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Resum: El projecte següent tracta d'investigar els temps de retards en els vols aeris 
dels aeroports d'Arizona (EUA), mitjançant la utilització de tècniques de mineria de 
dades, amb la finalitat de crear models de predicció que solucionin els problemes 
actuals dels retards aeris i les conseqüències que aquests produeixen en tot el sistema 
de transport aeri. Per a això s'han construït i comparat dos models de predicció: 
Random Forest i Gradient de Arboles Boosting per comprovar quin model s'adapta 
millor a l'hora de predir els retards en els vols. 
 
 
 
 
Resumen: El proyecto siguiente trata de investigar los tiempos de retrasos en los 
vuelos aéreos de los aeropuertos de Arizona (EEUU), mediante la utilización de 
técnicas de minería de datos, con el fin de crear modelos de predicción que solucionen 
los problemas actuales de los retrasos aéreos y  las consecuencias que estos producen 
en todo el sistema de transporte aéreo. Para esto  se han construido y  comparado  
dos modelos de predicción: Random Forest y  Gradiente de Arboles Boosting para 
comprobar cual  se adapta mejor a la hora de predecir los retrasos en los vuelos. Estos 
resultados han sido evaluados mediante el RMSE, don  
 
 
Abstract: The next project is to investigate the time delays in the flights of airports in 
Arizona (USA), using data mining techniques in order to create predictive models that 
solve the current problems of air delays and the consequences they produce 
throughout the air transport system. To this have been built and compared two 
models of prediction: Random Forest and Gradient Boosting Trees to see which is best 
suited to predicting the delayed flights. 
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INTRODUCCIÓN 

Estado del Arte y Motivación 
El mundo del transporte aéreo como bien se conoce, es un mundo cambiante, con una 

evolución constante, tanto tecnológica, como legal y administrativamente.  

Es por ello que durante estas dos últimas décadas la demanda del transporte aéreo ha 

experimentado un crecimiento considerablemente gracias a factores tales como: el 

aumento de las economías y de los ingresos de las personas, un aumento de la oferta 

de vuelos y la baja en el precio de los billetes aéreos. 

Sin embargo, este acelerado desarrollo de la industria aérea ha provocado un aumento 

de la densidad de los flujos y la complejidad del manejo del tráfico aéreo, 

incrementando la congestión en los aeropuertos, y por ende, la probabilidad de 

retraso en los vuelos. A lo anterior, se agrega el aