl de les darreres dècades ha comportat un nou èxode rural, degut a l’incentiu econòmic que suposava vendre una terra conreable amb un gran potencial urbanitzable.

Tot i això, molts d’aquests habitatges formen part de l’anomenat turisme residencial, en els quals només hi viuen els seus propietaris durant els mesos (o a vegades només setmanes) de vacances, sovint coincidint amb els mesos d’estiu. Cal contemplar també la construcció d’hôtels i altres serveis del sector tant públic com privat en aquesta massificació.

Fent un parèntesi, cal destacar com a problema accentuat, la construcció d’habitatges a primera línia de costa. Aquest fet provoca una regressió de les platges que pot fer que a llarg termini s’acabin enderrocant els mateixos edificis que l’han provocat (Semeoshenkova and Newton, 2015).

Hotels, restaurants, urbanitzacions senceres de segona residència, ports, etc. Tots aquests serveis durant els mesos turístics estan a la seva màxima capacitat: hôtels plens, restaurants desbordats, ports plens de vaixells, etc. La pressió als ecosistemes costaners i la quantitat de serveis públics requerits durant els mesos turístics es multiplica per força (Michailidou et al., 2015). Una conseqüència “positiva” d’aquesta pressió és la creació de llocs de treball, la majoria d’ells temporals i en el sector serveis (Ahmed and Krohn, 1993 and Var and Kim, 1989), fet que podem relacionar amb el desenvolupament expressat anteriorment en aquesta memòria per Fourastié.

Com a causa directa, la demanda d’aigua es multiplica amb l’arribada de més turistes (Tekken and Kropp, 2015). Cal doncs, si considerem aquesta pressió com a irremeiable, tenir un model clar sobre com esproveirà d’un servei bàsic com l’aigua (Tekken and Kropp, 2015) per no afectar perillosament tot l’ecosistema costaner i provocar una sobreexplotació dels seus aqüífers.
2.5.2 Conseqüències de la sobreexplotació

La sobreexplotació condueix a un continuat consum de reserves i a un descens dels nivells piezomètrics si no es redueix el bombeig. Si considerem els aqüífers com sistemes reguladors d’entrades i sortides d’aigua, una disminució de l’estoc redueix les garanties de subministrament enfront de situacions extraordinàries, com pot ser una sequera perllongada (Khair et al., 1994). Però encara més greu, pel caràcter dispers dels recursos subterràngins, és l’impacte que la utilització de les aigües subterrànies té en les aigües de circulació superficial. En aquest sentit, val a dir que la major part dels rius que reben pressió antròpica tenen un règim fluvial totalment alterat per l’explotació dels aqüífers que antigament drenaven. El descens en les aportacions històriques és un fet comprovat i en certs casos s’arriba a l’anul·lació de la circulació superficial continuada.

Altres efectes greus de la sobreexplotació són:

- L’empitjorament de la qualitat química de les aigües subterrànies.
- La disminució dels fluxos d’aigua dolça subterrània al mar.
- Regressió de l’aportació de nutrients al litoral (via SGD).
- Mobilització d’aigües antigues dins aqüífers heterogenis i de gran gruix (aigües inicialment bicarbonatades o lleugerament sulfatades poden acabar sent clorurades sòdiques).
- Avanç de les aigües marines terra endins per distorsió de l’equilibri aigua dolça-aigua salada.
- Recàrrega induïda d’aigües contaminades dels rius als aqüífers per inversió de gradients.
- Subsidència del terreny a causa de disminuir la pressió en terrenys granulars.
- Reducció o abandó del bombeig que a curt i mitjà termini provoca una remuntada del nivell freàtic o piezomètric, cosa que pot derivar en inundacions d’edificis (soterranis, túnels, etc) que havien estat construïts en sec, quan els nivells eren més baixos, sense els dispositius de drenatge i de impermeabilització adients.

En resum, pot afirmar-se que tot aqüífer abandonat o sotmès a les tensions d’una forta demanda, normalment acabarà sent sobreexplotat (Sahebrao Sonkamble et al., 2014). És clar que la sobreexplotació seria impossible en un marc legal i de gestió eficaç, cosa que encara no existeix en la majoria de països.
• **Intrusió d’aigües marines**

Les aigües que saturen els aqüífers costaners connectats amb el mar, siguin amb permeabilitat causada per la porositat intergranular o per fissuració i carstificació, mantenen un equilibri amb l’aigua lliure marina (Andersen et al., 2005; Sanford and Pope., 2010; Datta et al., 2009), però amb una singularitat: l’aigua marina és més densa (1025 kg·m\(^{-3}\) davant de 1000 kg·m\(^{-3}\) de l’aigua dolça), i això fa que tendeixi a desplaçar-se per sota. Atès que l’aigua salada és miscible amb la dolça, no hi ha un contacte brusc entre ambdues aigües, ja que cal que l’aigua de mescla sigui eliminada continuament (Post and Abarca, 2010). Això és el que succeeix en realitat, havent-hi un flux amb un cert gruix al llarg i per damunt de la superfície teòrica de contacte que recull i transporta a la mar l’aigua que contínuament va mesclant-se.

L’efecte de les extraccions en la quantitat d’aigua dolça que va cap al mar dóna un caràcter dinàmic a la interfase (Armandine Les Landes et al., 2014). Així doncs, qualsevol explotació d’un aqüífer costaner no compensada amb un augment de la recàrrega, provocarà canvis en la posició de la interfase, la qual avançarà el seu peu terra endins (Fig. 2.9) (Bouchaou et al., 2008).

Els resultats negatius d’aquest fet són variats. Cal distingir entre quatre tipus d’efectes:

- **Conseqüències relacionades amb el descens del nivell freàtic.**
- **Conseqüències relacionades amb la salinització de les aigües:** Degradació dels sòls agrícoles, amb la impossibilitat de portar a terme cultius delicats. Augment del cost de producció pel major ús de fertilitzants i dotació de reg (més rentat del sòl). Problemes sanitaris causats per la imputabilitat química de les aigües.
- **Consegüències relacionades amb aspectes socioeconòmics:** Abandó de conreus i trasllat d’indústries, amb el conseguents problemes d’atur i pèrdua d’inversions no amortitzades.
• Conseqüències relacionades amb el deteriorament de la SGD, canviant el cicle de nutrients que arriba al mar.

• **Contaminació d’aqüífers**

Les aigües subterrànies estan molt lligades a les etapes inicials de desenvolupament econòmic i social de moltes regions. Cal tenir present que els processos d’urbanització afecten profundament els aqüífers, no sols en relació amb la qualitat de l’aigua, sinó que també provoquen modificacions en la magnitud, la qualitat i la localització de la recàrrega, així com en els nivells freàtics, ja sigui quan aquests davallen o pugen a causa del regim d’explotació.

La incidència de la societat sobre la qualitat de l’aigua s’ha incrementat a mesura que s’han anat desenvolupant tot tipus de substàncies. A les economies preindustrials els problemes de contaminació hídrica tenien un caràcter puntual i eren molt localitzats. Amb l’expansió industrial i la progressiva concentració de la població a les ciutats el fenomen es va anar agreujant, més encara per la utilització de les aigües com a vehicle d’evacuació de substàncies i productes tòxics, ja sigui compostos químics orgànics o inorgànics, bionutrients, etc., que poden afectar tant les característiques físiques com químiques de l’aigua. La contaminació per causes antròpiques de les aigües subterrànies, pot ser d’origen artificial quan es el resultat de l’abocament de substancies contaminants (Foster and Chilton, 2003), o pot tenir un caràcter induït, quan es producte de l’alteració del funcionament hidrodinàmic dels aqüífers, a causa de la seva explotació. Per exemple, la contaminació per una concentració de nitrats massa elevada és un dels paràmetres més controlats arreu, ja que té molta relació amb l’activitat antròpica que es genera tant per les pèrdues d’aigües residuals del clavegueram com per l’activitat agrícola a la zona. Aquest alts continguts de nitrats poden provocar que l’aigua de l’aquífer deixi de ser potable si s’assoleixen valors superiors a 50 mg·L\(^{-1}\).

En el cas d’aqüífers costaners, la salinització originada per l’avançament de la interfase a l’interior del continent, a causa de l’explotació, pot considerar-se també com a un procés de contaminació natural. Tot i això, en aquest apartat no es tracta ja que s’explica en l’apartat anterior (intrusió d’aigües marines).

De contaminació n’hi ha de molts tipus (N. Shalev et al., 2015; Seiler, 2005) i procedències diferents. A continuació a la Taula 2.4 es desglossen algunes tipologies segons la seva procedència.
Taula 2.4 Contaminants en l’aigua subterrània

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aigües residuals domèstiques</td>
<td>Contenen alta concentració de contaminants orgànics (orina, femta, menjar...) així com productes de neteja, olis i restes de pintures.</td>
</tr>
<tr>
<td>Aigües residuals agrícoles</td>
<td>Poden contener fertilitzants i pesticides provinents de l’aigua de reg.</td>
</tr>
<tr>
<td>Aigües residuals d’origen industrial</td>
<td>Poden contenir productes que no es descomponen com plàstics i llaunes o substàncies tòxiques. Alguns dels compostos tòxics habituals són: arsènic, cianur, crom, plom, cadmi, olis, diversos àcids, etc.</td>
</tr>
<tr>
<td>Aigües d’escorrentia superficial</td>
<td>Quan circulen pels carrers poden arrossegar materials com plàstics, runes, llaunes, papers...</td>
</tr>
<tr>
<td>Purins o fems procedents del bestiar de les granges</td>
<td>Si s’utilitzen en excés per adobar la terra poden contaminar rius i rierols. D’aquí percolen i acaben contaminant a les aigües subterrànies.</td>
</tr>
<tr>
<td>Detergents</td>
<td>Contenen una alta concentració de fosfats.</td>
</tr>
<tr>
<td>Biològics</td>
<td>Presència de virus i bacteris a les aigües, provinents dels residus intestinals d’animals i de éssers humans, animals en descomposició, etc.</td>
</tr>
</tbody>
</table>

Font: Òscar Saladié i Josep Oliveras (URV).
A continuació s’exposa l’objectiu general i un seguit d’objectius específics que es volen assolir amb la realització d’aquest projecte.
3.1 General

- Estudiar quin és l’impacte del canvi d’usos del sòl sobre la recàrrega dels aqüífers i l’evolució dels fluxos d’aigua subterrània al mar.

3.2 Específics

- Analitzar el canvi d’usos del sòl de les darreres dècades en una zona sotmesa a una pressió antròpica accentuada: el Maresme (Catalunya).
- Estudiar el nivell piezomètric i l’estat dels aqüífers del Maresme.
- Estudiar la descàrrega submarina d’aigua dolça al mar.
- Analitzar la relació entre la precipitació, la distribució de nutrients i la concentració de clorofila al mar.
- Avaluar la gestió dels aqüífers.
- Descriure les implicacions a diferents nivells (ambiental, social i econòmic) de la interrelació descrita a l’objectiu general.
A continuació es descriurà l’àrea d’estudi del projecte, la comarca del Maresme. S’ha escollit per la consideració que podria ser una zona representativa per tal de poder extrapol·lar els resultats i conclusions a altres zones litorals amb característiques similars.
4.1 La zona d’estudi: el Maresme

El Maresme és una de les 42 comarques de Catalunya, pertanyent a la província de Barcelona. Limita amb les comarques de La Selva, El Vallès Oriental i el Barcelonès (dins de la qual trobem Barcelona, la capital de Catalunya).

El Maresme està format per un total de 30 municipis (Taula 4.2), el més important dels quals és Mataró; és el quart més gran de la comarca (el primer és Tordera) i el més poblat, un dels fets pel qual és la capital del Maresme.

Tot seguit, a les Taules 4.1 i 4.2 es presenten resums de dades demogràfiques i d’extensió de la comarca i dels seus municipis.

Taula 4.1 Superfície, població i densitat del Maresme (2014)

<table>
<thead>
<tr>
<th>Municipi</th>
<th>Superfície</th>
<th>Població</th>
<th>Densitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maresme</td>
<td>398,5 km²</td>
<td>437.919 hab.</td>
<td>1.098 hab/km²</td>
</tr>
<tr>
<td>Mataró</td>
<td>22,6 km²</td>
<td>124.280 hab.</td>
<td>5.516,2 hab/km²</td>
</tr>
</tbody>
</table>

Font: Idescat

Taula 4.2 Nom i àrea dels municipis del Maresme

<table>
<thead>
<tr>
<th>Municipi</th>
<th>Àrea (km²)</th>
<th>Municipi</th>
<th>Àrea (km²)</th>
<th>Municipi</th>
<th>Àrea (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alella</td>
<td>9,6</td>
<td>Malgrat de Mar</td>
<td>9,1</td>
<td>Sant Cebrià de Vallalta</td>
<td>15,8</td>
</tr>
<tr>
<td>Arenys de Mar</td>
<td>6,5</td>
<td>El Masnou</td>
<td>3,3</td>
<td>Sant Iscle de Vallalta</td>
<td>17,7</td>
</tr>
<tr>
<td>Arenys de Munt</td>
<td>20,8</td>
<td>Mataró</td>
<td>22,6</td>
<td>Sant Pol de Mar</td>
<td>7,5</td>
</tr>
<tr>
<td>Argentona</td>
<td>25,2</td>
<td>Montgat</td>
<td>2,8</td>
<td>Sant Vicenç de Montalt</td>
<td>8,0</td>
</tr>
<tr>
<td>Cabrera de Mar</td>
<td>9,1</td>
<td>Orrius</td>
<td>5,6</td>
<td>Santa Susanna</td>
<td>12,5</td>
</tr>
<tr>
<td>Cabrils</td>
<td>7,0</td>
<td>Palafolls</td>
<td>16,3</td>
<td>Teià</td>
<td>6,7</td>
</tr>
<tr>
<td>Caldes d’Estrac</td>
<td>0,7</td>
<td>Pineda de Mar</td>
<td>10,4</td>
<td>Tiana</td>
<td>7,9</td>
</tr>
<tr>
<td>Calella</td>
<td>7,9</td>
<td>Premià de Dalt</td>
<td>6,5</td>
<td>Tordera</td>
<td>83,8</td>
</tr>
<tr>
<td>Canet de Mar</td>
<td>6,2</td>
<td>Premià de Mar</td>
<td>1,9</td>
<td>Vilassar de Dalt</td>
<td>9,1</td>
</tr>
<tr>
<td>Dosrius</td>
<td>40,8</td>
<td>Sant Andreu de Llavaneres</td>
<td>11,9</td>
<td>Vilassar de Mar</td>
<td>3,9</td>
</tr>
</tbody>
</table>

Font: Gran Geografia Universal, Volum 10, Edicions 62
4.1.1 Demografia

Com la majoria de comarques costaneres, el Maresme no s'escapa d'un creixement progressiu però alhora molt ràpid (a l'apartat d'antecedents s'expliquen aquestes dinàmiques demogràfiques), amb gran importància de la ciutat de Mataró com a capital. A la Taula 4.3 podem apreciar aquest creixement. Podem veure com es va començar a accentuar d'una manera més intensa a partir de 1960.

<table>
<thead>
<tr>
<th>Any</th>
<th>Població (hab.)</th>
<th>Any</th>
<th>Població (hab.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1900</td>
<td>71.671</td>
<td>1998</td>
<td>329.448</td>
</tr>
<tr>
<td>1910</td>
<td>76.385</td>
<td>1999</td>
<td>337.596</td>
</tr>
<tr>
<td>1920</td>
<td>84.301</td>
<td>2000</td>
<td>345.423</td>
</tr>
<tr>
<td>1930</td>
<td>97.056</td>
<td>2001</td>
<td>355.714</td>
</tr>
<tr>
<td>1936</td>
<td>100.263</td>
<td>2002</td>
<td>366.782</td>
</tr>
<tr>
<td>1940</td>
<td>99.649</td>
<td>2003</td>
<td>377.608</td>
</tr>
<tr>
<td>1945</td>
<td>99.856</td>
<td>2004</td>
<td>386.573</td>
</tr>
<tr>
<td>1950</td>
<td>104.163</td>
<td>2005</td>
<td>398.502</td>
</tr>
<tr>
<td>1955</td>
<td>110.512</td>
<td>2006</td>
<td>409.125</td>
</tr>
<tr>
<td>1960</td>
<td>125.655</td>
<td>2007</td>
<td>414.081</td>
</tr>
<tr>
<td>1965</td>
<td>158.319</td>
<td>2008</td>
<td>420.521</td>
</tr>
<tr>
<td>1970</td>
<td>190.949</td>
<td>2009</td>
<td>426.565</td>
</tr>
<tr>
<td>1975</td>
<td>230.795</td>
<td>2010</td>
<td>430.997</td>
</tr>
<tr>
<td>1981</td>
<td>252.952</td>
<td>2011</td>
<td>434.897</td>
</tr>
<tr>
<td>1986</td>
<td>273.673</td>
<td>2012</td>
<td>436.487</td>
</tr>
<tr>
<td>1991</td>
<td>293.838</td>
<td>2013</td>
<td>437.431</td>
</tr>
<tr>
<td>1996</td>
<td>318.891</td>
<td>2014</td>
<td>437.919</td>
</tr>
</tbody>
</table>

Font: Elaboració pròpia amb dades de Gran Geografia Universal 10 Edicions 62 + Idescat

El creixement demogràfic del Maresme, a més de les típiques explicacions extrapolables a altres zones litorals, pot ser degut a la proximitat geogràfica amb Barcelona i la regió metropolitana, en les darreres dècades molt més connectada gràcies a les autopistes del Maresme i de Granollers.
4.1.2 Entorn socioeconòmic

“La història econòmica del Maresme és la història dels successius canvis en l’apropitant dels recursos i de l’adaptació a les diferents conjuntures derivades de cada època. Les possibilitats del medi -accés directe i fàcil a la mar, la muntanya com a refugi, la plana com a escenari agrícola idoni- i la proximitat de Barcelona han marcat, indestriablement, les pautes per a un desenvolupament que ha tingut en les diferents èpoques la idea de diversitat com a premissa constant.”

Fig. 4.2 Serra de marina. Font: Enciclopedia.cat

Pel que fa a la repartició de la població activa per sectors, trobem a la següent taula:

<table>
<thead>
<tr>
<th>Taula 4.4 Afiliacions al règim general de la S.S. segons ubicació del compte de cotització. Per sectors (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Agricultura</td>
</tr>
<tr>
<td>Indústria</td>
</tr>
<tr>
<td>Construcció</td>
</tr>
<tr>
<td>Serveis</td>
</tr>
</tbody>
</table>

Font: Idescat

<table>
<thead>
<tr>
<th>Taula 4.5 Afiliacions al règim d’autònoms de la S.S. segons ubicació del compte de cotització. Per sectors (2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Agricultura</td>
</tr>
<tr>
<td>Indústria</td>
</tr>
<tr>
<td>Construcció</td>
</tr>
<tr>
<td>Serveis</td>
</tr>
</tbody>
</table>

Font: Idescat
Com s’expressa en les dues Taules anteriors (4.4 i 4.5), el sector serveis és el més nombrós pel que fa a afiliacions a la Seguretat Social, demostrant així la hipòtesi de correlació entre desenvolupament i terciarització de Jean Fourastié, explicada prèviament en l’apartat d’antecedents.

Aquesta dada que ens revela la terciarització de l’ocupació de la comarca contrasta bruscament amb les que trobem per exemple a la segona edició l’Enciclopèdia Catalana, publicada el setembre de 1991, on trobem que el sector secundari encara és el principal, tot i que el terciari està en ple creixement (Fig. 4.3).

![Fig. 4.3 Percentatge d’ocupació al Maresme. Font: Elaboració pròpia amb dades 2a edició Enciclopèdia Catalana (setembre 1991).](image)

4.1.3 Climatologia

El clima del Maresme és Mediterrani de tipus Litoral central. La precipitació mitjana anual oscil·la entre els 550 mm i 800 mm, assolint-se els valors més alts al nord i a l’àrea del Montnegre i els més baixos al pobles costaners del sud de la comarca. L’estació plujosa és la tardor i la seca l’estiu. Pel que fa a la temperatura, els hiverns són moderats, amb mitjanes de 8°C a 10°C, i els estius calorosos, entre 22°C i 23°C de mitjana, comportant una amplitud tèrmica anual moderada. Només hi pot glaçar del novembre al març.

![Fig. 4.4 Precipitació i temperatura mitjana del Maresme. Font: Meteopremia](image)
4.1.4 Hidrologia

Hi ha dos trets característics de la façana litoral del Maresme: les seves platges i les rieres. Mentre que les platges són molt conegudes i gaudeixen d’una reconeguda fama, gairebé no es coneixen les rieres, excepte les més signíficatives, i sovint només es tenen en compte quan provoquen alguna desgràcia, gairebé sempre associada a les crescedes que tenen lloc a finals d’estiu o a la tardor.

- Les rieres

Una riera és un llit sorrenc que només porta aigua ocasionalment com a conseqüència de forts aiguats o llargs períodes plujosos. Les rieres i els torrents del Maresme representen un tret molt significatiu del paisatge natural i humà d’aquesta zona litoral, i a més en el seu estat natural compleixen tot un seguit d’importants funcions hidrològiques, ecològiques i socials, algunes de les quals serien:

- Desguàs i canalització de les aigües pluvials, però alhora eviten que aquestes aigües circulin de forma massa ràpida. Aquesta funció de retenció només s’aconsegueix amb el llit natural i marges de les rieres.

- Funció de recàrrega dels aqüífers. Aquesta regulació s’aconsegueix gràcies a la millor permeabilitat que tenen els materials que constitueixen el llit de rieres i torrents en relació amb el sòl de la resta de la conca i que permeten la infiltració més o menys ràpida de les aigües que hi circulen.

- Redistribució de les sorres i sediments al llarg del curs fluvial, d’acord amb la morfologia del canal principal de la riera o torrent.

- Tenen un evident valor ecològic, ja que constitueixen l’eix d’ecosistemes que es desenvolupen al seu voltant, tant els possibles boscos de ribera com altres tipus de vegetació que creixen en els seus marges.

- Compleixen un important paper com a corredors biològics que connecten diversos ambients ecològicament diversos: zones de muntanya amb zones de platja, zones de conreu amb zones de muntanya, etc.

- Representen un tret molt significatiu de la identitat pròpia de la comarca. Els torrents, amb els seus noms i la seves característiques pròpies, són un referent històric i han servit i serveixen com a fites o punts de referència per a l’establiment de termes municipals.

- Corresponen a un dels elements més significatius com a vertebradors del paisatge en general, i de l’agrari o rural en particular.

A continuació es mostra un mapa (Fig. 4.5) de les rieres del Maresme:
Les rieres del Maresme però, han patit un canvi molt significatiu durant els darrers 50 anys que ha fet que es modifiquessin algunes de les seves funcions així com el seu comportament. La pressió antròpica ha provocat molts canvis en els usos del sòl i això ha provocat la impermeabilització per urbanització (especialment en les capçaleres de les rieres properes a nuclis importants o amb bona comunicació) i la variació de la massa forestal, generalment a l’alça a causa de l’abandonament del conreu. Això ha donat lloc al fet que es modifiqui el coeficient d’escolament de la conca hidrogràfica.

Platges

La costa del Maresme limita amb el riu Tordera pel nord i el Besòs pel sud. Té 52 km de platges en un total de 49 platges sense comptar les cales. Hi trobem 5 ports marítimes: port d’Arenys de Mar, port de Mataró, port El Balís (Sant Andreu de Llavaneres), port de Premià de Mar i port del Masnou. El port d’Arenys de Mar és el més antic d’aquesta comarca, amb tradició pesquera. És una zona molt urbanitzada i trobem infraestructures viàries i ferroviàries molt a prop del mar. També hi trobem passeigs marítims molt pròxims.
Les platges del Maresme pateixen periòdicament l’embat de temporals marítimes degut a baixes pressions provinents del NE (Gregal), aquests temporals s’anomenen llevantades.

Les llevantades provoquen molts danys a les infraestructures i a les platges enduent-se la major part de la sorra que contenen.

La mala gestió de les rieres, que han estat urbanitzades i en alguns casos tapades, així com la construcció d’espigons i ports esportius, fa que l’aportació de sediments al mar sigui cada cop menor. Això fa que les platges a mesura que passen els anys i les llevantades vagin perdent sorra, i les infraestructures arran de mar pateixin greus desperfectes.

Algunes d’aquestes platges s’han de reomplir artificialment de sorra any rere any, fent servir tècniques invasives. Aquestes consisteixen en agafar sorra de zones de davant la costa i portar-la al litoral, afectant així tot l’ecosistema marí. Algunes de les solucions que proposen els ajuntaments per tal de no haver de patir la regressió de les platges són la construcció d’espigons submarins per reduir la força de les onades i fer que el volum d’aportacions de sorra sigui igual o major que el de pèrdues.

- **Abastament d’aigua al Maresme**

L’aigua que es consumeix al Maresme, en funció de la zona, prové del mar, del riu Ter, de l’aquífer subterrani de la Tordera, de l’aquífer del Maresme (massa 18) o d’una barreja d’aquestes procedències.

L’aigua captada ha de passar necessàriament per uns processos que la facin apta pel consum. A la comarca hi ha dos tipus d’infraestructures que es dediquen a la potabilització de l’aigua. Per una banda trobem la Potabilitzadora de Palafolls (ETAP Palafolls, Estació de Tractament d’Aigua Potable de Palafolls) i per l’altra la Planta Dessaladora de Blanes, situada a Blanes, al marge esquerre de la Tordera.

La funció de la Potabilitzadora ETAP- Palafolls és la de captar aigua dolça de l’aquífer subterrani de la Tordera a través de diversos pous, tractar-la per eliminar les impureses que porta, clorar-la per garantir la seva qualitat i conduir-la als dipòsits reguladors de cada municipi. Cal tenir present que aquesta captació és, avui dia, un procés de suport a la funció de la dessaladora. Quan la dessaladora no pot aportar la quantitat d’aigua necessària per satisfacer la demanda, aleshores es complementa amb la producció d’aigua mitjançant l’extracció en els pous.
La Planta Dessaladora, per la seva banda, agafa l’aigua marina directament del mar, la filtra per eliminar impureses i la sotmet a un procés d’osmosi inversa el resultat de la qual és una producció d’aigua amb una qualitat elevada. A continuació la remineralitza i la distribueix a les potabilitzadores, en el cas de la comarca a l’ETAP de Palafolls. Cal tenir present però que aquesta dessaladora també proveeix d’aigua a l’ETAP de Cardedeu que és la que subministra l’aigua als municipis del Baix Maresme i del Maresme Central.

Un cop l’aigua surt de les plantes potabilitzadores es distribueix fins als dipòsits reguladors de cada municipi, a partir d’aquests dipòsits és la xarxa municipal l’encarregada de subministrar l’aigua a tots els habitatges (distribució en baixa).

Els processos de captació, tractament i conducció conformen la gestió de l’abastament d’aigua potable en alta que aquí al Maresme duen a terme dues empreses, Aquagest i Aigües Ter- Llobregat (ATLL).

Aquagest és la concessionària del subministrament d’aigua a 11 municipis de l’Alt Maresme (Arenys de Mar, Arenys de Munt, Calella, Canet de Mar, Malgrat de Mar, Palafolls, Pineda de Mar, Sant Iscle de Vallalta, Sant Cebrià de Vallalta, Sant Pol i Santa Susanna). El titular del servei i de les instal·lacions és el Consell Comarcal del Maresme.

Aigües Ter- Llobregat dóna servei a la resta de municipis, de Montgat a Sant Andreu de Llavaneres.

Un cop l’aigua està en el dipòsit regulador la gestió de l’aigua passa a ser competència dels ajuntaments. És quan parlem d’abastament d’aigua potable en baixa. Els ajuntaments són els responsables de fer-la.

La distribució és el procés de distribució de l’aigua des dels dipòsits reguladors fins als usuaris finals (llars, establiments, indústries, etc...). Com que aquesta gestió depèn de cada ajuntament, l’empresa encarregada a cada municipi no té perquè ser la mateixa. Les empreses que gestionen l’aigua als municipis que estudiarem són: Sorea, Aigües de Mataró i Aigües d’Argentona.

A continuació es mostra un mapa esquemàtic (Fig. 4.7) de la xarxa d’abastament principal del Maresme, amb les plantes potabilitzadores de Palafolls i Cardedeu. També hem de considerar les captacions directes que es fan des dels pous i mines dels diferents municipis, els quals no surten al mapa. Durant l’estudi es presentarà un mapa de les captacions.
Impactes de la urbanització en la dinàmica dels aqüífers costaners

- Sanejament de les aigües

SIMMAR (Serveis Integrals del Maresme SL) en un 80%, juntament amb el Consell Comarcal del Maresme en un 20%, gestionen els serveis de sanejament. Aigües de Mataró hi participa en el 10% de l’agrupació d’empreses i s’encarrega del control analític del procés de depuració.

La funció principal de SIMMAR és la gestió dels sistemes de sanejament que hi ha al Maresme, així com la gestió de les estacions depuradores d’aigües residuals (EDARS) i els col·lectors en alta.

Diferenciem 4 fases:

1) Canalització d’aigües residuals en baixa:
És competència de cada ajuntament gestionar el clavegueram en baixa, és a dir, el de recol·lectar l’aigua residual produïda als habitatges, establiments i indústries del seu municipi i concentrar-les en un sol col·lector.

2) Canalització d’aigües residuals en alta:
És el Consell Comarcal del Maresme l’encarregat de conduir les aigües residuals de cada municipi des del col·lector on estan concentrades fins a l’estació depuradora més propera.

3) Depuració
És a les estacions depuradores on les aigües residuals són sotmeses a un procés biològic que elimina la matèria orgànica que porta l’aigua i aquesta surt

Fig. 4.7 Punts de captació d’aigua del Maresme. Font: CCM
amb unes característiques de qualitat aptes per a ser abocada al mar sense produir cap impacte ambiental. Quan la depuradora aboca les aigües tractades al riu, aleshores s'elimina la matèria orgànica, el nitrogen i el fòsfor que conté l'aigua. D'aquesta manera s'evita l'eutrofització de l'ecosistema aquàtic.

4) Emissió/Retorn:

Un cop l'aigua està depurada es retorna al mar mitjançant un emissari submarí. Al Maresme hi ha un total de 12 emissaris submarins. Totes les EDARs del Maresme desguassen al mar, excepte la de Tordera, la d’Órrius, la de Sant Genís de Palafrugell i la de Can Massuet- el Far que ho fan a la llarga.

Al Maresme tenim 10 depuradores que donen servei al conjunt de la comarca.

<table>
<thead>
<tr>
<th>Taula 4.6 Depuradores del Maresme</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPURADORES</td>
</tr>
<tr>
<td>Arenys de Mar</td>
</tr>
<tr>
<td>Teià</td>
</tr>
<tr>
<td>Mataró</td>
</tr>
<tr>
<td>Sant Andreu de Llavaneres</td>
</tr>
<tr>
<td>Sant Pol de Mar</td>
</tr>
<tr>
<td>Tordera</td>
</tr>
<tr>
<td>Òrrius</td>
</tr>
<tr>
<td>Sant Genís de Palafrugell</td>
</tr>
<tr>
<td>Pineda de Mar</td>
</tr>
<tr>
<td>Sant Daniel</td>
</tr>
<tr>
<td>MUNICIPIS QUE REBEN SERVEI</td>
</tr>
<tr>
<td>Arenys de Mar, Arenys de Munt, Canet de Mar</td>
</tr>
<tr>
<td>Alella, El Masnou, Premià de Dalt, Premià de Mar, Teià</td>
</tr>
<tr>
<td>Argentona, Cabrera de Mar, Cabrils, Dosrius, Mataró, Vilassar de Dalt, Vilassar de Mar</td>
</tr>
<tr>
<td>Caldes d’Estrac, Sant Andreu de Llavaneres, Sant Vicenç de Montalt</td>
</tr>
<tr>
<td>Sant Cebrià de Vallalta, Sant Iscle de Vallalta, Sant Pol de Mar</td>
</tr>
<tr>
<td>Tordera</td>
</tr>
<tr>
<td>Orrius</td>
</tr>
<tr>
<td>Palafrugell</td>
</tr>
<tr>
<td>Calella, Pineda de Mar, Santa Susanna, Malgrat de Mar, Palafrugell</td>
</tr>
<tr>
<td>Barri de Sant Daniel (Tordera). Entrarà en funcionament l'octubre de 2015</td>
</tr>
</tbody>
</table>

Font: Consell comarcal del Maresme.

La xarxa de clavegueram és molt extensa a tota la comarca; només a Mataró ja hi ha 230 km. És una xarxa unitària que serveix per eliminar les aigües residuals i l'aigua de pluja.
4.1.5 Geología

Des del punt de vista geològic, el Maresme forma part de les Serralades Costaneres Catalanes que antigament havien estat dins el massís catalano-balear. Aquest es va formar cap a finals de l'era paleozoica, fa uns 350 milions d'anys, com a resultat de l'esquerdament, i posterior desplaçament, de les plaques que havien conformat la primitiva Pangea. L'activitat posterior de plegaments alpins, trencament i enfonsament del massís, fa aproximadament entre 60 i 15 milions d'anys, només va deixar a la superfície el que ara coneixem com a serralades litoral i pre-litoral, les quals constitueixen un sistema de blocs aixecats (horsts) i enfonsats (grabens). El Maresme es correspon amb un bloc aixecat limitat per dos blocs enfonsats (per la costa limita amb el graben de Barcelona, que se situa per sota el mar, i per la part septentrional limita amb el graben del Vallès-Penedès). El subsòl que amaga la comarca està constituït per materials formats a l'era paleozoica, predominantment granits i granodiorites, que formen l'anomenat batòlit del Maresme. Aquestes roques estan formades principalment per diferents proporcions de quars, feldspats i miques i no presenten porositat ni permeabilitat primàries. Tot i així, per meteorització química els feldspats principalment es transformen en minerals del grup de les argiles que, quan perden consistència passen a constituir una roca alterada anomenada sauló, porosa i permeable (el principal component del sauló és el quars, que manté la seva consistència i duresa, ja que els feldspats es desfàn en argiles i les miques s'esmicolen). Llavors es diu que el granit ha adquirit una porositat i permeabilitat secundàries per meteorització química.
El relleu és el resultat d'esdeveniments més propers, desencadenats durant els darrers 2 milions d'anys. De les muntanyes d'aquell antic massís només ens ha quedat un relleu sinuós conformat per petits turons, de formes arrodonides i amb cims que amb prou feines assoleixen els 500 metres d'altitud. Són muntanyes velles, que s'han anat desgastant, en part, degut a l'acció de la temperatura i humitat elevades que durant el quaternari han anat erosionant, de manera diferencial, els materials granítics, tallant aquesta suavitat del terrenys amb innumerables torrents i rieres.

Així doncs, el resultat d'aquesta erosió, a més de la suavització del relleu, és la formació d'una plana costanera o litoral on predomina el sauló aportat a través dels torrents i rieres durant el quaternari. Aquesta aportació és força notable i ha conformat uns al·luvions amb gruixos considerables, d'entre 15 i 30 metres. Aquesta plana és més contínua al sector meridional que al nord, on alguns contraforts de la serralada arriben fins al mar. A la part del delta del riu Tordera es distingeix un aqüífer al·luvial superficial lliure (graves i sorres amb matriu limosa) i un de profund (graves i sorres).

4.1.6 Flora i fauna

- **Flora**

El litoral del Maresme podem considerar-lo quasi tot urbanitzat. No hi ha cap espai que contingui un paisatge proper al natural, cap racó on puguin observar-se fragments de comunitats vegetals característiques del litoral. L’únic excepció, un conjunt de cales i penya-segats entre Arenys de Mar i Calella, està formada en bona part per espècies introduïdes directament o induïdes per l’home.

Pel què fa a la Serra de Marina, en condicions naturals, estaria dominada per un bosc esclarissat d'alzinar litoral típic barrejat amb roures a les valls més encaixades i ombrívoles. Als torrents de les valls podriem trobar vernedes, i avellanoses a les parts més ombrívoles. A les parts més baixes, les rieres esdevindrien rambles mediterrànies amb l'alocar, però avui majoritàriament són bardisses diverses. La intensa activitat humana des de temps remots com l'artigatge, el conreu i el carboni que ha anat reduint de manera important la superfície forestal primigènia i, alhora, n'ha canviat la composició de les espècies. El bosc de ribera, per exemple, ha estat substituït per plantacions artificials d'arbres de creixement ràpid fins que aquestes han deixat de ser rendibles. El paisatge vegetal característic que avui podem observar a la Serralada litoral està dominat per arbres com el pi blanc i el pi pinyer i els roures al fons de les valls. Tot i això, en reductes i zones particulars trobem una important diversitat que evidencia l'interès botànic de la serralada.

Podem veure la distribució d'alzinar i pineda a la Figura 4.9.
La fauna marina està formada per tot d'éssers vius que viuen en un mateix ecosistema, el mar, i que entre ells tenen una relació alimentària que permet l'equilibri ecològic; al mar també hi trobem aus, moltes de les quals viuen a la comarca i d'altres que només hi passen quan emigren. Als aiguamolls, hi trobem un altre ecosistema que permet el desenvolupament de petits invertebrats nedadors que serveixen d'aliment a les aus que hi viuen, així com també a les migratòries. A les cases de pagès, hi trobem un ecosistema semblant als aiguamolls, és un dels llocs on hi ha aigua estancada i per tant podem trobar-hi animals similars als que allí hi viuen. A les zones boscoses, hi trobem animals que s'han adaptat a l'home i a la seva acció. Així doncs, la desaparició dels grans depredadors ha fet proliferar els petits mamífers i la desaparició dels conreus, la població d'ocells que se n'alimenten. Alguns animals han aprofitat la presència humana i les ciutats per trobar els recursos que necessiten per viure, a més a més d'estar protegits en no tenir depredadors.

- Fauna

Fig. 4.9 Vegetació del Maresme. Font: CREA F
4.2 L’objecte d’estudi: els aqüífers

Al subsòl del Maresme trobem una gran massa d’aigua, etiquetada amb el número 18 a les bases de l’Agència Catalana de l’Aigua. Oupa gairebé tota la comarca, amb una extensió de 444 km². De litologia granítica, és un aqüífer lliure que interactua mitjançant la SGD amb tot el litoral maresmenc. Ens centrem a estudiar-lo a partir de les zones de càrrega i descàrrega més importants que són la riera d’Argentona i la riera d’Arenys. Degut al fet d’estar limitada entre la serra de Marina i el Mar Mediterrani tenim una conca hidrogràfica petita i molt acotada, molt apta pel nostre estudi.

Tot seguit (Taula 4.7), presentem un resum de les seves característiques generals i específiques.

<table>
<thead>
<tr>
<th>Taula 4.7 Característiques de la massa número 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demarcació hidrogràfica: Tordera- Besós</td>
</tr>
<tr>
<td>Conca hidrogràfica: Les rieres del Maresme</td>
</tr>
<tr>
<td>Àrea hidrogeològica: Àrea paleozoica i granítica de Collserola- Maresme</td>
</tr>
<tr>
<td>Extensió total (km²): 444</td>
</tr>
<tr>
<td>Amplada màxima (km): 15 (alçada de la Serra del Montnegre)</td>
</tr>
<tr>
<td>Amplada mitjana (km): 8</td>
</tr>
<tr>
<td>Longitud (km): 50</td>
</tr>
<tr>
<td>Limitacions geogràfiques: Mar Mediterrani, per Est i Sud</td>
</tr>
<tr>
<td>Batòlit granític de la Serralada Litoral Catalana, per Oest i Nord</td>
</tr>
<tr>
<td>Riu Tordera, per Nord- Est</td>
</tr>
<tr>
<td>Tipologia litològica dominant: Granit i Paleozoic</td>
</tr>
<tr>
<td>Altres tipologies litològiques: Al·luvial</td>
</tr>
<tr>
<td>Característiques hidràuliques dominants: Aqüífers lliures</td>
</tr>
</tbody>
</table>

Font: Masses d’Aigua Subterrània de Catalunya (ACA). Maresme 18

Pel que fa a la geografia política, la massa d’aigua número 18 queda repartida total o parcialment per una sèrie de municipis de les comarques del Maresme, el Vallès Oriental i la Selva. Seguidament presentem aquesta relació:

<table>
<thead>
<tr>
<th>Taula 4.8 Municipis inclosos en la Conca Hidrogràfica “Les Rieres del Maresme”.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Municipis inclosos totalment: Areyns de Munt, Sant Pol de Mar, Argentona, Santa Susanna, Sant Vicenç de Montalt, Calella, Cabrils, Premià de Mar, Mataró, Sant Cebrià de Vallalta, Sant Iscle de Vallalta, Vilassar de Mar, Alella, Pineda de Mar, Canet de Mar, Cabrera de Mar, el Masnou, Arenys de Mar, Caldes d’Estrac, Teià i Sant Andreu de Llavaneres (Maresme)</td>
</tr>
<tr>
<td>Municipis inclosos parcialment: Vilalba Sasserra, Sant Celoni, Llinars del Vallès i Vallgorguina (Vallès Oriental), Fogars de la Selva (La Selva), Premià de Dalt, Dosrius, Vilassar de Dalt, Malgrat de Mar, Palafrugell, Tiana, Montgat, Orrius, Tordera (Maresme)</td>
</tr>
</tbody>
</table>

Font: Masses d’Aigua Subterrània de Catalunya (ACA). Maresme 18
Impactes de la urbanització en la dinàmica dels aqüífers costaners
5. METODOLOGIA

Seguidament s’explicaran el mètodes i les eines utilitzades, així com la procedència de la majoria de dades del nostre estudi.
Per tal de poder assolir els objectius marcats hem estructurat la metodologia d'una manera clara i directa. L'esquema metodològic que hem escollit ha estat un recull de dades de cada un dels vectors que interactuen amb la dinàmica i l'estat dels aqüífers per tal de poder comparar-los durant la discussió dels resultats. Obtenir aquest resultats no és una tasca fàcil ja que moltes són dades històriques i en algun casos no estan disponibles en tot el període desitjat. Tot i així, creiem que l'estructura escollida és la més adequada. Com veureu a continuació, primer s'han creat mapes de la variació dels usos del sòl per obtenir el creixement en hectàrees de cada ús, després s'han recopilat dades de la precipitació i s'ha estimat, mitjançant models numèrics, la infiltració de la zona. Un cop fet això s'han recopilat més de 5.000 dades per tal de poder avaluar l'estat dels aqüífers. S'han escollit diferents paràmetres a avaluar (nitrats, silicats, salinitat, nivell piezomètric, etc.) a més de 20 pous situats a la zona en concret d’estudi i també més de 12 punts de mostreig de la zona costanera.

5.1 Canvi d'usos del sòl

Per tal d’analitzar el creixement urbanístic i els canvis en els usos del sòl a la comarca del Maresme, s'ha digitalitzat, mitjançant programari avançat de GIS Miramon versió 7.1k, tota la comarca creant uns mapes temàtics des de 1956 fins a 2010, ressaltant els usos del sòl bàsics pel nostre estudi:

- Ús forestal
- Ús agrícola
- Àrea Urbanitzada
- Infraestructures
- Platges
- Ports

La digitalització s'ha realitzat seguint uns criteris determinats a l'hora de definir cada zona. Els criteris que s'han seguit pel 1956 i pel 1990 són diferents als mapes més actuals degut a la poca qualitat de la ortofoto, ja que són en blanc i negre (la interpretació dels usos del sòl està sotmesa a un cert error). Les zones més clares o més pròximes a rieres o rius s’han digitalitzat com a agrícola, en canvi la fotointerpretació de parts forestals s’ha descrit a partir del color més fosc i de la visualització d’una certa densitat d’arbres. La part urbanitzada s’ha pogut digitalitzar amb més facilitat, s’ha decidit ajuntar tot el casc urbà com a urbanitzat tot i haver-hi places, camps o sòl en desús dins el seu polígon. Les infraestructures no s'han digitalitzat l’any 1956 per la seva dificultat interpretativa.

Pel que fa als anys 2000, 2004 i 2010 s'ha interpretat la zona forestal seguint criteris de color i densitat arbòria. Degut a que es tracta d’ortofotos més recents
i amb més resolució, la fotointerpretació té menys marge d’error. Les zones urbanitzades s’han ajuntat igual que en els anys anteriors, tot i haver-hi alguna part sense urbanitzar, considerant que ja entra dins l’entramat urbà. Els hivernacles, bastant presents en èpoques recents al Maresme, han estat considerats com a agrícola tot i tenir un factor d’impermeabilització similar a l’urbanitzat. Infraestructures de transport, ports i platges s’han digitalitzat seguint el contorn més lògic.

A partir de la fotointerpretació s’han creat uns polígons estructurats que ens aporten dades sobre la superfície dedicada a cada ús. Llavors, s’han extret els valors (en ha) de cada tipus d’ús del sòl per a poder apreciar, de forma numèrica, com han evolucionat aquests al llarg de les darreres dècades.

Per tal d’estudiar amb més detall aquesta comarca i poder caracteritzar millor la seva evolució s’ha dividit en tres àrees (Fig. 5.1).

Fig. 5.1 Àrees d’estudi del projecte. Font: Elaboració pròpia

Al definir aquestes àrees, s’han elaborat els mapes d’usos del sòl seguint els mateixos criteris que s’han definit per realitzar el mapa general de tot la comarca.

També s’han elaborat, mitjançant el programari Surfer versió 10 i amb dades de l’ICGC, uns models digitals d’elevacions per poder visualitzar millor la informació. Això ens serveix per veure en tres dimensions la distribució espacial i altimètrica dels usos del sòl.

5.2 Dades de precipitació

Les dades de precipitació, tant anual com mensual, s’han obtingut de diverses estacions meteorològiques situades a la comarca, dins les diferents zones que s’estudien. Les de Mataró s’han obtingut del Consell Comarcal del Maresme i del Servei Meteorològic de Catalunya. Les dades d’Arenys de Mar s’han obtingut del
senyor Antoni Sintas, meteoròleg aficionat amb un registre històric de més de 30 anys. Pel que fa a les de Premià de Mar s’han obtingut de Meteopremià, cedides pel senyor Ramon Estrany. A partir d’aquesta informació s’han generat gràfics tant d’evolució de la precipitació mensual com de precipitació acumulada anualment.

5.3 Càlcul de la Infiltració mitjançant el Mètode Racional

Per a fer una aproximació del volum de recàrrega de l’aquífer a les costes del Maresme, s’ha calculat el valor d’escolament superficial aproximat al global de la comarca del Maresme mitjançant el mètode racional, el qual té en compte els usos del sòl de la superfície a analitzar. Així doncs, s’han aplicat els valors d’usos del sòl pel global de la comarca calculats en l’apartat de Resultats. La variant utilitzada del mètode racional és la desenvolupada pel Soil Conservation Service (SCS), el qual introduceix el concepte Nombre de Corba (NC) per a fer una aproximació del Coeficient d’Escolament (K) a partir d’una precipitació llindar (P₀), volum mínim a partir del qual es comença a escolar part de l’aigua precipitada.

Per poder veure l’evolució de l’escolament superficial s’ha adaptat el Mètode Racional (dissenyat per calcular l’escolament en un moment determinant) calculant cada un dels paràmetres que contempla per cada moment del nostre estudi.

A partir dels Usos del Sòl i la Litologia escollida de tipus B “infiltració moderada” (ja que el sòl és de tipus granític) definim el Nombre de Corba (NC) per a cada ús del sòl i el total (Taula 5.1).

| Taula 5.1 Valors mitjans de litologia per cada ús del sòl. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Tipus d’Ús | Tipus de Litologia |
| | A | B | C | D |
| Us Forestal | 40 | 60 | 69 | 76 |
| Us agrícola | 71 | 78 | 82 | 86 |
| Zona Urbana | 89 | 92 | 94 | 95 |

Font: Dr. Joan Bach

A partir del NC, trobem la precipitació llindar, aproximació inversament proporcional del NC (Fig. 5.2). Aquesta precipitació llindar ha de ser corregida per un factor regional, assumint la variació regional de la humitat habitual del sòl a l’inici de pluges significatives (SCS) (Fig. 5.3). El factor regional a l’alçada de la Comarca del Maresme és de 2,5.

\[
\text{Po} = \frac{5000}{NC} - 50
\]

\[
\text{Po’} = r \cdot \text{Po}
\]

Fig. 5.2 Càlcul de P₀ a partir de NC

Fig. 5.3 Correcció de la P₀ pel factor regional
5.4 Estudi dels aqüífers

Amb l'objectiu d'estudiar la dinàmica i l'estat de l'aqüífer de la massa d'aigua 18 s'ha analitzat la part continental, mitjançant dades de diferents pous, i la part costanera, a partir de dades de punts de mostreig de diferents zones. A continuació es mostra detalladament amb dos subapartats aquestes dues zones.

5.4.1 Zona continental

Per tal d'obtenir dades sobre els nivells piezomètrics i altres paràmetres físic-químics que ens permetin avaluar l’estat del aqüífers del Maresme, s'ha contactat amb l'agència catalana de l'aigua (ACA) i, a partir de la seva web (https://aca-web.gencat.cat/aca) i dades que ens han facilitat, s'ha aconseguit generar uns fulls de càlcul unints totes les dades, des de les més antigues fins les més recents, ja que les dades existents a l'ACA estan dividides en les existents abans de 2007 i les posteriors a aquest any. A partir d'aquestes dades s'ha creat una base de dades completa, cronològica, amb el programari Microsoft Excel de la versió 2013 i Origin pro8, i s'han generat gràfics cronològics amb els mateixos programes pels diferents paràmetres estudiats al projecte (nitrats, conductivitat i nivells piezomètrics).

Per tal de poder caracteritzar bé cada zona hem escollit un total de vint pous determinats en funció de la seva situació i de la seva antiquitat, ja que ens interessaven els pous que tinguin dades històriques fins a l’actualitat. Els pous dels que disposen dades són els que s’exposen a les Figures 5.4, 5.5 i 5.6. Els pous que compleixen els criteris de dades històriques i situació escollits pel present projecte són:
- Àrea central (Fig. 5.4): 08009-0061, 08009-0111, 08009-0031, 08009-0060, 08029-0026 i 08121-0112.

Fig. 5.4 Situació i codis dels pous a l’àrea central. Font: Elaboració pròpia.

- Àrea Nord (Fig. 5.5): 08007-0068, 08007-0064, 08006-0016, 08007-0153

Fig. 5.5 Situació i codis dels pous situats a l’àrea nord. Font: Elaboració pròpia.
• Àrea Sud (Fig. 5.6): 08281-0028, 08118-0003, 08118-0027.

Fig. 5.6 Situació i codis dels pous a l’àrea sud. Font: Elaboració pròpia.

5.4.2 Zona costanera

Per estudiar la zona costanera i la descàrrega d'aigua subterrània s'han obtingut dades de mesures efectuades per l'ACA a diferents punts de les zones estudiades. Aquestes dades, igual que les de la zona continental, estan dividides en dos períodes de temps, abans del 2007 i després del 2007. Totes les dades d'abans del 2007 estaven presents al web però les de després ens les ha facilitat l'Agència Catalana de l'Aigua. També s'ha creat una base de dades cronològica a partir del programari Microsoft Excel i Origin pro8 per tal d'obtenir una seqüència temporal completa. S'han generat mapes evolutius, per etapes, a partir del programa Surfer 10.

S'han agafat diferents paràmetres fisicoquímics per tal de caracteritzar la descàrrega d'aigua de l'aqüífer. Els paràmetres seleccionats son: nitrats, silicats, clorofil·la i salinitat. Els nitrats ens serveixen per quantificar el volum de nutrients provinents dels fluxos d'aigua dolça continentals. Els silicats ens son útils ja que són traçadors d'aigua provinent de l'aqüífer. La concentració de clorofil·la ens serveix per caracteritzar l’activitat biològica ja que equival a la concentració de fitoplàncton i, per tant, de producció primària marina. Amb la salinitat podem veure els fluxos d’entrada d’aigua dolça a la costa.
A la Figura 5.7 es pot veure la situació dels diferents punts de mostreig escollits, tant de la zona més propera al mar, com de l’anomenat camp mitjà, que estan situats, aproximadament, a dos quilòmetres de la línia de costa.
6. RESULTATS

En el següent apartat del projecte es treballaran dos eixos claus, l'evolució del usos del sòl i l'evolució de l'estat dels aqüífers i de la zona costanera.
L’anàlisi de la variació dels usos del sòl a la comarca del Maresme, així com de tres zones que hem escollit en base a uns criteris específics, ens serviran per veure i estudiar quines han estat les tendències de creixement i decreixement dels diferents usos del sòl des de l’any 1956, fent èmfasi especialment en les zones forestal, urbanitzada i agrícola.

L’anàlisi de la hidrologia de l’àrea d’estudi s’ha fet mitjançant l’estudi de la gestió i abastiment de l’aigua a la comarca, quina pluviometria s’ha donat en les últimes dècades i quina ha estat l’evolució de diferents components tant dels aqüífers com de la zona costanera del Maresme. Aquest apartat ens servirà per fer un anàlisi global de l’estat dels aqüífers a diferents nivells i la qualitat de la descàrrega d’aigua submarina (SGD).

L’objectiu general d’aquest apartat és extreure una sèrie de resultats individuals per a cada eix clau, per així poder-los entrellaçar i discutir al següent gran apartat del projecte Impactes de la urbanització en la dinàmica dels aqüífers costaners, el cas del Maresme: Discussió del projecte.

Seguidament es presenten els resultats referents a l’apartat d’usos del sòl, dividits en Comarca del Maresme, àrea central, àrea nord i àrea sud.
6.1 Usos del sòl

S’han establert 6 categories diferents d’usos del sòl a la comarca del Maresme, a partir de les quals s’han digitalitzat les ortofotos de la base històrica de l’Institut Cartogràfic de Catalunya de de l’any 1956 (Fig. 6.1) fins el 2010 (Fig. 6.5) amb el programari de GIS Miramon:

- Infraestructures de transport: eixos viaris rellevants; autopistes, carreteres principals i vies de ferrocarril.
- Platges
- Ports
- Zona forestal: boscors, principalment alzinar mediterrani amb pi blanc.
- Zona agrícola: camps de conreu.
- Zona urbanitzada: nuclis de població, urbanitzacions compactes i disperses, polígons industrials i masos.

El gràfic en disc que es presenten a la part superior esquerra de cada mapa està elaborat sobre una extensió de la comarca estimada en 39.881 ha.

Per passar d’un resultat visual a un resultat exacte i numèric, presentem a les pàgines posteriors als mapes de la comarca del Maresme un resum de l’evolució de les àrees de les categories classificades en hectàrees i en percentatges dins el mateix any.

Com que les ortofotos descarregades de l’Institut Cartogràfic de Catalunya donen a lloc a etapes diferents entre cada una pel que fa a la seva durada, s’ha normalitzat el creixement de cada categoria en cada etapa com a creixement anual, tenint en compte la diferència de temps entre una unitat digitalitzada i la següent. La unitat emprada serà la de ha·any⁻¹. A les taules de creixement anual es troba marcat en diferents colors l’època en la qual és major la variació per a cada ús del sòl categoritzat. Referent a les fonts de les taules i figures només s’han citat les que no són d’elaboració pròpia.
Fig. 6.1 Usos del sòl a la comarca del Maresme a l’any 1956. A dalt a l’esquerra, model digital d’elevacions de la zona amb els usos dels sòl representats.
Impactes de la urbanització en la dinàmica dels aqüífers costaners

Total: 39881 ha.

Fig. 6.2 Usos del sòl a la comarca del Maresme a l'any 1990. A dalt a l'esquerra, model digital d'elevacions de la zona amb els usos dels sòl representats.
Impactes de la urbanització en la dinàmica dels aqüífers costaners

Fig. 6.3 Usos del sòl a la comarca del Maresme l'any 2000. A dalt a l'esquerra, model digital d'elevacions de la zona amb els usos del sòl representats.
Impactes de la urbanització en la dinàmica dels aqüífers costaners

Total: 39881 ha.

Fig. 6.4 Usos del sòl a la comarca del Maresme l’any 2004. A dalt a l’esquerra, model digital d’elevacions de la zona amb els usos del sòl representats.
Impactes de la urbanització en la dinàmica dels aqüífers costaners

Fig. 6.5 Usos del sòl a la comarca del Maresme l’any 2010. A dalt a l’esquerra, model digital d’elevacions de la zona amb els usos del sòl representats.
6.1.1 Anàlisi dels resultats: Comarca del Maresme

A continuació es presenten els resultats referents a la distribució i estudi dels usos del sòl a la comarca del Maresme en la seva totalitat, extrets de l’anàlisi de les Figures 6.1, 6.2, 6.3, 6.4 i 6.5. La superfície total de la comarca són 39.881 ha.

<table>
<thead>
<tr>
<th>Categories d’ús</th>
<th>Anys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1956</td>
</tr>
<tr>
<td>Infraestructures de transport</td>
<td>0</td>
</tr>
<tr>
<td>Platges</td>
<td>279</td>
</tr>
<tr>
<td>Ports</td>
<td>8</td>
</tr>
<tr>
<td>Zona forestal</td>
<td>17.794</td>
</tr>
<tr>
<td>Zona agrícola</td>
<td>20.750</td>
</tr>
<tr>
<td>Zona urbanitzada</td>
<td>907</td>
</tr>
</tbody>
</table>

Fig. 6.6 Evolució de la distribució dels usos del sòl a les darreres dècades. Maresme. Fracció respecte el mateix any (%).
Taula 6.2 Variació anual dels usos del sòl en cada etapa (ha·any\(^{-1}\)). Maresme.

<table>
<thead>
<tr>
<th>Categories d’ús</th>
<th>Etapes entre ortofotomapes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructures de transport</td>
<td>2,9</td>
<td>48</td>
</tr>
<tr>
<td>Platges</td>
<td>3,7</td>
<td>-10</td>
</tr>
<tr>
<td>Ports</td>
<td>1,1</td>
<td>1,1</td>
</tr>
<tr>
<td>Zona forestal</td>
<td>144,9</td>
<td>106,2</td>
</tr>
<tr>
<td>Zona agrícola</td>
<td>-234,1</td>
<td>-522,6</td>
</tr>
<tr>
<td>Zona urbanitzada</td>
<td>85,1</td>
<td>377,9</td>
</tr>
</tbody>
</table>

Fig. 6.7 Variació anual dels usos del sòl en cada etapa (ha/any). Maresme

Tal i com podem observar als mapes de les pàgines anteriors (Fig. 6.1 a Fig. 6.5), la urbanització creix de manera sorprenent des de l’any 1956, passant d’ocupar 907 ha. aquest any fins a 8.561 ha. l’any 2010, quasi un 1.000% més (Taula 6.1). D’un 2,3% d’ocupació urbana total el 1956 a un 21,5% el 2010 (Fig. 6.6).
També creix de manera substancial la zona forestal, incrementant la seva superfície en 5.659 ha, un valor semblant al de la zona urbanitzada.

El creixement tant de la zona urbanitzada com de la zona forestal s’han de veure compensats per un descens d’altres usos del sòl. La zona agrària, amb un decreixement de quasi quatre vegades el valor de 1956, és el factor compensatori. Durant la etapa 1956-2010, la pèrdua de zona agrària és xifra en 271 ha·any\(^{-1}\), sent la més elevada l’etapa 1990-2000 amb una pèrdua de 522 ha·any\(^{-1}\) (Taula 6.2).

Si prenem altra vegada els mapes (Fig. 6.1 a 6.5), podrem extreure que hi ha hagut un abandonament massiu del camp, sobretot entre els anys 1956 i 2000, pel qual el que abans eren parcel·les agràries ara s’han convertit en zones forestals i en zones urbanitzades.

Així doncs, podem separar la durada del nostre estudi en tres grans fases.

La primera fase, dominada per un canvi molt gran en els usos del sòl i compresa entre els anys 1956 i 2000, es caracteritza per una disminució de la zona agrícola (64%), que es veu compensada quasi a parts iguals per un augment de la urbanització (736%) i un augment de la zona forestal (33%) (percentatges calculats a partir de Taula 6.1).

En aquesta fase, l’augment de zona forestal és el procés predominant a la zona inland de la comarca, en deteriorament de la zona agrària (Fig. 6.1 a Fig. 6.3).

La segona fase, compresa entre els anys 2000 i 2004, caracteritzada per ser de poca durada, destaca una estabilització quasi completa pel que fa a la variació d’usos, frenant en sec la caiguda de la zona agrària (increment d’un 1%) i la tendència de creixement que seguien la urbanització (increment d’un 1%) i la zona forestal (decreixement quasi nul) (percentatges calculats a partir de Taula 6.1).

La tercera fase, a partir de l’any 2004, reprèn en certa manera la tendència de la primera, ja que augmenta la urbanització (12%) i disminueix la zona agrària (10%). Tot i això, la zona forestal disminueix lleugerament (decreixement d’un 1%) (percentatges calculats a partir de Taula 6.1).

Pel que fa als altres usos del sòl categoritzats, destaquen les infraestructures de transport, les quals creixen sobretot en l’etapa 1990-2000 (490%).
Per aconseguir resultats més exactes pel projecte, procedirem de la mateixa manera amb tres zones de la comarca que hem escollit per diversos motius:

- **Àrea Central:**
 Municipis: Argentona, Cabrera de Mar i Mataró
 Extensió: 5.683 ha
 Percentatge d’extensió respecte la comarca: 14,2 %

- **Àrea Nord:**
 Municipis: Arenys de Mar, Arenys de Munt, Caldes d’Estrac i Sant Vicenç de Montalt
 Extensió: 3.693 ha
 Percentatge d’extensió respecte la comarca: 9,3 %

- **Àrea Sud:**
 Municipis: el Masnou, Alella i Teià
 Extensió: 1.958 ha
 Percentatge d’extensió respecte la comarca: 4,9 %

L’àrea central i l’àrea nord han estat escollides per criteris hidrològics: nivell d'importància en relació a l’aqüífer, ja que tant la riera d’Argentona com la d’Arenys són les que més rellevància tenen en aquest aspecte.

L’àrea sud ha estat escollida en base a criteris geogràfics: la seva proximitat a la comarca del Barcelonès provoca que comenci a tenir comportament de metròpoli.

Observacions: El valor de 0 a la categoria *Infraestructures de transport* de la majoria de taules per l’any 1956 rau en el fet que bàsicament no hi havia carreteres de prou amplada com a per cartografiar-les (a excepció de les vies de tren, les quals era difícil delimitar degut a l’estat i la qualitat de l’ortofoto).

Els resultats de les tres àrees, de la mateixa manera com s’ha fet amb la totalitat de la comarca (Fig. 6.1 a Fig. 6.5), es presenten amb el següent ordre: primer els mapes digitalitzats i llavors les taules i els gràfics referents a aquests mapes.
Impactes de la urbanització en la dinàmica dels aqüífers costaners
Fig. 6.8 Usos del Sòl a l'Àrea Central els anys 1956, 1990 i 2000
Fig. 6.9 Usos del Sòl a l’Àrea Central els anys 2004 i 2010

Impactes de la urbanització en la dinàmica dels aqüífers costaners
6.1.2 Anàlisi dels resultats: Àrea central

A continuació es presenten els resultats referents a la distribució i estudi dels usos del sòl a l’àrea central, extrets de l’anàlisi de les Figures 6.8 i 6.9. La superfície total d’aquesta zona són 5.683 ha.

<table>
<thead>
<tr>
<th>Categories d’ús</th>
<th>Anys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1956</td>
</tr>
<tr>
<td>Infraestructures de transport</td>
<td>0</td>
</tr>
<tr>
<td>Platges</td>
<td>37,3</td>
</tr>
<tr>
<td>Ports</td>
<td>0</td>
</tr>
<tr>
<td>Zona forestal</td>
<td>1.430,2</td>
</tr>
<tr>
<td>Zona agrícola</td>
<td>4.018,2</td>
</tr>
<tr>
<td>Zona urbanitzada</td>
<td>189,4</td>
</tr>
</tbody>
</table>

Fig. 6.10 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Central: Argentona, Cabrera de Mar i Mataró. Fracció respecte el mateix any (%).
Taula 6.4 Variació anual dels usos del sòl en cada etapa (ha·any⁻¹). Àrea Argentona, Cabrera de Mar i Mataró.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructures de transport</td>
<td></td>
<td>0,7</td>
<td>11,7</td>
<td>0</td>
<td>0</td>
<td>2,9</td>
</tr>
<tr>
<td>Platges</td>
<td></td>
<td>0,8</td>
<td>-2,3</td>
<td>0</td>
<td>0</td>
<td>0,9</td>
</tr>
<tr>
<td>Ports</td>
<td></td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Zona forestal</td>
<td></td>
<td>29,3</td>
<td>-26,3</td>
<td>-2,4</td>
<td>11,0</td>
<td>27,7</td>
</tr>
<tr>
<td>Zona agrícola</td>
<td></td>
<td>-45,8</td>
<td>-142,8</td>
<td>2,4</td>
<td>-18,5</td>
<td>-61,2</td>
</tr>
<tr>
<td>Zona urbanitzada</td>
<td></td>
<td>15,1</td>
<td>95,4</td>
<td>0</td>
<td>7,5</td>
<td>30,3</td>
</tr>
</tbody>
</table>

Fig. 6.11 Variació anual dels usos del sòl en cada etapa (ha·any⁻¹). Àrea Central: Argentona, Cabrera de Mar i Mataró.

L’àrea central té com a gran diferència respecte la comarca del Maresme que parteix d’una situació inicial l’any 1956 amb una sèrie de diferències (Fig. 6.6 i Fig. 6.10).

Si en l’anàlisi d’usos del sòl de l’any 1956 a la comarca del Maresme l’extensió de zona agrícola era lleugerament superior a la de la zona forestal (16,6% més alta) (calculat a partir de Taula 6.1), a l’àrea central la diferència entre aquestes
categories és molt més àmplia (180% més alta) (calculat a partir de la Taula 6.3).
Tot i això, l’any 1990 la zona forestal ja ocupa gairebé la mateixa extensió que la zona agrícola (diferència de 34,7 ha), i l’any 2010 ja és un 206,5% més extensa (Taula 6.3).
Pel que fa a les tendències de creixement i decreixement, l’àrea central no es diferencia significativament de la resta de la comarca, ja que la corba que segueixen les hectàrees totals de zona urbanitzada i zona forestal són molt similars (Fig. 6.6 i Fig. 6.10), tot i que en l’etapa 1956-1990 la forestal presenta un creixement més gran que la urbanitzada (forestal creix 29,3%) i en l’etapa 1990-2000 és a la inversa (urbanitzada creix 95,4 ha/any) (calculat a partir de la Taula 6.3).
La divisió de fases a l’àrea central és la mateixa que la del Maresme, accentuant com ja hem comentat que en l’última fase la forestal segueix creixent en lloc de disminuir com a l’anàlisi de la totalitat de la comarca.
Les tendències per ports, infraestructures de transport i platges també són similars a les de la comarca sencera.
Impactes de la urbanització en la dinàmica dels aqüífers costaners
Fig. 6.12 Usos del Sòl a l'Àrea Nord els anys 1956, 1990 i 2000
Fig. 6.13 Usos del Sòl a l’Àrea Nord els anys 2004 i 2010
6.1.3 Anàlisi dels resultats: Àrea nord

A continuació es presenten els resultats referents a la distribució i estudis dels usos del sòl a l’àrea nord, extrets de l’anàlisi de les Figures 6.12 i 6.13. La superfície total d’aquesta zona són 3.693 ha.

Taula 6.5 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Arenys de Mar, Arenys de Munt, Caldes d’Estrac i Sant Vicenç de Montalt. Superfície total (ha)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructures de transport</td>
<td>0</td>
<td>0</td>
<td>71,5</td>
<td>71,5</td>
<td>71,5</td>
</tr>
<tr>
<td>Platges</td>
<td>22,4</td>
<td>44,4</td>
<td>46,8</td>
<td>46,8</td>
<td>46,8</td>
</tr>
<tr>
<td>Ports</td>
<td>7,8</td>
<td>13,5</td>
<td>13,5</td>
<td>13,5</td>
<td>13,5</td>
</tr>
<tr>
<td>Zona forestal</td>
<td>764,7</td>
<td>1.974,3</td>
<td>2.141,7</td>
<td>2.118,8</td>
<td>2.056,5</td>
</tr>
<tr>
<td>Zona agrícola</td>
<td>2.763,6</td>
<td>1.249,8</td>
<td>693,2</td>
<td>709,7</td>
<td>593,4</td>
</tr>
<tr>
<td>Zona urbanitzada</td>
<td>103,7</td>
<td>407,3</td>
<td>726,3</td>
<td>732,8</td>
<td>911,3</td>
</tr>
</tbody>
</table>

Fig. 6.14 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Nord: Arenys de Mar, Arenys de Munt, Caldes d’Estrac i Sant Vicenç de Montalt. Fracció respecte el mateix any (%).
La fase inicial (any 1956) de l'àrea nord és quasi igual que la de l'àrea central: poca urbanització i gran diferència entre les extensions de zona agrícola i zona forestal, sent la primera la més elevada en hectàrees. (Fig. 6.10 i Fig. 6.14)

Tot i això, una disminució de l’extensió de zona agrícola (-44,5 ha·any\(^{-1}\)) i un augment de l’extensió de zona forestal (35,6 ha·any\(^{-1}\)) més ràpids provoquen que...
l’extensió entre les dos zones sigui igual abans de 1990 (Taula 6.6), és a dir, en una data anterior a la que coincideixin a l’àrea central (Taula 6.3).

Una nova característica de l’àrea que comprèn Arenys de Mar, Arenys de Munt, Caldes d’Estrac i Sant Vicenç de Montalt és que ja des de l’any 2000 l’extensió de zona forestal comença a disminuir, tendència que es manté fins al 2010 (Fig. 6.14 i Fig. 6.15).

Aquesta disminució de la zona forestal queda compensada per un fenomen que no havíem observat després de l’any 2000: un lleuger augment de la zona agrícola. Tot i que sigui poc significatiu, la zona agrícola és l’ús del sòl que més creix en el període 2000-2004 (Fig. 6.14 i Fig. 6.15). Aquest fet contrasta realment amb els períodes anteriors, on era l’ús del sòl que més decreixia. La poca rellevància del creixement agrícola 2000-2004 recau en l’estabilització d’usos del sòl que ha dominat aquest període tant en l’àrea nord, com en l’àrea central, com en la totalitat de la comarca.

En el següent període, entre els anys 2004 i 2010, la urbanització torna a créixer (29,7 ha·any⁻¹), mentre que la zona forestal torna a disminuir, tot i que a un ritme menor que ens els dos primers períodes (-19,4 ha·any⁻¹) (Taula 6.6).

Pel que fa a les infraestructures de transport es construeixen bàsicament entre l’any 1990 i el 2000 (Taula 6.5).
Impactes de la urbanització en la dinàmica dels aqüífers costaners
Àrea Sud

1956
1990
2000

Fig. 6.16 Usos del Sòl a l’Àrea Sud els anys 1956, 1990 i 2000
Fig. 6.17 Usos del Sòl a l'Àrea Sud els anys 2004 i 2010
6.1.4 Anàlisi dels resultats: Àrea sud

A continuació es presenten els resultats referents a la distribució i estudi dels usos del sòl a l’àrea sud, extrets de l’anàlisi de les Figures 6.16 i 6.17. La superfície total d’aquesta zona són 1.958 ha.

Taula 6.7 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Masnou, Alella i Teià. Superfície total (ha)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructures de transport</td>
<td>0</td>
<td>23,1</td>
<td>38,1</td>
<td>38,1</td>
<td>38,1</td>
</tr>
<tr>
<td>Platges</td>
<td>12,3</td>
<td>39,5</td>
<td>19,1</td>
<td>19,1</td>
<td>19,1</td>
</tr>
<tr>
<td>Ports</td>
<td>0</td>
<td>9,4</td>
<td>9,4</td>
<td>9,4</td>
<td>9,4</td>
</tr>
<tr>
<td>Zona forestal</td>
<td>314,5</td>
<td>750,3</td>
<td>820,2</td>
<td>795,7</td>
<td>753,5</td>
</tr>
<tr>
<td>Zona agrícola</td>
<td>1.484,8</td>
<td>780,9</td>
<td>228,6</td>
<td>313,1</td>
<td>319,9</td>
</tr>
<tr>
<td>Zona urbanitzada</td>
<td>130</td>
<td>363,8</td>
<td>782,9</td>
<td>782,9</td>
<td>818,2</td>
</tr>
</tbody>
</table>

Fig. 6.18 Evolució de la distribució dels usos del sòl a les darreres dècades. Àrea Sud: el Masnou, Alella i Teià. Fracció respecte el mateix any (%).
Taula 6.8 Variació anual dels usos del sòl en cada etapa (ha·any⁻¹). Àrea Masnou, Alella i Teià.

<table>
<thead>
<tr>
<th>Categories d’ús</th>
<th>Etapes entre ortofotomapes</th>
<th></th>
<th></th>
<th></th>
<th>Mitjana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infraestructures de transport</td>
<td>0,7</td>
<td>1,5</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
</tr>
<tr>
<td>Platges</td>
<td>0,8</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0,1</td>
</tr>
<tr>
<td>Ports</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Zona forestal</td>
<td>12,8</td>
<td>7</td>
<td>-6,1</td>
<td>-7</td>
<td>9,2</td>
</tr>
<tr>
<td>Zona agrícola</td>
<td>-20,7</td>
<td>-55,2</td>
<td>21,1</td>
<td>1,1</td>
<td>-23,8</td>
</tr>
<tr>
<td>Zona urbanitzada</td>
<td>6,9</td>
<td>41,9</td>
<td>0</td>
<td>5,9</td>
<td>13,6</td>
</tr>
</tbody>
</table>

Fig.6.19 Variació anual dels usos del sòl en cada etapa (ha/any). Àrea sud: el Masnou, Alella i Teià.

L’àrea sud, marcada per tenir més proximitat amb l’àrea metropolitana, té com a característica principal una variació molt petita durant el primer període 1956-1990 (Fig. 6.19).

A més, la gran diferència que presenta respecte les altres zones és que el gran canvi d’usos es duu a terme bàsicament entre la zona urbanitzada i la zona agrícola (Taula 6.8). Tot i això el canvi d’usos del sòl segueix les mateixes tendències generals que hem vist fins ara: disminució de l’extensió agrícola i
augment de l’extensió forestal i urbanitzada (Fig. 6.6, Fig. 6.10, Fig. 6.14 i Fig. 6.18).

Una particularitat de l’àrea sud que tampoc hem vist fins ara és que en un determinat moment, concretament l’any 2010, la zona urbanitzada (818,2 ha) és l’ús del sòl predominant per sobre de la zona forestal (753,55 ha) (Taula 6.7).

Aquest fet és degut en part a un lleuger decreixement de l’extensió de zona forestal durant els dos últims períodes: durant el 2000-2004 és colonitzat majoritàriament per zona agrícola (la zona urbanitzada es manté completament estable) i durant el 2004-2010 és colonitzat majoritàriament per zona urbanitzada (Fig. 6.16, Fig. 6.17) (Taula 6.8).

Observant les figures 6.16 i 6.17, podem apreciar d’una forma clara com l’any 1956 teníem 3 nuclis diferenciats de població que pertanyien a Alella, Teià i el Masnou. A partir de l’any 1990, la urbanització que s’ha dut a terme durant el primer període i la que es segueix efectuant provoca que els límits entre aquestes poblacions quedin difuminats per un continu urbà que ja només queda diferenciat per una frontera política.

Seguidament es presenten els resultats referents a l’apartat d’Hidrologia, dividits en gestió de l’aigua, precipitació i anàlisi dels paràmetres dels aqüífers i de la zona costanera del Maresme. Pel que fa a les fonts de les taules i figures només s’han citat les que no són d’elaboració pròpia.
6.2 Hidrologia

6.2.1 Gestió de l’aigua

Per tal de conèixer com es gestiona l’aigua als diferents municipis del Maresme a continuació es mostra una taula amb tots els municipis i l’entitat subministradora.

<table>
<thead>
<tr>
<th>Entitat Subministradora</th>
<th>Municipis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOREA</td>
<td>Alella</td>
</tr>
<tr>
<td></td>
<td>Premià de Dalt</td>
</tr>
<tr>
<td></td>
<td>Arenys de Mar</td>
</tr>
<tr>
<td></td>
<td>Premià de Mar</td>
</tr>
<tr>
<td></td>
<td>Cabrera de Mar</td>
</tr>
<tr>
<td></td>
<td>St. Cebrià de Vallalta</td>
</tr>
<tr>
<td></td>
<td>Cabrils</td>
</tr>
<tr>
<td></td>
<td>St. Iscle de Vallalta</td>
</tr>
<tr>
<td></td>
<td>Caldes d’Estrac</td>
</tr>
<tr>
<td></td>
<td>St. Pol de Mar</td>
</tr>
<tr>
<td></td>
<td>Canet de Mar</td>
</tr>
<tr>
<td></td>
<td>St. Vicenç de Montalt</td>
</tr>
<tr>
<td></td>
<td>Dosrius</td>
</tr>
<tr>
<td></td>
<td>Sta. Susanna</td>
</tr>
<tr>
<td></td>
<td>El Masnou</td>
</tr>
<tr>
<td></td>
<td>Teià</td>
</tr>
<tr>
<td></td>
<td>Òrrius</td>
</tr>
<tr>
<td></td>
<td>Tiana</td>
</tr>
<tr>
<td></td>
<td>Palafolls</td>
</tr>
<tr>
<td></td>
<td>Vilassar de Dalt</td>
</tr>
<tr>
<td></td>
<td>Pineda de Mar</td>
</tr>
<tr>
<td>GESTIÓ URB. I SERVEIS ARENYS DE MUNT, SA</td>
<td>Arenys de Munt</td>
</tr>
<tr>
<td>AIGÜES D’ARGENTONA, SA</td>
<td>Argentona</td>
</tr>
<tr>
<td>GESTIO AIGUA CALELLA, SL</td>
<td>Calella</td>
</tr>
<tr>
<td>EMPRESA AGUAS POTABLES DE MALGRAT, SA</td>
<td>Malgrat de Mar</td>
</tr>
<tr>
<td>AIGÜES DE MATARÓ, SA</td>
<td>Mataró</td>
</tr>
<tr>
<td>AIGÜES DE BARCELONA, EMGCIA, SA</td>
<td>Montgat</td>
</tr>
<tr>
<td>ABASTAMENTS D’AIGUA DEL TORDERA, SL</td>
<td>Tordera</td>
</tr>
<tr>
<td>AIGÜES DE VILASSAR, SL</td>
<td>Vilassar de Mar</td>
</tr>
<tr>
<td>AJ. DE ST. ANDREU DE LLAVANERES</td>
<td>St. Andreu de Llavaneres</td>
</tr>
</tbody>
</table>
Com es pot apreciar a la Taula 6.9 i a la Figura 6.20, les empreses privades són les dominants en matèria de distribució d’aigua a la comarca del Maresme, sent SOREA la que engloba més municipis. Tot i això, l’empresa encarregada de subministrar aigua a la capital del Maresme, amb uns 125.000 habitants, és Aigües de Mataró, SA. Aquesta empresa utilitza en un 25% aigua dels aqüífers de la comarca i en un 75% aigua provinent de la xarxa Aigües Ter Llobregat (ATLL), concessionària de la Generalitat (Núria Montserrat, Responsable de Comunicació i Medi Ambient d’Aigües de Mataró, SA.).

Pel que fa al subministrament d’aigua potable a la comarca del Maresme, es presenta a continuació una taula resum del volum d’aigua importat de la xarxa Aigües Ter Llobregat des de l’any 2005 (any en que va entrar en funcionament després de la finalització de les obres l’any 2004) (Irene Obis, Cap de Relacions Institucionals i Comunicació d’Aigües Ter Llobregat).

Taula 6.10 Evolució del volum d’aigua aportat per la xarxa ATLL a la comarca del Maresme. Font: Irene Obis, Cap de Relacions Institucionals i Comunicació, ATLL

<table>
<thead>
<tr>
<th>Any</th>
<th>Volum d’aigua (hm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>24</td>
</tr>
<tr>
<td>2006</td>
<td>23,7</td>
</tr>
<tr>
<td>2007</td>
<td>24,1</td>
</tr>
<tr>
<td>2008</td>
<td>20,4</td>
</tr>
<tr>
<td>2009</td>
<td>20,7</td>
</tr>
<tr>
<td>2010</td>
<td>20,6</td>
</tr>
<tr>
<td>2011</td>
<td>20,9</td>
</tr>
<tr>
<td>2012</td>
<td>20,7</td>
</tr>
<tr>
<td>2013</td>
<td>20,5</td>
</tr>
<tr>
<td>2014</td>
<td>22</td>
</tr>
</tbody>
</table>
Com es pot veure a la Taula 6.10, el rang de volum d’aigua importat de la xarxa ATLL a la comarca del Maresme ha variat entre un màxim de 24,1 hm3 (2007) i un mínim de 20,4 hm3 (2008). Es pot apreciar una disminució d’aquest volum a partir de l’any 2007 fins a l’any 2013, ja que el 2014 torna a incrementar-se fins 22 hm3.

6.2.2 Precipitació

A continuació (Fig. 6.21) es mostren els gràfics de precipitació que serviran per veure si la variació dels components que s’exposaran en l’apartat Propietats dels aqüífers i de la zona costanera del Maresme tenen relació amb la quantitat de pluja així com amb la seva evolució. S’han pres tres poblacions seguint les zones definides a l’apartat 6.1. Pel que fa a l’àrea nord s’han agafat les dades de precipitació d’Arenys de Mar, per l’àrea sud les de Premià de Mar i per l’àrea central les de Mataró. També es mostren els gràfics de precipitació acumulada anualment, per tal de conèixer quins anys han sigut més plujosos i quins més secs.

![Fig. 6.21 Precipitació acumulada anualment (mm).](image)

93
Impactes de la urbanització en la dinàmica dels aqüífers costaners

- Àrea Central

A la Figura 6.22, tot i que molt lleugerament, es pot veure que hi ha hagut una tendència a la baixa de les precipitacions. També es pot apreciar que a partir del 2004 no hi ha cap pic igual o superior als 200 mm, mentre que abans sí que n’hi havia hagut.

![Fig. 6.22 Evolució de la precipitació (mm) a Mataró.](image)

A la Figura 6.21.C es mostra la precipitació acumulada cada any (en mm). Podem observar una certa continuitat pel que fa a les mitjanes de precipitació per dècades, aquesta oscil·la entre 550 mm anuals i 620 mm anuals. S’observa un cert patró que es repeteix tres vegades entre els anys 1988 i 2006, amb una durada de 5 anys aproximadament i en el que hi ha un any més plujós, de 900 a 1000 mm, seguit d’un descens fins als 600 mm i un any en què es mantenen aquests 600 mm. Tot seguit hi ha un any en què baixa fins a 500 mm o menys i llavors venen tres anys d’augment, fins a arribar a l’any més plujós. Els períodes més secs han estat del 1973 al 1975, del 1978 al 1981, del 1994 al 1995, del 1999 al 2001 i del 2006 al 2007. S’aprecia un cert patró cíclic des de els anys 50, on les sequeres són presents cada dècada. Tot i això, l’aparició d’anyes secs consecutius només els trobem a partir de la dècada dels 70, una de les més seques fins l’actualitat comparant les dades que tenim.

- Àrea Nord

En aquesta àrea no es veu cap augment ni desnivell de la mitjana de precipitacions. Tot i així a la Figura 6.23 podem veure que la freqüència de pics de més de 150 mm a partir del 2010 és major que anteriorment.
Fig. 6.23 Evolució de la precipitació (mm) a Arenys de Mar.

- Àrea Sud

Referent a les dades de precipitació de Premià de Mar de la Figura 6.24, no hi ha res remarcable ni pel que fa a tendència ni pel que fa a freqüència de pics destacables: es manté molt constant i els pics són força similars al llarg de l’evolució. Cal dir que d’aquesta zona és de la que tenim menys dades, ja que aquestes comencen l’any 1997.

El que si podem observar és que la mitjana de pluja mensual es situa en 48,47 mm, mentre que a les altres àrees és de 50,3 mm (àrea nord) i 53 mm (àrea central), pel que l’àrea sud és la menys plujosa de les tres.

Fig. 6.24 Evolució de la precipitació (mm) a Premià de Mar.

Pel que fa a l’evolució de la precipitació acumulada a Premià de Mar (Fig. 6.21A) veiem que hi ha una lleugera tendència a la baixa, passant de 594 mm (1997) a 568 mm (2014). A la Figura 6.21A també s’aprecia un període amb precipitacions per sota de la mitjana de l’any 2006 al 2007. Podem destacar un pic de 1140 a l’any 2002.
6.2.3 Anàlisi dels paràmetres dels aqüífers i de la zona costanera del Maresme

En aquest apartat s'han analitzat els valors de diferents paràmetres fisicoquímics així com els nivells piezomètrics de l’aqüífer. Per realitzar aquest anàlisi s'ha diferenciat en la zona d’estudí entre una zona continental i una zona costanera, on s’analitzen aquests paràmetres. Les majoria de dades provenen de l’Agència Catalana de l’Aigua. Els paràmetres fisicoquímics han estat seleccionats prèviament amb la intenció que fossin els que ens donessin una major informació i ens servissin per trobar relacions útils per l’objectiu del nostre estudi. Dividim l’apartat geogràficament en:

- **Zona continental**: correspon a aquells pous avaluats a la zona terrestre on es troben els aqüífers de la comarca. S’han analitzat a partir de les dades extretes de l’agència catalana de l’aigua (ACA) en aquesta zona l’evolució de la conductivitat, de la concentració de nitrats i la cota dels nivells piezomètrics.

- **Zona costanera**: correspon a les anàlisis efectuades a primera línia de costa per l’ACA, però ja incloses dins la zona marítema. Les anàlisis mostrades en aquest subapartat són bàsicament de platges i de desembocadures de rieres. S’han analitzat en aquesta zona l’evolució (al llarg del temps) de la salinitat i de la concentració de nitrats, de silicats i de clorofil·la.

Dins d’aquestes dues zones s’han dividit també les dades en les tres grans àrees exposades en l’apartat 6.1 *Usos del sòl*: àrea central, àrea nord i àrea sud.

En aquest apartat només es troben aquells gràfics que, després de fer un anàlisi exhaustiu, ens han semblat més representatius per allò que volíem exposar.
Zona continental

A continuació s’ha estudiat l’evolució de diferents paràmetres amb pous seleccionats i definits amb els mapes que s’exposen tot seguit. Els paràmetres representats mitjançant gràfiques són: nivells piezomètrics, salinitat i nitrats. Aquests paràmetres ens són útils per caracteritzar l’evolució i la situació actual de l’aquífer. S’han escollit els pous fent gràfics per ordre dels situats més al l’interior fins als més propers a la costa. Alguns d’aquests paràmetres s’han estudiat en pous diferents, degut a la manca de dades en alguns pous i a l’interès propi del projecte. A continuació, a la Taula 6.11, es mostra l’inventari de tots els pous de la zona continental, amb l’àrea a la qual pertanyen, el seu número identificador, el municipi on es troben, els paràmetres que conté i el període de dades disponibles. També inclou el total de dades que s’han tractat.

<table>
<thead>
<tr>
<th>Taula 6.11 Inventari de pous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Àrea</td>
</tr>
<tr>
<td>Central</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sud</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total pous</td>
</tr>
<tr>
<td>Total dades</td>
</tr>
</tbody>
</table>
ÀREA CENTRAL

Fig. 6.25 Mapa de situació dels pous estudiats a l'àrea central.

SALINITAT

En els pous situats més a l’interior de l’àrea central (Fig. 6.26C i 6.26D) s’aprecia una major estabilitat al llarg del temps en la conductivitat a 20ºC (Rang: 703-1053 µS·cm\(^{-1}\)) (Fig. 6.40 i 6.41). En canvi, al pou més a prop de la costa (Fig. 6.26.B) les fluctuacions són molt més grans (Rang: 744-2.255 µS·cm\(^{-1}\)). S’aprecia un descens de la salinitat en la Figura 6.26.B des de l’any 1995 fins l’actualitat de 1.773 µS·cm\(^{-1}\) a 1.520 µS·cm\(^{-1}\) de mitjana, al pou de la Figura 6.26.A veiem un descens de la salinitat similar al comentat anteriorment (de 1200 µS·cm\(^{-1}\) a 1000 µS·cm\(^{-1}\)). Els valors mitjans dels pous situats més a prop de la costa (Rang: 703-1053 µS·cm\(^{-1}\)) són més elevats que els situats més lluny (Rang: 703-1053 µS·cm\(^{-1}\)).
Fig. 6.26 Evolució de la conductivitat (µS·cm⁻¹) dels diferents pous estudiats a l’àrea central.

NITRATS

S’aprecia una clara estabilitat en els pous situats més a l’interior (Fig. 6.27B i 6.27C), amb uns 86 mg·L⁻¹ de mitjana, tot i que tenim un gran augment de la concentració a l’any 2006 i 2007, amb dos pics amb màxims de 213 mg·L⁻¹ i 232 mg·L⁻¹.
A la zona més pròxima a la costa notem un lleuger descens de la concentració (Fig. 6.27A), la qual va de 133 mg·L\(^{-1}\) de mitjana a 106 mg·L\(^{-1}\). De la mateixa manera que a la Figura 6.27B i 6.27C, també s’observa un augment de la concentració els anys 2006 i 2007. S’aprecia que la concentració al pou situat més proper a la costa és de mitjana superior a la resta (100 mg·L\(^{-1}\)).

![Fig. 6.27 Evolució de la concentració de nitrats (mg·L\(^{-1}\)) als pous estudiats a l’àrea central.](image)

NIVELL PIEZOMÈTRIC

A la Figura 6.28D, del pou situat a la zona interior, veiem una disminució d’aproximadament 1 metre en el nivell piezomètric des de l’any 1987 (64 m.s.n.m.) fins al 2011 (63 m.s.n.m). S’aprecia una concordança temporal en els pics màxims en els tres pous.
En canvi, en els altres dos pous (Fig. 6.28C i 6.28B) notem un augment del nivell, de 2 metres en el cas de la Figura 6.28C i de 1 metre en el cas de la Figura 6.48. A diferència del pou interior (Fig. 6.28B), a les figures 6.28C i 6.48 observem unes fluctuacions més accentuades i més freqüents, sobretot a la Figura 6.28B, amb un pic mínim de 4,47 m.s.n.m.

Fig. 6.28 Evolució del nivell piezomètric (m.s.n.m) als pous estudiats a l’àrea central.

Pel que fa a la cota dels nivells piezomètrics anual veiem que els pous situats més a l’interior (Fig. 6.29C i Fig.6.29D) pateixen una fluctuació dels nivells més accentuada amb rangs de fluctuació que van de 5 a 10 metres de la cota. Els més propers al costa tenen rangs de fluctuació menors de 1 o 2 metres de la cota.
Fig. 6.29 Evolució del nivell piezomètric anual (m.s.n.m) als pous estudiats de l'àrea central.
ÀREA NORD

Fig. 6.30 Pous estudiats a l’àrea nord.

SALINITAT

Al pou més proper a la costa la conductivitat és més alta (Fig. 6.31A) amb un valor mínim de 646 µS·cm⁻¹ i un valor màxim 1700 µS·cm⁻¹. La variació d’aquest pou és molt major a la dels altres dos (Fig. 6.31B i Fig. 6.31C).

A la Figura 6.31C s’aprecia un lleuger augment de la conductivitat (el valor màxim que s’arriba és de 904 µS·cm⁻¹ i 670 µS·cm⁻¹ de mínim), mentre que a la Figura 6.31B, la conductivitat al llarg del temps es manté més o menys estable (Rang: 622-714 µS·cm⁻¹). També es veuen moltes més fluctuacions i una concentració molt més alta de mitjana (1200 µS·cm⁻¹). En el pou de la Figura 6.31C, el que està situat més a l’interior, també es veu un augment de la conductivitat a 20°C però amb valors més baixos, com a màxim de 750 µS·cm⁻¹. De mitjana la conductivitat és més alta als pous més propers a la costa (Fig. 6.31).
Fig. 6.31 Evolució de la conductivitat (µS·cm⁻¹) als pous estudiats de l’àrea nord.
NITRATS

A la Figura 6.32B i 6.32C no s’aprecien canvis substancials, només un augment considerable (Fig. 6.32B) comprès entre els anys 2006 i 2010 amb un màxim de més de 267,3 mg·L⁻¹, molt semblant a la tendència que s’observa a l’Àrea Central (Fig. 6.27). També s’observa una disminució de la conductivitat a la Figura 6.32A, que baixa de 100 mg·L⁻¹ a 50 mg·L⁻¹.

![Fig. 6.32 Evolució de la concentració de nitrats (mg·L⁻¹) als pous estudiats de l’àrea nord.](image)
NIVELL PIEZOMÈTRIC

A la Figura 6.33 del pou situat a l’interior notem un descens considerable en la cota del nivell piezomètric. Les dades que tenim d’aquest pou no ens permeten caracteritzar bé la situació ja que són només des de 2011.

![Fig. 6.33 Evolució del nivell piezomètric (m.s.n.m) al Pou 08007-0153 (Arenys de Munt).](image)

- **ÀREA SUD**

![Fig. 6.34 Pous estudiats a l’àrea sud.](image)
SALINITAT

A la Figura 6.35 notem un descens de la conductivitat de 1150 µS·cm⁻¹ a 875 µS·cm⁻¹, sense fluctuacions remarcables.

Fig. 6.35 Evolució de la conductivitat (µS·cm⁻¹) al Pou 08118-0017 (El Masnou).

NITRATS

A la Figura 6.36C, del pou situat a l’interior notem un increment durant els anys 2006 fins al 2010 observat també a les altres àrees estudiades (Fig. 6.27 i 6.32). A aquesta zona el pic màxim és de 264 mg·L⁻¹.

En canvi, a la Figura 6.36A, del pou situat a la zona litoral, notem un descens de la concentració de nitrats de 196 mg·L⁻¹ a 145 mg·L⁻¹. S’observa que la concentració a la Figura 6.36A és més elevada de mitjana que als altres pous (B i C).
Fig. 6.36 Evolució de la concentració de nitrats (mg·L⁻¹) als pous estudiats de l’àrea sud.

NIVELL PIEZOMÈTRIC

A la Figura 6.37B notem que les fluctuacions són molt constants i que en general el nivell és manté estable. En canvi, a la Figura 6.37A observem que les fluctuacions del nivell de cota son més elevades i tenen un descens en el nivell de 0 m.s.n.m. a -1 m.s.n.m.
S'observa en la Figura 6.38A una baixada molt gran de la cota del nivell piezomètric des de l’any 2000 fins l’actualitat. L’altre pou (Fig. 6.38B) es pot veure que està per sota del nivell del mar des de que es tenen dades.
Fig. 6.38 Evolució del nivell piezomètric (m.s.n.m) als pous estudiats de l’àrea sud.
- **Zona costanera**

Seguidament s’ha estudiat l’evolució de diferents paràmetres als punts de mostreig seleccionats. Els paràmetres representats mitjançant gràfics són: nitrats, silicats, salinitat i clorofil-la. Aquests paràmetres ens són útils per caracteritzar i avaluar la descàrrega de l’aqüífer al litoral. A continuació, a la Taula 6.12 es mostra l’inventari de tots els punts de mostreig marins, amb l’àrea i el municipi on s’han pres, els paràmetres que conté i el període de dades disponibles. També inclou el total de dades que s’han tractat.

Taula 6.12 Inventari de punts de mostreig costaners

<table>
<thead>
<tr>
<th>Àrea</th>
<th>Punt de mostreig</th>
<th>Municipi</th>
<th>Paràmetres</th>
<th>Existència de dades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central</td>
<td>Riera d’Argentona</td>
<td>Mataró</td>
<td>Salinitat, nitrats, silicats i clorofil-la</td>
<td>1994-2012</td>
</tr>
<tr>
<td></td>
<td>Platja del Callao</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nord</td>
<td>Platja de Cavaió</td>
<td>Arenys de mar</td>
<td>Salinitat, nitrats, silicats i clorofil-la</td>
<td>1994-2012</td>
</tr>
<tr>
<td>Sud</td>
<td>Platja d’Ocata</td>
<td>El Masnou</td>
<td>Salinitat, nitrats, silicats i clorofil-la</td>
<td>1994-2012</td>
</tr>
<tr>
<td>Total Dades</td>
<td></td>
<td></td>
<td></td>
<td>2132</td>
</tr>
</tbody>
</table>

NITRATS

L’evolució de nitrats en els tres punts de mostreig estudiats és descendent, com veiem a les Figures 6.39, 6.40 i 6.41. Es pot apreciar que a mesura que ens acostem a l’any 2000 cada cop el rang de les fluctuacions és menor. La riera d’Argentona (Fig. 6.39) és la que observem que té una dinàmica descendent més pronunciada comparat amb les altres dues rieres (d’una mitjana d’1,12 mg·L⁻¹ (1994-2000) a 0,31 mg·L⁻¹ (2004-2012)).

Fins l’any 2000 els pics màxims eren més elevats (5 mg·L⁻¹, 10,94 mg·L⁻¹). En canvi, els pics són molt més petits, de l’ordre de 1,75 mg·L⁻¹ de mitjana, a partir de l’any 2000. L’àrea sud i nord (Fig. 6.40, 6.41) sempre han sigut força més estables en l’aportació de nitrats al mar, però cal dir que a la platja d’Ocata (Fig. 6.41) es pot veure que durant els anys 1994-1998 és quan hi ha una entrada més gran de nitrats (pic màxim de 3,62 mg·L⁻¹).
Fig. 6.39 Evolució de la concentració de nitrats (mg·L⁻¹) a la desembocadura de la riera d’Argentona (àrea central).

Fig. 6.40 Evolució de la concentració de nitrats (mg·L⁻¹) a la platja de Cavaió (Arenys de Mar) (àrea nord).

Fig. 6.41 Evolució de la concentració de nitrats (mg·L⁻¹) a la platja d’Ocata (El Masnou) (àrea sud).
SILICATS

S’aprecia una gran diferència en l’evolució de l’entrada de silicats al mar entre la zona central (Fig. 6.42) (Rang [0 mg·L\(^{-1}\), 1,41 mg·L\(^{-1}\)]) i les àrees sud (Rang [0,02 mg·L\(^{-1}\), 0,24 mg·L\(^{-1}\)]) i nord (Rang [0 mg·L\(^{-1}\), 0,2 mg·L\(^{-1}\)]) (Fig. 6.43 i 6.44).

Hi ha una clara disminució en l’aportació de silicats a partir de l’any 2000 a l’àrea central: els pics màxims desapareixen a partir d’aquesta data i la ciclicitat s’estabilitza amb un rang poc variable amb màxims de 0,13 mg·L\(^{-1}\). Els valors baixen d’una mitjana de 0,18 mg·L\(^{-1}\) a una de 0,05 mg·L\(^{-1}\) (Fig. 6.42).

A les altres zones els resultats no son tant significatius. Mentre que a l’àrea nord (Arenys de Mar) l’aportació de silicats al mar puja lleugerament (increment de 0,03 mg·L\(^{-1}\) des de l’any 1994 fins al 2012) (Fig. 6.42), a l’àrea sud (El Masnou) es manté constant amb un valor mig de 0,07 mg·L\(^{-1}\) (Fig. 6.44).

![Fig. 6.42 Evolució de la concentració de silicats (mg·L\(^{-1}\)) a la desembocadura de la riera d’Argentona (àrea central).](image)

![Fig. 6.43 Evolució de la concentració de silicats (mg·L\(^{-1}\)) a la platja de Cavaió (Arenys de Mar) (àrea nord).](image)
SALINITAT

A les tres àrees (Fig. 6.45, 6.46, 6.47) veiem un clar augment de la salinitat al mar. Passem d’una mitjana de 37,7 psu (Practical Salinity Unit – Unitat pràctica de salinitat) a una mitjana de 38,1 psu. A la riera d’Argentona (Fig. 6.45) i a la platja d’Ocata (Fig. 6.47) s’aprecien uns pics més accentuats (38,4 psu tant a Argentona com a Ocata de màxim i 28 psu a Argentona i 30,3 psu a Ocata de mínim) que a la platja de Cavaió, amb unes fluctuacions molt menors. A la riera d’Argentona aquestes disminueixen molt a partir de l’any 2004 (Rang: 36,2-38,4 psu) i, en canvi, a la platja d’Ocata van reapareixen aleatòriament (Rang: 35,4-38,4 psu), tot i que tampoc varien significativament. Cal destacar unes baixades molt importants durant l’etapa 1994-1999.
Impactes de la urbanització en la dinàmica dels aqüífers costaners

Fig. 6.46 Evolució de la Salinitat (psu) a la platja de Cavaió (Arenys de Mar) (àrea nord).

Fig. 6.47 Evolució de la salinitat (psu) a la platja d’Ocata (El Masnou) (àrea sud).

CLOROFIL·LA

A la desembocadura de la riera d’Argentona (Fig. 6.48) veiem un clar retrocés de la concentració de clorofil·la, de 3,18 µg·L⁻¹ a 0,05 µg·L⁻¹ de mitjana. Les altres àrees (Fig. 6.49 i 6.50) són molt més estables. (àrea nord de 1,18 µg·L⁻¹ a 1,10 µg·L⁻¹ i àrea sud de 1,04 µg·L⁻¹ a 1,75 µg·L⁻¹).

A l’àrea nord (Fig. 6.49) també veiem un lleuger descens de la concentració de clorofil·la però no tan accentuat com a la riera d’Argentona. S’aprecia una reducció substancial de la grandària dels pics a la riera d’Argentona a mesura que avancem en els temps (pic màxim etapa 1994-2000: 28,34 µg·L⁻¹; pic màxim etapa 2000-2012: 6,26 µg·L⁻¹). La platja d’Ocata (Fig. 6.50) és la més estable pel que fa a la concentració de clorofil·la (Rang: 0,21 - 8,27 µg·L⁻¹).
Impactes de la urbanització en la dinàmica dels aqüífers costaners

Fig. 6.48 Evolució de la concentració de clorofil·la (\(\mu g\cdot L^{-1}\)) a la desembocadura de la riera d’Argentona (àrea central).

Fig. 6.49 Evolució de la concentració de clorofil·la (\(\mu g\cdot L^{-1}\)) a la platja de Cavaió (Arenys de Mar) (àrea nord).

Fig. 6.50 Evolució de la concentració de clorofil·la (\(\mu g\cdot L^{-1}\)) a la platja d’Ocata (El Masnou) (àrea sud).
7. DISCUSSIÓ

Seguidament es presenta la Discussió del projecte. En aquest apartat s’analitzaran els resultats obtinguts i es compararan, tant amb altres zones com entre ells, per intentar extreure’n una sèrie de conclusions.
7.1 Anàlisi de les tendències dels usos del sòl. Relació amb diferents variables demogràfiques i socioeconòmiques.

7.1.1 Relació entre l’augment de la zona forestal i urbanitzada amb la disminució de la zona agrícola. Possibles escenaris. Relació de la zona agrícola amb l’aportació del sector agrari al PIB i al PIB Primari

Tot i no ser la categoria d'usos del sòl que més creix, la zona forestal a la comarca del Maresme ha estat durant la major part del període d’estudi la categoria amb més extensió a la comarca. Els límits que abans compartia amb la zona agrícola ara han estat substituïts pels límits forestal-urbà, ja que l’abandonament del camp ha suposat la colonització d’aquests per part de boscos, sempre i quan no hi hagués proliferat la zona urbanitzada abans (Fig. 6.1 a 6.5).

Si perpetuem en el futur la tendència de disminució de la zona agrícola entre els anys 1956 i 2010 calculada partir de la Taula 6.1 (-256,6 ha·any⁻¹), trobem que en aproximadament 26 anys a partir de 2010 (i.e. 2036) la zona agrícola desapareixeria del Maresme. Aquest possible escenari és totalment hipotètic ja que com podem veure a la Figura 6.7 la tendència de disminució de l’ús del sòl agrícola s’ha fet menys accentuada des de l’any 2000. Calculant la tendència 2000-2010 (-66,9 ha·any⁻¹), trobem que tindríem zona agrícola a la comarca del Maresme almenys per 104 anys més a partir de 2010 (i.e. 2114).

La possibilitat de l’existència d’un biaix degut a que el sector primari estigués dominat per la ramaderia, la pesca o la fusta enlloc de per l’agricultura queda descartat ja que l’aportació d’aquest subsector al PIB primari és d’un 83%, davant dels 6,1, 1,3 i 9,6 punts percentuals de la ramaderia, la fusta i la pesca, respectivament. Aquest 83% està bàsicament dominat per plantes ornamentals i hortalisses (Tirado, 2007).

Les causes de l’abandonament del camp, degut a l’èxode rural i les oportunitats que va suposar el sector turístic a la zona costanera del Maresme, queden explicades d’una manera més extensa a l’apartat d’Antecedents del projecte, Urbanització massiva del litoral (Apartat 2.4.1).
7.1.2 Relació de la zona urbanitzada amb un creixement dispers de la urbanització

Pel que fa a l’increment de zona urbanitzada, el podem relacionar amb la tendència de variació demogràfica de la comarca. Com podem extreure de la Taula 4.3, la població del Maresme l’any 1955 era de 110.512 habitants, mentre que l’any 2010 era de 430.997 habitants. Les densitats de població el 1955 i el 2010 eren de 2,77 i 10,81 hab·ha⁻¹, respectivament. Aquestes dades ens serveixen per veure clarament que la població del Maresme ha augmentat a un ritme de 0,15 hab·ha⁻¹·any⁻¹.

Per fer un anàlisi més exhaustiu i poder observar quina ha estat la tipologia d’habitatge que s’ha construït des de l’any 1955, tot seguit es relacionen la població del Maresme amb l’extensió de zona urbanitzada per l’any 1955, 1990, 2000 i 2010 (afeigm el 1990 ja que podem observar a la Figura 6.7 que és l’any on hi comença la tendència de variació de la categoria d’ús del sòl de zona urbanitzada. De la mateixa manera l’any 2000 és quan acaba aquesta tendència). Per això calcularem el que hem anomenat Urban density factor (UDF), calculat a partir del quocient de població entre l’extensió de zona urbanitzada. Usem dades de la Taula 4.3 i de la Taula 6.1:

Taula 7.1 Taula resum del quocient UDF.

<table>
<thead>
<tr>
<th>Any</th>
<th>Població (hab.)</th>
<th>Extensió zona urbanitzada (ha)</th>
<th>UDF (hab·ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1956</td>
<td>110.512 (1955)</td>
<td>907</td>
<td>121,8</td>
</tr>
<tr>
<td>1990</td>
<td>293.838 (1991)</td>
<td>3.801</td>
<td>77,3</td>
</tr>
<tr>
<td>2000</td>
<td>345.423</td>
<td>7.580</td>
<td>45,6</td>
</tr>
<tr>
<td>2010</td>
<td>430.997</td>
<td>8.561</td>
<td>50,3</td>
</tr>
</tbody>
</table>

Font: Idescat i elaboració pròpia

Comparem ara mitjançant la Figura 7.1 les tendències entre la densitat i l’UDF (factor quotient):

![Fig. 7.1 Comparació entre densitat i UDF (Factor quocient al llarg d'un eix temporal)](image-url)
La lectura a extreure de la Taula 7.1 és que la població creix entre els anys 1956 i 2010 amb factor 3,9, mentre que la zona urbanitzada ho fa amb un factor 9,4. Així doncs, els valors de densitat poden donar lloc a lectures errònies pel que fa a l’anàlisi de com ha evolucionat el procés de creixement demogràfic de la comarca, ja que no es té en compte la tipologia de creixement seguit pel procés d’urbanització.

Amb l’UDF podem extreure que el procés d’urbanització creix a un ritme molt més gran que la variació demogràfica. D’aquesta manera, podem afirmar que aquest procés d’urbanització de la comarca ha estat desmesurat comparat amb el creixement demogràfic.

D’un total de 213.402 habitatges a la comarca, només un 77,9% són habitatges principals (el 22,1% restant queden repartits en segones residències i habitatges buits més o menys al 50%). D’aquests 166.198 habitatges principals, només en un 47,1% (36,7% respecte el total) hi viuen tres o més persones, de manera que en el 52,9% restant hi viuen dues o menys persones (Idescat, 2011).

Així doncs, queda palès un creixement urbanístic de tipus *Urban sprawl*, amb la proliferació d’urbanitzacions que es poden veure clarament a la Figura 6.5, a la zona més interior de la comarca. Aquest tipus de creixement de la comarca ha fet que l’impacte sobre el medi sigui molt major pel que fa a la impermeabilització del sòl, que si hi hagués hagut un creixement més compacte.
7.2 Relació entre la tendència dels usos del sòl i el balanç hídric de l’aquífer

Fig. 7.2 Evolució temporal (eix X) del percentatge d’usos del sòl (agricola, forestal i urbà) (ha), precipitació llindar (mm) (volum mínim a partir del qual es comença a escolar part de l’aigua precipitada) i coeficient d’escolament calculats amb el mètode racional (llinia vermella de 7.2B), pluviometria anual (mm), recàrrega d’aigua a l’aquífer (hm³) i escolament d’aigua sobre sòl urbà (hm³) (eix Y). Totes les variables fan referència a la totalitat de la comarca del Maresme. A la Figura 7.2A les línies verticals fan referència als períodes de precipitació llindar que es descriuren més endavant en aquest apartat.
Com podem veure a la Figura 7.2B, el coeficient d’escolament (aigua que s’escola superficialment en tant per u) i la pluja anual són variables que tenen un mateix patró de comportament dins les seves pròpies escales de magnitud.

El comportament uniforme del coeficient d’escolament respecte la pluja, el qual hem explicat en l’apartat de Metodologia que estava modulat pel canvi d’usos del sòl, podria quedar justificat per una compensació en la variació d’aquests usos.

L’increment de la zona urbana, quasi totalment impermeabilitzada, provoca un major escolament superficial (aigua urbana, Fig. 7.2B) i una menor infiltració cap a l’aqüífer, fets que provocarien un increment del coeficient d’escolament. La zona agrícola, amb un coeficient d’escolament més baix que la zona urbanitzada, contribueix també a l’increment del coeficient degut a la disminució dràstica de la seva extensió. Com podem veure a la Figura 7.3.1 i 7.3.2 i la Figura 6.4, en períodes en els quals la precipitació és baixa o mitja, la zona agrícola és la principal via de recàrrega dels aqüífers.

Tot i això, l’augment de la zona forestal, ús del sòl que contribueix més a la infiltració a l’aqüífer, compensaria l’efecte de creixement de la zona urbana i de decreixement de la zona agrícola ja que, a la zona forestal, les recàrregues són més puntuals i voluminoses; només esdevingudes quan la precipitació caiguda supera la precipitació llindar. Així aquestes recàrregues són volumètricament molt importants, amb màxims de 60 mm de recàrrega en un sòl dia (NABLA and ACA 2009) (Fig. 7.3.3).

Aquest augment de la massa forestal també hauria influït en la recàrrega de l’aqüífer negativament. El segrest d’aigua que ha provocat aquest augment de la superfície forestal és bastant significatiu, en termes d’usos del sòl el canvi no és tan pronunciat com els dels usos agrícoles o urbans però en termes de recàrrega cal contemplar-lo ja que és una gran extensió. L’any 1956 hi havia 17.800 ha. de zona forestal en canvi actualment estem al voltant de les 23.500 ha. El consum mitjà estimat d’aigua d’un bosc temperat són 300 L·m⁻² (Lewis, 1968); això aplicat a la nostra àrea d’estudi suposa que a l’any 1956 el bosc consumia uns 50 hm³ d’aigua i actualment uns 70 hm³. Si ho comparem amb el total d’aigua que cau a la comarca (240 hm³) ha passat de ser un 20% a un 30% del total. Això significa una pèrdua en la recàrrega de 20 hm³ per l’augment del segrest forestal, que si la sumem a les pèrdues que ha generat l’augment de la urbanització (aigua urbana: 40 hm³) veiem que, tot junt, suposa un 25% de la precipitació anual acumulada que ja no va a parar a l’aqüífer. Comparant-ho amb el consum humà, el bosc ha passat a consumir com tota la població del Maresme.
Pel que fa a la precipitació llindar, definida com la precipitació mínima a partir de la qual comença a haver-hi escorrentia superficial, podem dividir la seva evolució en tres etapes clarament diferenciades segons el comportament que tenen els usos dels sòls (Fig. 7.2A):

1. **1956-1990**: La P_0' creix notablement. El significat d’aquest comportament és que cada vegada es necessita més quantitat de precipitació per a que una part d’aquesta sigui escorrentia. L’aument de la zona urbanitzada produiria l’efecte contrari al descrit, però queda superat per la suma de l’increment de zona forestal i la zona agrícola que encara queda.

2. **1990-2000**: la P_0' disminueix lleument. El significat d’aquest comportament és que, d’una manera lleu, cada vegada es necessita menys quantitat de precipitació per a que part d’aquesta sigui escorrentia. Ens trobem en el període de variació d’usos del sòl més significatiu (Taula 6.2). L’extensió de zona agrícola disminueix de manera més notable que a l’anterior període. La zona forestal, creixent a un ritme semblant que en l’etapa 1956-2000, no és capaç de compensar l’efecte d’un increment més accentuat de la zona urbanitzada.

3. **2000-2014**: la P_0' disminueix notablement. El significat d’aquest comportament és que, d’una manera notable, cada vegada es necessita menys quantitat de precipitació per a que part d’aquesta sigui escorrentia. La tendència fins el 2004 és semblant a la de l’anterior període amb una mica menys de variació en els usos. Però a partir de 2005 la P_0' disminueix amb un pendent molt inclinat. Aquest comportament queda explicat pel manteniment de les tendències d’agricola (disminueix) i urbanitzada (creix) i un canvi en la tendència de la forestal, la qual disminueix lleument.

Tornant a la zona urbanitzada, a la Figura 7.2D podem veure com l’aigua urbana (quantitat d’aigua que s’escola superficialment per territori urbà) creix de manera significativa, passant de 5 hm3 el 1956 a 49 hm3 el 2014. Aquest fet és degut bàsicament a l’augment en extensió d’aquest tipus de sòl, passant de 907 ha. (1956) a 8.561 ha. (2010) (Taula 6.1).
Aquest fet comporta dues conseqüències immediates amb connotacions positives o negatives depenent de l’enfocament d’aprofitament hídrlic que donem a la problemàtica.

Des d’un punt de vista d’aprofitament, un augment de l’aigua urbana com el representat a la Figura 7.2D suposa un augment de volum d’aigua que pot incorporar-se a la xarxa de subministrament. Al Maresme, el balanç d’extracció d’aigua a l’any 2007 i 2012 va ser de 19.1 hm3 i 18.4 hm3, respectivament (ACA). Si comparem el valor d’aigua necessària per les activitats agrícoles, industrials i ramaderes (15.3 hm3), que s’està extraient actualment de l’aquífer, amb el volum d’aigua perdut superficialment a les zones urbanes (49 hm3), tenim que amb un 31% del que es perd n’hi hauria prou per satisfer la demanda hídrira d’aquestes activitats. Si fem aquest càlcul per l’abastament urbà (3.1 hm3) veiem que només necessitariem un 6% del que hem anomenat anteriorment “aigua urbana”. Pel que fa a l’aigua total que es consumeix a la comarca, que s’importa a través de la xarxa Ter-Llobregat, és d’uns 25 hm3 (calculat a partir d’un consum diari per habitant de 150 L·dia$^{-1}$). Si només s’aprofités un 50% d’aquesta “aigua urbana”, que se’n va al mar directament per la xarxa de clavegueram sense interactuar amb l’aquífer, podriem suplir les necessitats de la comarca totalment. Aquest fet, tot i comportar certes inversions en infraestructures d’emmagatzematge i transport, permetria reduir l’índex d’explotació de l’aquífer de la massa 18 i això en milloraria l’estat i conseqüentment la SGD.

En canvi, des d’un punt de vista oceanogràfic, l’increment de l’aigua urbana comporta que tota l’aigua que anteriorment s’infiltrava cap a l’aquífer i arrossegava nutrients al mar via SGD en aquesta zona ja no s’infiltra, i que per tant puguem preveure una disminució del volum de descàrrega d’aigua subterrània al mar, que podria comportar una reducció de la producció pesquera (Fig. 7.22) i una salinització dels pous cada cop més accentuada.
7.3 Relació entre la tendència dels usos del sòl i els nitrats a la zona continental

Generalment tenim una tendència a la baixa pel que fa a la concentració de nitrats als pous (Fig. 6.27, 6.32, 6.36 i 7.4), passant d’una mitjana al global dels pous estudiats del Maresme de 88 mg·L\(^{-1}\) a l’etapa 1994-1999 a 77 mg·L\(^{-1}\) a l’etapa 2011-2015. Els valors alts (Rang: 112-160 mg·L\(^{-1}\)) corresponents a l’etapa 2005-2010 (Fig. 7.4), són deguts a la pujada de nitrats provocada per les precipitacions per sota de la mitjana (600 mm·any\(^{-1}\)) de l’any 2006 i 2007 (381 i 374 mm·any\(^{-1}\), respectivament). La quantitat de nitrats al sòl s’hauria anat concentrant degut a la manca de precipitacions necessàries per generar recàrrega a l’aqüífer. Al setembre de 2006 detectem una precipitació de més de 100 mm (Fig. 6.21) a la zona on tenim els pics (Fig. 6.22, 6.23 i 6.24), fet que hauria produït una recàrrega de l’aqüífer enduent-se els nitrats acumulats del sòl.

La tendència a la baixa de les concentracions de nitrats podria ser deguda a la disminució que pateix la zona agrícola a partir de l’any 1956 i fins el 2010 (Fig. 6.1 a 6.5). La concentració de nitrats als aqüífers ve degut en gran part a l’activitat agrícola, per l’ús extensiu de diferents tipus de fertilitzants sobre els camps de conreu, amb la posterior lixiviació d’aquests components cap al subsòl (p.e. Wang et al., 2016 and Shalev et al., 2015). Tot i aquesta tendència a la baixa
podem apreciar que la majoria de pous estudiats estan contaminats, amb valors mitjans d’entre 75 i 90 mg·L⁻¹. Podem descartar les dejeccions ramaderes com a causa d’aquesta variació de nitrats, ja que el Maresme és una de les comarques amb menys dejeccions ramaderes de Catalunya (677.755 T de N·a⁻¹) (ACA, 2007).

A la Figura 6.32A on fins el 2004 (mitjana de 95 mg·L⁻¹) creixia la concentració de nitrats (es trobava sota d’una zona agrícola), l’any 2009 (mitjana de 52 mg·L⁻¹), després de la sequera, comença a disminuir ja que es troba en zona urbanitzada dins els límits d’Arenys de Mar.

Cal dir que, tot i que els valors de nitrats disminueixin, la concentració segueix sent més alta del que assenyala l’Organització Mundial de la Salut (OMS) com a valor màxim per als nitrats en l’aigua de consum humà, la qual determina el límit en 50 mg·L⁻¹. L’Annex I de la Directiva comunitària 91/676/CEE també considera com a aigües afectades totes les aigües subterrànies que presentin o puguin arribar a presentar concentracions de nitrats superiors a 50 mg·L⁻¹. Així doncs, tot i que l’explotació d’aquests aqüífers no està destinada exclusivament a l’ús de boca, cal ressaltar que les concentracions de nitrats en els pous analitzats és notablement alta, amb mitjanes entre 60 i 160 mg·L⁻¹ en els pous contaminats.
7.3.1 Nitrats, Nivells piezomètrics i Pluviometria.

Fig. 7.5 Evolució temporal (eix X) de les concentracions de nitrats (mg·L⁻¹) en funció de la distància al mar (A, B, C) i nivells piezomètrics en diferents àrees (D), volum de recàrrega (hm³) (línia vermella) i precipitació anual (mm) (E) (eix Y). L’àrea ombrejada amb taronja correspon a l’època de sequera generalitzada a les conques internes de Catalunya (2007-2008).
Com podem veure a les Figures 6.27, 6.32 i 6.36, entre els anys 2007 – 2008 hi ha un increment molt notable en la concentració de nitrats (pics de 160 fins a 322 mg·L⁻¹) a totes les àrees d’estudi de la comarca del Maresme, exceptuant algun dels pous. Aquest augment de la concentració de nitrats podria ser deguda al període de sequera registrat a Catalunya entre els anys 2006 i 2008, que fins i tot van obligar a importar aigua amb vaixells des de França (March and Saurí, 2013). Aquest període de sequera generalitzada també s’observa en el registre de precipitacions a nivell local (Fig. 6.21, 6.22, 6.23 i 7.5E) i en una lleugera disminució de nivells piezomètrics en determinats pous de l’àrea central (de -0.84 a -0.87 m.s.n.m. en el pou 08029-0027) (Fig. 7.5D).

Aquesta disminució de les precipitacions va provocar, probablement, que l’aqüífer no es recarregués suficientment, de manera que la concentració de nitrats va augmentar notablement amb un pic màxim de 322 mg·L⁻¹ a l’àrea d’Argentona; no perquè augmentés la quantitat total de solut (nitrats), sinó perquè va disminuir la quantitat total de dissolvent (aigua). A més, durant el període de sequeres, es baixa el subministrament d’Aigües Ter-Llobregat (ATLL), pel que cal extreure més aigua dels pous locals fet que provocaria una concentració de nitrats en aquests.

Podem veure la correlació entre l’augment de nitrats i la baixada de nivells en el període de sequera a la Figura 7.5.

Podem comprovar certa correlació entre pluges i nivells piezomètrics a Argentona (Fig. 7.5). Degut al fet que no es tracta d’una correlació directa i estrictament proporcional, cal tenir en compte que els nivells piezomètrics també es veuen afectats per altres factors, com podrien ser els usos del sòl de la superfície de l’aqüífer (Fig. 6.1 a 6.5), les extraccions o la distribució no uniforme de les pluges.

Podem veure com a la sequera 2006-2008 els nivells van baixar amb una tendència similar a les precipitacions. També podem comprovar com les precipitacions del Maresme són molt irregulats, tant anualment (Fig. 7.5D) com estacionalment (NABLA, 2005).

També veiem que els pous més pròxims al mar i, per tant, situats a les zones més planeres de la comarca, presenten mitjanes més altes de nitrats que els pous situats més a l’interior. Aquest fenomen podria descriure’s per la utilització d’aquestes terres més planeres per part de l’ús agrícola (Fig. 6.1 a 6.5 i 7.5).
7.4 Relació entre la tendència dels usos del sòl i a la conductivitat a la zona continental.

Fig. 7.6 Evolució temporal (eix X) de la precipitació (mm), recàrrega d’aigua a l’aqüífer (hm3) (línia vermella), nivells piezomètrics (m.s.n.m) i conductivitat a 20°C (µS·cm$^{-1}$) (eix Y). La llegenda de la conductivitat i dels nivells piezomètrics mostra entre parèntesis la distància en línia recta entre el pou i la costa i seguidament l’àrea en la que es troba (AC fa referència a l’àrea central i AN a l’àrea nord). Al gràfic D la línia negra (08009-0027) segueix l’eix esquerra.
Per analitzar aquesta variable, prendrem dades de tres pous de l'àrea central i
tres de l'àrea nord (Fig. 7.6, A, B i C). No prenem cap mostra de l'àrea sud ja que
disposem d'un únic pou amb dades de conductivitat. Com podem veure a la
Figura 7.6, la distància al mar afecta en dos sentits al comportament de l'evolució
de la salinitat.

En primer lloc, els pous més a prop de la zona litoral (08029-0026 i 08006-0016)
(Fig. 7.6C) tenen uns nivells mitjans de salinitat més elevats (1640 i 1350 µS·cm⁻¹)
que els pous situats més cap a la zona interior (08009-0061 i 08007-0068) (900
i 700 µS·cm⁻¹) (Fig. 7.6A).

En segon lloc, els pous més a prop de la zona litoral (08029-0026 i 08006-0016)
(Fig. 7.6C), tenen fluctuacions més accentuades (Rang: 900-2000 µS·cm⁻¹) que
els pous situats més a la zona interior (Rang: 600-1000 µS·cm⁻¹).

Aquests dos fets són deguts a la proximitat al mar d'aquests dos pous. La
proximitat al mar provoca aquesta gradació permanent de més a menys salinitat
entre els pous 08029-0026 i 08009-0061 de l'àrea d'Argentona i 08006-0016 i
08007-0068 de la zona d'Arenys de Mar.

A més, la possible pressió antròpica sobre aquest aqüífer, ja que l'excés de
bombament de les aigües subterrànies en aqüífers costaners reduceix el nivell
d'aigua dolça subterrània i canvia la interfície aigua dolça-salina interior
significativament (Martínez and Bocanegra, 2002), afegit a la poca distància amb
la zona litoral provoca que aquests dipòsits d'aigua siguin més sensibles a una
possible intrusió salina després d'una baixada de nivells.

Com podem observar a la Figura 7.6D, l'etapa en què el nivell piezomètric del
pou 08029-0027 està disminuint a causa de l'època de sequera iniciada a
principis de 2006, la conductivitat del pou 08029-0026, molt a prop (0,3 km) del
08029-0027, augmenta considerablement (de 1400 l'any 2006 a 2000 µS·cm⁻¹ l'
any 2009), el que podria suposar una intrusió d'aigua marina, reconeguda com
un dels processos de salinització més estesos i importants a les regions
costaneres (Russak et al., 2015). La zona on hi ha aquests pous observem valors
de conductivitat de 2035 µS·cm⁻¹ a l'etapa 1995-1999 i això coincideix amb uns
nivells piezomètrics per sota el nivell del mar. En les etapes posteriors seguim
veient aquesta tendència, tot i que hi ha una certa millora. Aquests fets ens
indicarien que hi ha efecte de la intrusió salina.

Altres nivells piezomètrics observats també ens indiquen una dinàmica similar
(Fig. 6.28B, 6.37 i 7.5D), on aquests nivells estan per sota del nivell del mar; això
podria indicar que molts d'aquests pous estan salinitzats i que segurament
l'aqüífer està sotmès a una explotació massa intensa.

A partir d'aproximadament el 2010, quan el nivell piezomètric del pou 08029-
0027 (Fig. 7.6D) comença a recuperar-se, la conductivitat del 08029-0026
disminueix (Fig. 7.6C), evidenciant la interrelació entre aquests dos factors.
7.5 Anàlisi i correlacions entre les evolucions dels paràmetres fisicoquímics a la zona costanera i els usos del sòl per zones

Seguidament es comparen les tendències seguides pels nitrats, el component de la SGD més analitzat en diferents ubicacions a tot el món (Santos et al., 2008; Weinstein et al., 2011), els silicats i les variacions dels usos del sòl exposades en l’apartat Resultats, per dues àrees d’estudi seleccionades: àrea central i àrea nord.

![Diagrama](image)

Fig. 7.7 Evolució i tendències de nitrats (mg·L⁻¹) i silicats (mg·L⁻¹) a la desembocadura de la riera d’Argentona i usos del sòl a l’àrea central.
Fig. 7.8 Evolució i tendències de nitrats (mg·L⁻¹) i silicats (mg·L⁻¹) a la platja de Cavaió i usos del sòl de l’àrea nord.

La primera aproximació que podem extreure és la correlació entre la disminució de l’agricultura i la disminució de nitrats (Fig. 7.7) amb una mitjana de 1.06 mg·L⁻¹ durant l’etapa 1994-1999 i de 0.44 mg·L⁻¹ durant el 2010-2012, el que pot suggerir que la zona agrícola és una de les fonts principals de nitrats de la SGD. Aquesta hipòtesi es veu reforçada per un estudi aplicat a Kauai (Hawai, USA), que afirma que els fertilitzants agrícoles són la font de nitrogen primària de la SGD (Knee et al., 2008). Als altres punts de mostreig (Fig. 6.40 i 6.41), tot i que en menor mesura, veiem una tendència similar; una disminució progressiva de la concentració de nitrats. Per exemple, a la platja de Callao passa d’una mitjana de 0.7 mg·L⁻¹ a una de 0.07 mg·L⁻¹ al cap de 18 anys.

Aquesta tendència a la disminució dels nutrients també s’ajustaria als silicats a la zona de la desembocadura de la riera d’Argentona (Fig. 7.7) amb una mitjana l’etapa 1994-1999 de 0.23 mg·L⁻¹ a una de 0.06 mg·L⁻¹ l’etapa 2010-2012, però no a la platja de Cavaió (Fig. 7.8), tot i que la tendència pel que fa als nitrats és molt més notable. A l’àrea central (Fig. 7.7), veiem com la disminució en les concentracions de nitrats i silicats s’ajusten al període en el qual la variació en els usos del sòl és major, sobretot pel que fa a la zona agrícola (disminució de 4018 ha. el 1956 a 1032 ha. el 2000) i la zona urbanitzada (increment de 189 ha. el 1956 1659 ha. el 2000) (Taula 6.2).

Així doncs, l’àrea central, amb una variació dels usos del sòl més accentuada que l’àrea nord, amb una gran urbanització de la zona agrícola (Fig. 6.8, 6.9 i 6.11) hauria afectat en major mesura al canvi en les tendències seguides per les concentracions de nitrats i silicats a la zona costanera.
7.6 Anàlisi i correlacions entre les evolucions dels paràmetres fisicoquímics de la zona costanera.

Fig. 7.9 Evolució de les mitjanes de salinitat (psu) a diferents punts del Maresme i de la costa catalana. L’Estartit i la Badia dels Alfacs estan sota influència de rius.

Fig. 7.10 Evolució de la salinitat mitjana (psu) per etapes de 5 anys a cada punt de mostreig de la zona costanera del Maresme.
Pel que fa a la salinitat de la zona costanera del Maresme podem destacar la fluctuació a la desembocadura de la riera d’Argentona, essent el punt de mostreig més variable, ja que representa tant el màxim (38,3 psu) com el mínim (35,4 psu) dels valors de salinitat de tots els punts de mostreig analitzats (Fig. 6.33).

La mitjana de la salinitat a la primera etapa a la desembocadura de la riera d’Argentona era molt baixa (36,8 psu) en comparació amb la salinitat actual (38 psu): aquest fet pot tenir a veure amb la disminució de l’aportació d’aigua dolça per part d’aquesta riera al llarg dels darrers 25 anys (Fig. 7.10). Els valors que té en aquest període són similars a punts on la salinitat no és alta degut a la influència dels rius (amb valors pròxims a 35 psu), per tant, el volum d’aigua dolça que descarregava la riera d’Argentona podia ser força important. Cal tenir en compte que gran part de l’aportació d’aigua dolça al mar en aquesta zona es fa per mitjà de SGD, component molt important en els cicles hidrològics que inclouen aqüífers costaners (Burnett et al., 2006; Moore, 2010; Taniguchi et al., 2002).

A la Figura 7.10 es presenten els diferents valors presos pel paràmetre salinitat en la desembocadura de rieres o en platges de diferents punts de la comarca del Maresme. Les tendències obtingudes mitjançant aquests valors escenifiquen de manera clara una pujada de la salinitat des de l’any 1994 fins al 2012. Podríem extreure doncs, que el mar, en la seva zona més propera a la zona continental, s’estaria salinitzant.

Amb l’ajuda de la Figura 7.9, amb diferents punts de mostreig al llarg de la costa, podem evidenciar no només que les tendències són similars a tots els punts de mostreig del Maresme, sinó que també ho són als altres punts de la costa de Catalunya on la salinitat mitjana de la zona costanera ha augmentat de 37.2 psu a 37.8 psu.

Les estacions situades a la Gola del Ter i Els Alfacs presenten valors baixos de salinitat (35.7 i 35 psu, respectivament) degut a la gran aportació d’aigua dolça pels rius Ter i Ebre, pel que no són extrapolables des del punt de vista de la nostra zona d’estudi.

La salinitat dels punts de zona costanera pot haver pujat tant per una disminució de la descàrrega d’aigua dolça al mar a través de l’aqüífer (SGD) com per una disminució de la descàrrega directe de les rieres, ja que no és més que una aportació d’aigua dolça al medi marí. Per comprovar quina via del cicle hidrològic té més importància en l’etapa de descàrrega al mar, s’analitzen a continuació l’evolució dels diferents paràmetres en els quals hi juga un paper clau la SGD.

La SGD és una gran aportació de nutrients al mar (Garcia-Solsona et al., 2010). En conseqüència, l’anàlisi de l’evolució temporal de silicats i nitrats (Johannes, 1980; Johannes and Hearn, 1985), així com la clorofil·la, com una aproximació de la variació de la biomassa de fitoplàncton (Eisner et al., 2015), ens pot aportar informació complementària per entendre la dinàmica de la descàrrega d’aigua
Impactes de la urbanització en la dinàmica dels aqüífers costaners

subterrània a la costa del Maresme. Es presenten conjuntament en la següent figura l'evolució de la concentració de silicats, nitrats i clorofil·la a la desembocadura de la riera d’Argentona i a la Platja de Cavaió, al municipi d’Arenys de Mar.

![Diagrama de les concentracions de clorofil·la, nitrats i silicats](image)

Fig. 7.11 Evolució de la concentració de clorofil·la (µg·L⁻¹), nitrats (mg·L⁻¹) i silicats (mg·L⁻¹) a la desembocadura de la riera d’Argentona i a la Platja de Cavaió.

Com veiem a la Figura 7.11, a partir de 1994 (època en la qual comencem a tenir dades dels paràmetres representats) i fins el 2012, les tendències de concentracions de nitrats, silicats i clorofil·la són a la baixa a la desembocadura de la riera d’Argentona. La disminució de la clorofil·la, com indicador de l’activitat biològica, a la zona costanera de la riera d’Argentona passa de 3,5 µg·L⁻¹ (mitjana 1994-1999) a 1,5 µg·L⁻¹ (mitjana 2010-2012) (Fig. 7.11). La disminució dels nutrients i de la clorofil·la, així com la salinitat, indicaria que des de 1994 hi hagut una disminució de la descàrrega d’aigua dolça al mar amb la conseqüent disminució de l’aportació de nutrients. En conseqüència hi hauria a la zona costanera una disminució de l’activitat biològica que podria influenciar en els cicles biogeoquímics costers. A més, queda encara més evidenciada la importància de la riera d’Argentona com a principal via de descàrrega al mar i per tant de nutrients, sobretot pel que fa a l’etapa anterior a l’any 2000.
El 1995 podem veure un pic considerable de nitrats, el qual correlaciona amb un pic de clorofil·la, ja que el nitrogen és vital pel desenvolupament de la vida al mar (Bear, 1964; Santoro, 2010).

En canvi, el 1998 veiem un pic tant de nitrats com de silicats, tot i que no apareix cap variació en les concentracions de clorofil·la. Aquesta correlació nul·la pot ser deguda a que en aquest determinat moment algunes corrents marines s’emportessin els nutrients cap a un altre punt de la costa de la comarca. Tanmateix, també pot ser degut a que les mostres pels silicats i nitrats es prenguessin en determinats moments en que els nutrients encara no haguessin estat consumits pel fitoplàncton, de manera que no es detectarien pics de clorofil·la.

Actualment la part superficial, corresponent a la riera d’Argentona en si, no presenta cursos fluvials continuos (Amador et al., 2003).

![Imatge de la Riera d’Argentona al seu pas per Mataró (19 de Novembre de 2015).](image)

A la Figura 7.13, veiem com les concentracions mitjanes de silicats a la costa catalana segueixen tendències a la baixa, tot i que es troben bastant estabilitzades. Cal destacar el punt de mostreig de la Gola del Ter, on les concentracions augmenten. El vuitanta-cinc per cent del silici dissolt present als mars i oceans és subministrat per les descàrregues d’aigua del continent (Tréguer et al., 1995). A la desembocadura de la riera d’Argentona, com hem pogut constatar amb la Figura 7.11, la concentracions de silicats van a la baixa a partir de l’any 2000.

Nosaltres creiem que l’entrada de nutrients s’ha paralitzat degut a la impermeabilització de les zones de dipòsits al·luvials a les planes litorals. Quan plou, l’aigua de precipitació, a l’entrar a l’aqüífer, impulsa amb més força i arrossega més nutrients al mar ja que té valors més alts de transmissivitat que l’aqüífer granític. Per això creiem que, tot i que a l’aqüífer hi ha valors alts de nitrats, veiem una regressió en la descàrrega d’aigua al mar a mesura que s’urbanitzen aquestes zones de recàrrega.
Fig. 7.13 Evolució de les mitjanes de concentracions de silicats (mg·L⁻¹) diferents punts de mostreig de Catalunya (Cadaqués, Gola del Ter, Platja d’Aro, Blanes Calella de la Costa, Argentona, Cavaïó, Ocata, Sitges, Altafulla, Montroig del Camp, Ametlla de Mar i Els Alfacs). Les línies vermelles limiten la nostra àrea d’estudi, el Maresme.

Fig. 7.14 Evolució de les mitjanes de concentracions de clorofil·la (µg·L⁻¹) a diferents punts de mostreig de Catalunya (Cadaqués, Gola del Ter, Platja d’Aro, Blanes Calella de la Costa, Argentona, Cavaïó, Ocata, Sitges, Altafulla, Montroig del Camp, Ametlla de Mar i Els Alfacs). Les línies vermelles limiten la nostra àrea d’estudi, el Maresme.
Actualment, pel que fa a la clorofil·la, són importants les concentracions als punt de la Gola del Ter (2.6 µg·L⁻¹) i els Alfacs (5.9 µg·L⁻¹), ja que estan afectats per rius (Fig. 7.14). A més, aquests dos punts són molt rics en biodiversitat, ja que coincideixen amb el Parc Natural del Montgrí, les Illes Medes i el Baix Ter (Gola del Ter) i el Parc Natural del Delta de l’Ebre (Els Alfacs).

Pel que fa al Maresme, novament destacar el punt de la desembocadura de la riera d’Argentona, amb concentracions importants en l’etapa 1994-1999 però que van a la baixa durant les etapes següents. (Fig. 7.14).

![Fig. 7.15 Evolució de les mitjanes de concentracions de nitrats (mg·L⁻¹) la zona costanera del Maresme i Camp Mitjà.](image)

A la Figura 7.15 veiem l’evolució de nitrats a la comarca del Maresme (i a dos punts de mostreig de camp mitjà. S’aprecia que les mitjanes a l’àrea de Mataró (0.9 mg·L⁻¹) són més elevades que a la resta de la comarca (0.4 mg·L⁻¹) durant el primer període estudiat (1994-1999) i que posteriorment, s’han anat reduint, igualant-se amb altres punts de mostreig de la comarca.
Comparem ara l’evolució de les mitjanes de nitrats (Fig. 7.17), silicats (Fig. 7.18) i clorofil·la (Fig. 7.19) per dos punts de mostreig de camp mitjà, situats més mar endins que els punts de zona costanera (aproximadament 1800 m).

Els dos punts escollits han estat Arenys camp mitjà (a comparar amb punt de mostreig Cavaió) i Masnou camp mitjà (a comparar amb punt de mostreig Ocata).

Fig. 7.16 Distribució geogràfica de les platges i camp mitjans analitzats

Fig. 7.17 Evolució de les mitjanes de nitrats (mg·L⁻¹) a 2 punts de costa i 2 punts de camp mitjà.

Fig. 7.18 Evolució de les mitjanes de silicats (mg·L⁻¹) a 2 punts de costa i 2 punts de camp mitjà.
Impactes de la urbanització en la dinàmica dels aqüífers costaners

Fig. 7.19 Evolució de les mitjanes de clorofil·la (µg·L⁻¹) a 2 punts de costa i 2 punts de camp mitjà.

Com es pot veure a les Figures 7.17 i 7.18, les concentracions de nitrats i silicats a camp mitjà són radicalment diferents a les de la zona costanera. A camp mitjà les concentracions mitjanes d’aquests paràmetres són molt més petites (actualment 0.04 mg·L⁻¹ de nitrats i 0.02 mg·L⁻¹ de silicats). Fins i tot les tendències que segueixen són completament diferents.

Aquestes diferències podrien suggerir que l’efecte de la SGD és molt més notable a zones molt properes a la costa, de manera que dos quilòmetres mar endins (punts de mostreig de camp mitjà analitzats a les Fig. 7.17, 7.18 i 7.19) l’efecte de descàrrega de nutrients al mar que produeix la SGD ja seria quasi inapreciable. La SGD tindria doncs, un efecte important només a zones pròximes la costa.

A la Figura 7.19 podem veure que les concentracions de clorofil·la a camp mitjà (0.64 µg·L⁻¹) també són diferents que a la zona costanera (1.25 µg·L⁻¹). Tot i això, aquesta diferència no és tan accentuada com en el cas dels nitrats i silicats.

La variació entre les tendències de silicats i nitrats amb la de clorofil·la pot ser degut a la descàrrega d’aigües residuals mar endins, mitjançant llargues canonades. Aquesta hipòtesi es veu reforçada amb l’Ordre del 13 de juliol de 1993 “Instrucció pel projecte de conduccions d’abocaments des de terra al mar” (BOE Nº 178, 27 de juliol de 1993), que preveu que els emissaris submarins han d’arribar a un mínim de 500 metres de distància de la costa.

Segons el document de l’Agència Catalana de l’Aigua titulat “Emissaris submarins del litoral català”, tenim dos canonades relacionades amb les nostres zones d’estudi: el Masnou a 1.300 m i Arenys de Mar a 1.600 m. Aquestes dues canonades (tot i potser caldria considerar altres emissaris propers que podrien afectar per corrents) podrien ser les causants de l’elevada concentració de clorofil·la a la zona de camp mitjà de davant d’aquests dos municipis, ja que es troben a 1.800 m de la costa.
Fig. 7.20 Relació entre silicats (mg·L⁻¹) i salinitat (psu) a diferents punts del Maresme.

Com podem veure a la Figura 7.20, existeix certa correlació inversa entre els valors mitjans de salinitat i silicats a la comarca del Maresme. Aquesta relació suggeix que hi ha relació entre l’aportació d’aigua dolça via SGD i una variació de salinitat.

Els silicats són bons elements traça de la SGD ja que no són consumits tan ràpidament com els nitrats (aquests últims són macronutrients a la zona climàtica on està situat el Maresme), pel que es mantenen a la zona costanera durant més temps, pel qual és més fàcil mostrejar-los.

Així doncs, la Figura 7.20 ens permetria confirmar que un augment dels silicats (augment de la SGD), impactaria en la zona costanera més pròxima al litoral provocant una baixada de salinitat, ja que augmentaria l’aportació d’aigua dolça per via subterrània.
La tendència presentada per les dades pertanyents a la desembocadura de la riera d’Argentona són les que segueixen més bé aquesta correlació inversa, fet que podria provar que en algun moment del nostre període d’estudi la descàrrega d’aigua subterrània va ser important en aquesta zona.

En canvi, a la Figura 7.21 veiem un núvol de punts, és a dir, que no s’aprecia relació entre un augment de silicats (augment de la SGD) i una disminució de la salinitat. El fet que no hi hagin valors alts de silicats ni baixos de salinitats en aquests punts de mostreig ens pot donar a entendre que en aquestes zones no hi ha aportació d’aigua dolça via SGD.

7.7 Implicacions dels resultats obtinguts al projecte: ambientals, socials i econòmiques.

Els punts anteriors de discussió i resultats poden servir per extreure una sèrie d’implicacions conseqüència de les variacions i fenòmens analitzats per a les diferents variables i la seva interrelació. Es presenten a continuació algunes de les implicacions ambientals, socials i econòmiques més destacades.

<table>
<thead>
<tr>
<th>Implicació</th>
<th>Nivells d’implicació</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreixement de l’aportació de nutrients</td>
<td>Ecològic, Econòmic, Social</td>
</tr>
<tr>
<td>Intrusió salina</td>
<td>Econòmic, Edàfic, Econòmic, Social</td>
</tr>
<tr>
<td>Contaminació dels aqüifers</td>
<td>Edàfic, Econòmic, Social, Salut humana</td>
</tr>
<tr>
<td>Pèrdua de diversitat de paisatge</td>
<td>Ecològic</td>
</tr>
<tr>
<td>Fragmentació ecològica</td>
<td>Ecològic</td>
</tr>
<tr>
<td>Perill d’incendis a les urbanitzacions</td>
<td>Econòmic, Social, Salut humana</td>
</tr>
<tr>
<td>Sobirania alimentària de la comarca</td>
<td>Econòmic, Social</td>
</tr>
</tbody>
</table>

- **Decreixement de l’aportació de nutrients al mar**: La disminució de l’aportació de nutrients pot provocar un deteriorament de l’ecosistema marí costaner. Com podem veure a la Figura 7.22, la Llotja d’Arenys de Mar ha patit una disminució notable pel que fa a la quantitat de captures (kg). Aquest fet pot estar relacionat amb una disminució de la descàrrega d’aigua submarina (SGD), la qual ha aportat cada vegada menys nutrients al mar (Fig. 7.11 i Fig. 7.15). La disminució d’aportacions de nitrats i silicats, així com d’altres nutrients com els fosfats, per exemple, ha fet que disminuís la concentració de clorofil·la (Fig. 7.14), és a dir, de producció primària. Aquest és un dels factors que ha desencadenat en una reducció del volum de pesca, ja que si la base de la xarxa trònica (fitoplàncton,
mesurat amb la concentració de clorofil·la) disminueix la seva concentració, això té una relació directa amb els altres nivells superiors de la cadena alimentaria. Així doncs, podem afirmar que la reducció de clorofil·la fa que es redueixi la pesca a tots els nivells.

Altres derivades d’aquest efecte del decreixement de l’aportació de nutrients serien a illes amb molta urbanització litoral, on es podria veure molt afectat l’ecosistema aquàtic, reduint la biodiversitat i el paisatge submarí. Aquest impacte es veuria reflectit en tot l’entorn socioeconòmic enfocat als recursos del mar, com podria ser el turisme d’activitats subaquàtiques o la pesca esportiva.

- **Intrusió salina:** Com hem vist en apartats anteriors l’explotació dels aqüífers ha provocat una intrusió salina en moltes zones pròximes a la costa de la comarca. Aquesta intrusió pot provocar que molts sistemes dunars i zones humides del planeta vagin degradant-se o desapareixent progressivament, pel deteriorament de la interfase aigua dolça-aigua salada, que ve donat a causa de l’alta intensitat d’extracció i a la pèrdua dels fluxos d’aigua subterrània. Una altra conseqüència negativa pot veure’s a les zones d’agricultura pròximes al litoral on, degut a la intrusió salina, l’aigua de reg es salinitzi i això provoqui un deteriorament de la qualitat edafològica. La primera derivada que veiem és un deteriorament de la producció agrícola, situada sovint a la plana litoral o al·luvial.

- **Contaminació dels aqüífers:** Els aqüífers representen una font molt important d’aigua potable. Aquests són força vulnerables i pateixen els efectes tant de la pressió antròpica com de l’agricultura. Hem pogut veure que els canvis en els usos del sòl i una gestió ineficient de la xarxa de clavegueram de les zones urbanitzades afecta als aqüífers amb altes...
concentracions de nitrats, superant el llindar de 50 mg·L⁻¹. Aquesta situació, en zones on hi ha dèficit hídric, com Catalunya, pot significar la manca d’una font de subministrament en temps de sequera a les zones amb molta demanda.

- **Pèrdua de diversitat de paisatge:** El clar augment d’una massa forestal uniforme ha provocat que es disminuís el que s’anomena paisatge mosaic, conformat amb més proporció de camps que a l’actualitat. Això té una implicació directa amb algunes espècies (d’aus nidificants, per exemple) que requereixen la coexistència de diversos estadis successionals. Diferents estadis successionals són adients per a espècies diferents i, en canvi, la uniformitat de condicions abiótiques, redueix la diversitat d’espècies que pot albergar el territori.

- **Fragmentació ecològica:** L’aument de la població i de la necessitat d’estar connectada amb altres parts del territori ha fet que es desenvolupessin un seguit d’infraestructures, així com urbanitzacions disperses, que fan que cada vegada es redueixi més la connectivitat del territori. Les autopistes i les canalitzacions de les rieres, per exemple, són dos exemples clars de barreres ecològiques que impedeixen el moviment de la fauna pel territori.

- **Perill d’incendis a les urbanitzacions:** El creixement de la zona urbana de forma dispersa fa créixer el risc de la seva població davant de possibles incendis ja en totes les àrees estudiades hi ha urbanitzacions envoltades per una gran densitat de zona forestal. L’any 1956, els petits nuclis de població que hi havia a la comarca no estaven envoltats únicament de forestal, sinó també de zona agrària, la qual podia actuar com a tallafocs depenent de l’època de l’any.

- **Sobirania alimentària de la comarca:** La disminució de la zona agrícola a tota la comarca (Fig. 6.6) provoca que la sobirania alimentària del Maresme sigui un fet impossible d’assolir, de manera que la major part dels productes destinats a l’alimentació s’hagin d’importar. A més, gran part de la poca zona agrícola que queda està dedicada al conreu de plantes ornamentals, fet que provoca que la major part dels productes alimentaris de la comarca s’hagin d’importar.
A continuació es descriuen de manera sintetitzada els punts clau que han marcat els resultats i la discussió d'aquest projecte.
El segle XX s’ha caracteritzat per un creixement exponencial de la població. Aquest augment demogràfic ha provocat una concentració de la població en zones costaneres, fet que ha comportat el desenvolupament de les grans metròpolis (p.e. Nova York, Rio de Janeiro, San Francisco). Aquesta urbanització massiva del litoral ha estat enfocada principalment en el desenvolupament de les ciutats però també en el desenvolupament de noves infraestructures, centres de lleure, grans centres comercials i zones turístiques. La urbanització descontrolada del litoral ha provocat diversos impactes ambientals com, per exemple, la degradació de la qualitat de l’aire i de les aigües tan freàtiques com del litoral.

En aquest treball s’han estudiat les conseqüències en el cicle hidrològic de la recent urbanització del litoral de la comarca del Maresme, al nord de Barcelona. El treball s’ha centrat en estudiar si hi ha una correlació directe entre la urbanització del litoral i la descàrrega d’aigua subterrània a la costa, fet que podria provocar la alteració dels cicles biogeocòmics al mar i en conseqüència una disminució de la productivitat de la zona i les espècies autòctones. Així, la hipòtesi del treball es basa en el fet de que els canvis en els usos del sòl a les zones litorals estan afectant la dinàmica dels aqüífers costaners. A continuació s’exposen les principals conclusions obtingudes de l’anàlisi de de la sèrie temporal de dades del 1994 a 2014 de l’Agència Catalana de l’Aigua.

L’evolució dels usos del sòl a la comarca del Maresme es pot sintetitzar amb dues tendències clares: un creixement espectacular de la zona urbanitzada al voltant de les principals poblacions i les vies de comunicació (944% en 54 anys) i per conseqüència una reducció de la zona agrícola (-70%) seguint un patró invers al creixement de les zones urbanitzades. També s’observa que aquest creixement de la urbanització ha estat de forma dispersa, dins la zona urbanitzada, passant de 121 hab·ha\(^{-1}\) l’any 1956 a 50 hab·ha\(^{-1}\) a l’actualitat.

En relació al cicle hidrològic, s’observa que la majoria del creixement s’ha concentrat a les zones de plana litoral més properes a la costa on la recàrrega d’aigua és més eficient. A més, l’augment de la zona urbanitzada ha disminuït la superfície de recàrrega de l’aqüífer des de 1956 fins 2010 i en conseqüència ha fet créixer l’aigua d’escorrentia de 5 a 49 hm\(^3\) a les zones del Maresme afectades per la urbanització. Una derivada ambiental de la disminució de la infiltració a l’aqüífer al voltant dels nuclis de població és el fet que ha permès proveir als municipis d’una font substancial d’aigua que podria ser utilitzada per a la xarxa de subministrament o reg de molts municipis de la comarca.

Els resultats d’aquest projecte posen de manifest que la disminució de les zones agrícoles també ha implicat l’augment de la massa forestal (del 20% d’extensió a l’any 1954 al 30% a l’any 2014) i una retenció estimada d’aigua per part dels boscos igual al consum total dels habitants de la comarca del Maresme (20 hm\(^3\)).
Aquests canvis en els usos del sòl també han reduït el llindar de precipitació (P_0) a partir del qual l'aigua comença a generar escolament superficial. Amb el càlcul del la precipitació llindar (mètode racional) s’observa un descens d’aquest llindar a tota la comarca a partir de la dècada de 1990, amb un valor màxim l’any 1990 de 56 mm i una disminució fins a un valor de 54.4 mm l’any 2014. L’aument intens de la zona urbanitzada, impermeabilitzant el sòl i ocupant les zones agrícoles, genera aquest canvi de tendència. S’aprecia que amb pluges menys intenses ja es genera escolament superficial reduint la recàrrega del aqüífer i afavorint les avingudes de les rieres.

La disminució de la zona agrícola ha provocat un lleuger descens de les concentracions de nitrats als pous analitzats de la comarca que han disminuït de 90 mg·L$^{-1}$ a 75 mg·L$^{-1}$ de mitjana des de l’any 1994 fins al 2014. El canvi més brusc el veiem a la zona més propera a la costa on ha disminuït de mitjana de 127 mg·L$^{-1}$ a l’any 1994 a 97 mg·L$^{-1}$ a l’any 2014. La majoria de valors observats són superiors als 50 mg·L$^{-1}$, límit que marca la Directiva de la Unió Europea per a considerar l’aigua potable. Aquest valor limit va ser sobrepassat de manera notable (Rang: 160–322 mg·L$^{-1}$) a la majoria de pous analitzats durant la sequera de les conques internes de Catalunya dels anys 2006-2008, amb pics de nitrats a tota la comarca. El descens del nivell freàtic degut a la manca de pluges i l’aument de la intensitat d’extracció d’aigua de l’aqüífer s’interpreta com una de les possibles causes d’aquest increment de la concentració tan accentuat durant la sequera.

Cal destacar com a punt clau de la zona d’estudi la riera d’Argentona i la seva desembocadura. S’observa que la zona ha passat d’una mitjana de salinitat de 35.4 psi al 1994 a 38.1 psi al 2012 i una mitjana de silicats de 0.3 mg·L$^{-1}$ al 1994 a 0.07 mg·L$^{-1}$ al 2012. Comparant aquests valors amb la resta de zones costaneres de Catalunya (salinitat: 37.8 psi, silicats: 0.06 mg·L$^{-1}$) veiem que era clarament una zona diferenciada i característica. Actualment, els valors de la majoria de dades de la riera d’Argentona s’acosten a la mitjana de valors de Catalunya.

El Maresme és una zona amb aqüífers costaners; les relacions entre baixades de nivells i pujades de conductivitat (i a la inversa) en pous propers a la zona costanera destaquen una difuminada i sensible interfície entre aigua dolça i aigua salada, que pot veure’s afectada per l’acció antròpica. En aquesta direcció, una baixada de nivells piezomètrics en aquests pous com els trobats a la sequera 2006-2008 poden donar lloc a una intrusió salina, indicada per una pujada de conductivitat. Com s’ha pogut comprovar, alguns pous situats a la zona més propera a la costa estan afectats per intrusió salina, concretament la zona de Mataró i El Masnou.

La correlació inversa entre silicats i salinitat a la zona costanera del Maresme, i més en concret a la desembocadura de la riera d’Argentona, evidencien un volum important d’aportació d’aigua dolça via SGD en el passat. Les tendències
observades des de l’any 1994, amb un descens de la concentració mitjana de nitrats de 1.1 mg·L\(^{-1}\) a 0.3 mg·L\(^{-1}\) en els últims 20 anys, poden fer preveure efectes negatius en l’activitat biològica costanera.

En aquest sentit, a la majoria del punts de mostreig analitzats per la variable salinitat a la costa catalana que no estan influenciats per rius, observem valors baixos i poc variables de silicats (mitjana: 0,07 mg·L\(^{-1}\)), pel que l’aportació d’aigua dolça via SGD no ha estat un factor a tenir en compte en els últims 50 anys.

Les baixes concentracions de nutrients a camp mitjà (1.800m mar endins) (0,03 mg·L\(^{-1}\) de silicats 1994-1999) en comparació amb la costa (0,09 mg·L\(^{-1}\) de silicats 1994-1999) evidencien que els efectes dels fluxos d’aigua al mar són importants només en zones properes a la costa. Tot i això, les concentracions de clorofil·la no representen diferències tan significatives a camp mitjà com les de nutrients, fet que podria estar justificat per la presència d’emissaris submarins a la zona.

S’observa que l’activitat biològica a la desembocadura de la riera d’Argentona ha patit un descens considerable des de l’any 1994, passant de 3.5 μg·L\(^{-1}\) a 1.5 μg·L\(^{-1}\) de mitjana de clorofil·la en els últims 20 anys, degut al descens dels fluxos d’aigua dolça observats que provenen del continent. Aquest fet podria haver influït en la disminució pesquera a la zona observada des de l’any 2000.

Així doncs, es corrobora la hipòtesi amb la que es va iniciar el projecte Impactes de la urbanització en la dinàmica dels aqüífers costaners, el cas del Maresme, destacant la possible interrelació entre una variació accentuada dels usos del sòl en poques dècades, una variació en la dinàmica dels aqüífers costaners de la zona per a tots els paràmetres fisicoquímics tractats i una alteració dels fluxos d’aigua al mar.
9. PERSPECTIVES

A continuació es descriuen les perspectives tant pel que fa a aquells punts que es podrien haver tractat en el projecte com aquelles propostes de millora que caldria implementar en diferents àmbits a la comarca del Maresme en relació amb aquest estudi.
L’anàlisi i el tractament de dades ha estat el pilar fonamental del projecte *Impactes de la urbanització en la dinàmica dels aqüífers costaners, el cas del Maresme*, tant pel que fa a l’evolució temporal d’usos del sòl com a les diferents tendències seguides al llarg del temps per paràmetres fisicoquímics, nivells piezomètrics i salinitats, i el més important, les seves interrelacions.

Aquest projecte es va iniciar amb un objectiu clar: analitzar els impactes del procés accelerat de canvi d’usos del sòl en la dinàmica d’aqüífers costaners i la SGD. Després de fer aquest treball exhaustiu, s’han destacat possibles punts a tractar que si s’haguessin contemplat al principi del projecte, moment en el qual potser no teníem les eines necessàries per assolir els objectius, podrien haver ajudat a arribar a conclusions més clares i de millor qualitat.

Tot projecte té un inici i un final, i en aquest s’han intentat analitzar la màxima quantitat de variables i el més profundament possible. Ressaltem l’experiència obtinguda al llarg d’aquest projecte i per això plantejem aquests punts on no s’ha pogut arribar per falta d’eines o temps com a futures llínies de treball per a estudis relacionats amb el projecte *Impactes de la urbanització en la dinàmica dels aqüífers costaners, el cas del Maresme*. Es descriuen a continuació:

1. - Anàlisi del global de paràmetres fisicoquímics tant de zona continental com de zona marítima, no només nitrats i silicats. Veure si hi ha algun component important que hagi pogut patir variacions en l’evolució temporal de la seva concentració. En cas afirmatiu, analitzar la possible interrelació amb l’evolució temporal dels usos del sòl descrita en aquest projecte. Propostes: Ferr i Fosfats (relacionat amb activitat biològica marina) i Organoclorats (contaminació antròpica).

Tot i això, en el nostre projecte no s’han pres alguns d’aquests paràmetres per falta de dades o per la complexitat d’obtenir-les.

3. - Extrapolar el treball (o estudiar el grau d’extrapolació) a zones litorals amb característiques similars per veure si les tendències i característiques que hem pogut contextualitzar en aquest projecte segueixen patrons similars a altres zones. En aquest sentit, veure si les evolucions temporals d’algunes variables són pròpies de la comarca del Maresme (i.e. conseqüència de les seves característiques) o de Catalunya o el Mar Mediterrani.

4. - Mantenir un seguiment constant de l’evolució de les diferents variables exposades en aquest treball.
5. Fer un anàlisi exhaustiu de la interrelació entre la disminució dels components de la SGD contextualitzats en aquest treball amb la variació de la biologia marina i els volums de pesca. Seria interessant veure quines són les conseqüències exactes d’aquesta disminució de nitrats i silicats en la descàrrega d’aigua subterrània al mar pel sector econòmic de la pesca, sobretot a la confraria d'Arenys de Mar, la més important de la comarca del Maresme, i per la biodiversitat marina, tant animal com vegetal.

6. Elaborar un model matemàtic que inclogui les variables Usos del Sòl, Litologia, Pluviometria, Infiltració, Recàrrega i Descàrrega SGD (per a cada paràmetre físic-químic) amb el qual es puguin fer prediccions amb el termini més llarg possible de cara a mesures de prevenció en diferents àmbits (pesca o consum d’aigua per exemple).

7. Prendre les conclusions d’aquest projecte i centrar-se en el bloc d’impactes a diferents àmbits i escales per veure quines conseqüències concretes a nivell ambiental, social i econòmic tenen els resultats obtinguts en aquest projecte.

Alhora, des de l’experiència obtinguda al llarg de l’elaboració del projecte “Impactes de la Urbanització en la Dinàmica d’Aqüífers Costaners. El Cas del Maresme”, el grup de treball Top Blue exposa seguidament les possibles accions que es podrien dur a terme per afrontar en major o menor mesura, els impactes ambientals, socials i econòmics derivats del canvi d’evolucions d’algunes variables analitzades en aquest projecte.

Aquestes accions estan classificades de la següent manera:

<table>
<thead>
<tr>
<th>Grup</th>
<th>Nº d’acció</th>
<th>Títol de l’acció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitorització</td>
<td>Acció 1</td>
<td>Monitorització de diferents variables físic-químiques i nivells piezomètrics en pous.</td>
</tr>
<tr>
<td></td>
<td>Acció 2</td>
<td>Instal·lació de boies que preguin mesures a temps real de diferents elements físic-químics i contaminants marins.</td>
</tr>
<tr>
<td>Elaboració de plans - Gestió</td>
<td>Acció 3</td>
<td>Elaboració d’un pla per controlar les quotes de captures de peix</td>
</tr>
<tr>
<td></td>
<td>Acció 4</td>
<td>Elaboració d’un pla de gestió integral del litoral.</td>
</tr>
<tr>
<td></td>
<td>Acció 5</td>
<td>Regular la urbanització en zones de major recàrrega d’aigua als aqüífers.</td>
</tr>
<tr>
<td>Subvencions</td>
<td>Acció 6</td>
<td>Gestió forestal i agrícola</td>
</tr>
<tr>
<td>Obres</td>
<td>Acció 7</td>
<td>Gestió de l’aigua urbana</td>
</tr>
</tbody>
</table>
Descripció: Recollir sistemàticament dades per obtenir sèries temporals llargues de determinades variables que ens donin informació de com evolucionen els nivells piezomètrics i la qualitat de l’aigua dels aqüífers. La monitorització és especialment necessària en llocs on la pressió antròpica és més accentuada, perquè permet veure fins a quin punt aquesta repercuteix de manera negativa sobre l’aigua dels aqüífers i així facilita adaptar els mecanismes de gestió per evitar o minimitzar aquest impacte negatiu.

Objectius: Orientar la gestió dels aqüífer si si es detecten tendències no desitjables, de manera que es puguin corregir abans que siguin irreversibles (gestió adaptativa de l’espai).

Responsables: Agència catalana de l’aigua (ACA), Departament de Territori i Sostenibilitat de la Generalitat de Catalunya.

Persones implicades: Ajuntaments del Maresme, Consell comarcal del Maresme, Generalitat de Catalunya, Agència Catalana de l’aigua (ACA).

Calendari: El que la situació d’emergència requereixi. Actualment amb dades periòdiques cada cert temps s’han pogut controlar els paràmetres dels aqüífers.

Pressupost: Desconegut. Calcular el cost de les mostres que pren en l’actualitat l’Agència Catalana de l’Aigua i multiplicar-lo pel factor que creiem necessari per a poder obtenir aquestes sèries temporals llargues.

Beneficis esperats: Obtenció d’informació necessària pel control de les masses d’aigua subterrània a temps real. Possibles prediccions de sequeres.

Indicadors: Paràmetres fisicoquímics (e.g. nutrients i i metallss pesants) i nivells piezomètrics.

Observacions: La monitorització a temps real dels diferents paràmetres serà molt important en un futur degut a la gran pressió que s’exerceix sobre els aqüífers i que fa necessari que es vagin implementant mètodes d’anàlisi i control adients per tal de fer un ús sostenible del territori.
Impactes de la urbanització en la dinàmica dels aqüífers costaners

<table>
<thead>
<tr>
<th>Acció 2</th>
<th>Pressupost</th>
<th>Prioritat</th>
<th>Àrea d'influència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instal·lació de boies que prenguin mesures a temps real de diferents elements fisicoquímics i contaminants marins.</td>
<td>6.000€ / boia</td>
<td>Mitjana</td>
<td>El Maresme, extrapolable a qualsevol punt litoral.</td>
</tr>
</tbody>
</table>

Descripció: Recollir dades sistemàticament a partir de biosensors que s'introduexin dins d'una boia marina i que permeten el monitoratge en temps real tant d'elements fisicoquímics com de contaminants marins. Els mòduls sensors inclouran tots els elements òptics necessaris per a la lectura del senyal del biosensor, la microelectrònica per a emmagatzematge de dades i la capacitat d'anàlisi automàtic de mostres.

Objectius: Programar les anàlisis i fer-les a temps real, fet que afavoriria detectar un vessament fins i tot en el moment just en què s'està produint o bé detectar una alteració en els valors estàndards. Resumidament seria portar el laboratori al mar.

Simplificar la vigilància marina del medi ambient, una tasca logística complexa que es porta a terme ara per ara lluny de l'aigua del mar, en costosos laboratoris.

Responsables: Agència catalana de l'aigua (ACA), Departament de Medi Ambient de la Generalitat, Comissió Europea. Altres institucions.

Persones implicades: Agència catalana de l'aigua (ACA), Departament de Medi Ambient de la Generalitat, Comissió Europea. Altres institucions

Calendari: El més aviat possible.

Pressupost: 6.000€ / boia. Caldria fer una previsió de les boies necessàries per a poder millorar l'eficiència de la presa de dades en relació amb el cost d'instal·lació i el manteniment d'aquestes boies

Beneficis esperats: Obtenció d’informació necessària pel control de les masses d’aigua litorals. Detectar vessament de substàncies perillesoses pel medi marí en temps real.

Indicadors: paràmetres fisicoquímics i d’activitat biològica.

Observacions: La monitorització a temps real dels diferents paràmetres serà molt important en un futur degut a la gran pressió que s’exerceix sobre el litoral marí i que fa necessari que es vagin implementant mètodes d’anàlisi i control adients per tal de fer un ús sostenible del territori.

Caldria contemplar la possibilitat de robatori d’aquestes boies degut al seu cost. Aquest fet es poderia controlar mitjançant l’ús d’alarmes silencioses en aquestes boies o l’addició d’un sistema GPS al centre de l’artefacte, pel que seria quasi impossible d’extreure.
Descripció: Elaboració d’un pla que relacioni totes les variables que interactuen al litoral, des de la part més turística i social fins a la part mediambiental, incloent els resultats d’aquest i altres estudis, que conclouen que els aqüífers són un element molt important. Aquest pla caldria que inclogués la visió de diferents tipus de disciplines científiques.

Objectius: Incloure tot allò que no es tenia en compte en els plans actuals, donant resposta a la necessitat de relacionar variables ambientals amb vectors socioeconòmics.

Responsables: Ajuntaments, Govern català-espanyol i Comissió Europea.
Persones implicades: Científics que diferents disciplines subcontractar per l’administració

Calendari: El més aviat possible, considerant la dificultat que implica redactar un pla de tanta complexitat.

Pressupost: Mitjà.

Beneficis esperats: Menor impacte antròpic i ús més sostenible del territori. Creació d’una xarxa de col·laboració entre disciplines per augmentar l’eficiència de la gestió en diferents àmbits.

Observacions: actualment tenim plans de gestió separats per disciplines, per exemple pel que fa a l’impacte del turisme a nivell econòmic (positiu) però no a nivell mediambiental ni de sobreexplotació de recursos naturals en èpoques de màxima aflúncia (negatiu). En aquest sentit, i com s’ha pogut ressaltar a la taula dels actors necessaris per a l’elaboració del pla de gestió integral de litorals, cal destacar la visió holística dels professionals del medi ambient (ambientòlegs) com a cremallera per ajuntar les diferents disciplines científiques i així poder augmentar l’eficiència d’aquests plans.

Indicador: Proposem crear un índex que ens permeti saber si un territori és sostenible. L’índex de sostenibilitat territorial hauria d’englobar quatre subíndex; el balanç hídric del territori, la producció agropecuària i el consum alimentari, el balanç energètic del territori i el balanç de CO₂ (entre les emissions i el segrest de carboni total). A aquests quatre subíndex se li hauria de sumar la part d’usos del sòl i la població, per tal d’englobar tots els paràmetres que interactuen en un territori i donar-nos un valor, entre 0 i 1, per saber si aquest territori s’acosta a la sostenibilitat. És un índex teòric però creiem que és una gran proposta d’estudi per nous projectes.
Descripció: Ubicar en el mapa les zones de major recàrrega d'aigua cap als aqüífers per tal de gestionar el territori i evitar que s'impermeabilitzi. Buscar quins son els llocs més adients per destinar la nova zona urbanitzable per tal de tenir el menor impacte possible sobre el medi.

Objectius: No disminuir la recàrrega d'aigua cap als aqüífers i evitar que augmenti l’aigua d’escorrentia.

Responsables: Ajuntaments de la comarca del Maresme, Consell comarcal, i Departament de Territori i Sostenibilitat de la Generalitat de Catalunya.

Persones implicades: Ajuntaments de la comarca del Maresme, Consell comarcal, Departament de Territori i Sostenibilitat de la Generalitat de Catalunya i empreses dedicades a la construcció.

Calendari: Acció permanent. A mesura que que les necessitats urbanístiques de la comarca vagin en augment, planificar aquelles zones on la impermeabilització deguda a l’ús urbanitzable sigui menys aguda.

Pressupost: Baix

Beneficis esperats: Aquesta regulació permetrà que hi hagi major infiltració d’aigua als aqüífers, amb tots les conseqüències esperades que s’han descrit a llarg d’aquest projecte.

Indicadors: Aparició d’una nova normativa aplicable dins els plans urbanístics. Major recàrrega (o tendència a la disminució menys aguda) a l’aqüífer a mesura que aquest pla es generalitzi a tot el territori.
<table>
<thead>
<tr>
<th>Acció 6</th>
<th>Pressupost</th>
<th>Prioritat</th>
<th>Àrea d'influència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestió forestal i agrícola</td>
<td>Mitjà</td>
<td>Mitjana</td>
<td>General</td>
</tr>
</tbody>
</table>

Descripció: L’abandonament dels camps i el creixement descontrolat de la zona forestal ha portat a un canvi en el comportament fisicoquímic i en la recàrrega d’aigua als aqüífers. Donar subvencions als gestors agrícoles i forestals per tal de mantenir els boscos i les zones agrícoles en un estat òptim que propiciï la infiltració i un bon estat dels aqüífers.

Objectius: Trobar una simbiosi entre els diferents paràmetres que afecten les conques hidrogràfiques i hidrogeològiques que desemboquen al mar per tal d’arribar a un ús sostenible del territori.

Responsables: Ajuntaments de la comarca del Maresme, Consell comarcal, Departament de Territori i Sostenibilitat de la Generalitat de Catalunya.

Persones implicades: Agricultors i gestors forestals.

Calendari: Aplicació permanent. Bonificacions periòdiques.

Pressupost: Mitjà. Depenent de la quantitat i la iniciativa dels agricultors i gestors forestals.

Beneficis esperats: Millor estat de qualitat tant de les zones forestals i agrícoles com dels aqüífers que en depenen. Aparició de noves empreses dedicades a la gestió forestal. Afavorir la infiltració i la recàrrega d’aigua als aqüífers.

Indicadors: Variació dels usos del sòl en els pròxims deu anys.

Observacions: cal tenir en compte la segregació d’aigua per part de diferents tipus de boscos en comparació amb la zona agrícola. Valorar conjuntament amb el paràmetre precipitació llindar, explicat a l’apartat *Metodologia* del projecte
Acció 7

<table>
<thead>
<tr>
<th>Acció</th>
<th>Pressupost</th>
<th>Prioritat</th>
<th>Àrea d'influència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestió de l’aigua urbana</td>
<td>Alt</td>
<td>Alta</td>
<td>Municipis amb un alt grau d’urbanització</td>
</tr>
</tbody>
</table>

Descripció: Aprofitament de l’aigua d’escorrentia de les zones impermeabilitzades urbanes. Canalització i emmagatzematge de l’aigua per donar-li un ús adequat, com per exemple, aprofitament industrial o reg de zones enjardinades.

Caldria doncs, canalitzar aquestes aigües cap a centres de tractament o potabilització, enlloc de cap al mar.

Objectius: Reduir la importació d’aigua d’Aigües Ter-Llobregat. Reduir l’extracció d’aigua de l’aqüífer. Aprofitar d’una altra manera l’aigua que es perd i que no va a l’aqüífer.

Responsables: Ajuntaments de la comarca del Maresme, Consell comarcal, Departament de Territori i Sostenibilitat de la Generalitat de Catalunya.

Persones implicades: Població que usaria aquesta quantitat d’aigua afegida a la xarxa de subministrament.

Calendari: El més aviat possible

Pressupost: Alt

Beneficis esperats: Menys explotació de l’aqüífer i menys despeses d’importació des de la xarxa ATLL. Possible baixada de preus del litre d’aigua.

Indicadors: consums d’aigua en un futur immediat després de l’acció.

Observacions: cal considerar que l’aigua urbana no només s’ha de prendre com una conseqüència positiva pel que fa al consum. El volum d’aigua corresponent a l’aigua urbana és volum de recàrrega que es perd per l’aqüífer, amb totes les conseqüències que aquest fet comporta d’acord amb el projecte.
Descripció: Elaboració d’un pla que reguli la quantitat de peix que es pot pescar, de manera que s’adapte a les capacitat del medi per tal de no sobreexplotar-lo. Crear una base de dades de la pesca acumulada des de que es té informació (vam visitar la confraria d'Arenys, la més important del Maresme, i no ens van saber dir els valors de les captures anteriors a 2007). Monitorització contínua de les espècies pescades i de les quantitats de cada una d’elles. Tractar les dades des d’un punt de vista científic i ecològic per definir les quotes de pesca a adjudicar per la temporada següent.

Objectius: Crear una base de dades i un pla acurat de gestió de la pesca adaptat a cada territori. Controlar la pesca des d’un punt de vista ecològic i conservacionista.

Responsables: Departament d’Agricultura, Ramaderia i Pesca i altres institucions a nivell estatal i europeu.

Persones implicades: Indústria pesquera. Tots els pescadors. Científics experimentats en controls de quotes de pesca.

Calendari: Implementar en els pròxims dos anys

Pressupost: Baix. Els estudis es farien en base a dades de pesca que s’obligarien a quantificar per part dels pescadors en el moment de la venda del peix a la llotja.

Beneficis esperats: Millora de l’ecosistema marí i de l’activitat pesquera degut a l’augment del coneixement de les espècies i del seu comportament ecològic. Conscienciació de la indústria pesquera.

Indicadors: Elaboració de la base de dades i regulació de la pesca. Document final del pla de gestió. Quotes adjudicades anys anteriors.

Observacions: és totalment necessari quantificar el volum de peix i d’altra fauna marina que s’està pescant per tenir un control ràgid sobre aquest. La sobreexplotació de certes espècies pot comportar la disminució de poblacions o fins i tot l’extinció en aquella zona.
Impactes de la urbanització en la dinàmica dels aqüífers costaners
10. BIBLIOGRAFIA I WEBGRAFIA

In the books, Jordan Buschur
Bibliografia

Impactes de la urbanització en la dinàmica dels àqüífers costaners

Impactes de la urbanització en la dinàmica dels aqüïfers costaners

UNEP Environment Library, 15.

Webgrafia

11. ANNEXOS
11.1 Programació

<table>
<thead>
<tr>
<th>ACTIVITAT</th>
<th>Setembre</th>
<th>Octubre</th>
<th>Novembre</th>
<th>Desembre</th>
<th>Gener</th>
<th>Febrer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Del 2 al 8</td>
<td>Del 9 al 15</td>
<td>Del 16 al 22</td>
<td>Del 23 al 29</td>
<td>Del 30 al 6</td>
<td>Del 7 al 13</td>
</tr>
<tr>
<td></td>
<td>Del 1 al 7</td>
<td>Del 8 al 14</td>
<td>Del 15 al 21</td>
<td>Del 22 al 28</td>
<td>Del 29 al 4</td>
<td>Del 5 al 11</td>
</tr>
<tr>
<td></td>
<td>Del 14 al 20</td>
<td>Del 21 al 26</td>
<td>Del 27 al 1</td>
<td>Del 2 al 8</td>
<td>Del 9 al 15</td>
<td>Del 16 al 22</td>
</tr>
</tbody>
</table>

premises
- Elecció i definició del projecte
- Definició del títol i normalització dels currículums
- Definició dels objectius, índex i justificació

Gestió del projecte
- Creació de l'e-mail, dropbox i drive
- Reunions amb els tutors i amb experts
- Control de l'avanç del projecte

Antecedents i metodologia
- Redacció dels antecedents
- Redacció de la descripció de l'area d'estudi
- Contactes amb l'ACA i altres actors
- Redacció dels objectius i metodologia

PRIMERA ENTREGA
- Treball de camp
 - Visita a la cofraria de pescadors d'Arenys de Mar
 - Visita al Consell Comarcal del Maresme

Resultats
- Digitalització d'ortofotos del Maresme
- Creació de mapes
- Obtenció de l'inventari de dades de l'ACA
- Creació d'una base de dades
- Elaboració de gràfics
- Redacció dels resultats

SECONDA ENTREGA
- Discussió, conclusions i propostes de millora
 - Creació de mapes
 - Anàlisi i discusió dels resultats
 - Elaboració de gràfics comparatius
 - Redacció de la discussió i les conclusions
 - Obtenció de dades comparatives de l'ACA
 - Ampliació de la base de dades
 - Redacció de les perspectives i propostes de millora

TERCERA ENTREGA
- Document final
 - Redacció de l'article
 - Normalització del document final
 - Càlcul de la petjada de CO₂
 - Pressupost

Disseny i comunicació
- Elaboració del logo de grup
- Elaboració i preparació de les presentacions
11.2 Pressupost

<table>
<thead>
<tr>
<th>Bloc</th>
<th>Concepte</th>
<th>Justificació</th>
<th>Valor (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos Directes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recursos Humans</td>
<td>Hores totals dedicades al projecte.</td>
<td>3 investigadors treballant 12 hores la setmana, durant 18 setmanes i amb un salari de 15 €/h.</td>
<td>9.720€</td>
</tr>
<tr>
<td>Viatges i desplaçaments</td>
<td>Viatges i desplaçaments necessaris per a l’elaboració del projecte</td>
<td>Cotxe: 1 persona, amb un total de 100 viatges i un preu mig de 1.5€/viatge.</td>
<td>150€</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tren: 2 persones, amb un total de 100 viatges/persona i un preu mig de 1.8€/viatge.</td>
<td>360€</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trebàl de camp: 1 cotxe, amb un total de 110 km i un cost de desgast i benzina de 0.25€/km</td>
<td>27,5€</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peatges: AP-7 i C-32</td>
<td>4€</td>
</tr>
<tr>
<td>Dietes</td>
<td>Dietes de dies de treball de camp</td>
<td>3 persones, amb un menú de 12€/persona</td>
<td>36€</td>
</tr>
<tr>
<td>Material fungible</td>
<td>Bolígrafoys</td>
<td>10 unitats amb un cost de 1€/unitat.</td>
<td>10€</td>
</tr>
<tr>
<td></td>
<td>Impressions</td>
<td>Documents d’estudi: 200 pàgines a 0.05€/pàgina</td>
<td>10€</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Projecte: 3 còpies de 160 pàgines a 0.15€/pàgina</td>
<td>72€</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Article: 2 còpies de 10 pàgines a 0.15€/pàgina</td>
<td>3€</td>
</tr>
<tr>
<td></td>
<td>CD’s</td>
<td>6 CD’s a 3€/CD</td>
<td>18€</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>10.410,5€</td>
</tr>
<tr>
<td>Costos indirectes (20% dels costos directes)</td>
<td></td>
<td></td>
<td>2.082,1€</td>
</tr>
<tr>
<td>Total de costos directes i indirectes</td>
<td></td>
<td></td>
<td>12.492,6€</td>
</tr>
<tr>
<td>Impost sobre el Valor Afegit (21%)</td>
<td></td>
<td></td>
<td>2.623,5€</td>
</tr>
<tr>
<td>VALOR FINAL DEL PRESSUPOST</td>
<td></td>
<td></td>
<td>15.116,1€</td>
</tr>
</tbody>
</table>
11.3 Petjada de carboni del projecte

Com a professionals del medi ambient hem considerat important tenir en compte l’impacte ambiental que generen les nostres accions i, per tant, s’ha decidit calcular la petjada de carboni generada durant la realització d’aquest projecte. Podem dividir aquests impactes en quatre tipus: transport (tant privat com públic), utilització de portàtils, il·luminació i impressions. Les dades d’equivalències han estat extretes d’una guia per al càlcul d’emissions d’efecte hivernacle (GEH) del web de l’Oficina del Canvi Climàtic (http://canviclimatic.gencat.cat).

<table>
<thead>
<tr>
<th>Categoria</th>
<th>Descripció</th>
<th>Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal</td>
<td>Energia consumida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Portàtil: Consum mitjà de 65 W per ordinador, amb 3 ordinadors, treballant una mitjana de 10h/setmana/ordinador durant 18 setmanes, amb una petjada de carboni de 267 g CO$_2$/kWh</td>
<td>11,2 kg CO$_2$</td>
</tr>
<tr>
<td></td>
<td>Il·luminació: Consum mitjà de 200 W per sala, treballant 6 hores/setmana durant 18 setmanes, amb una petjada de carboni de 267 g CO$_2$/kWh</td>
<td>18,1 kg CO$_2$</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>29,3 kg CO$_2$</td>
</tr>
<tr>
<td>Material</td>
<td>Impressions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projecte: 3 còpies de 155 pàgines a 3.88 g CO$_2$/pàgina</td>
<td>1,8 kg CO$_2$</td>
</tr>
<tr>
<td></td>
<td>Article: 2 còpies de 10 pàgines a 3.88 g CO$_2$/pàgina</td>
<td>0,078 kg CO$_2$</td>
</tr>
<tr>
<td></td>
<td>CD’s: 6 CD’s a 620 g CO$_2$/CD</td>
<td>3,7 kg CO$_2$</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>5,6 kg CO$_2$</td>
</tr>
<tr>
<td>Transport</td>
<td>Cotxe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Castellar del Vallès – UAB: Distància aproximada de 20 km, amb un consum mitjà de 7 L/100 km, 2,61 kg de CO$_2$/litre i un total de 100 viatges (contant l’anada i la tornada).</td>
<td>365,4 kg CO$_2$</td>
</tr>
<tr>
<td></td>
<td>UAB – Arenys de Mar: Distància aproximada de 55 km, amb un consum mitjà de 7 L/100 km, 2,61 kg de CO$_2$/litre i un total de 2 viatges (anar i tornar).</td>
<td>20,1 kg CO$_2$</td>
</tr>
<tr>
<td></td>
<td>Tren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barcelona – UAB: Distància aproximada de 20 km, amb un consum de 29,43 g de CO$_2$/passatger· km, dos passatgers i un total de 100 viatges (contant l’anada i la tornada).</td>
<td>117,7 kg CO$_2$</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>503,2 kg CO$_2$</td>
</tr>
<tr>
<td>Impacte total</td>
<td></td>
<td>538,1 kg CO$_2$</td>
</tr>
</tbody>
</table>
Impactes de la urbanització en la dinàmica dels aqüífers costaners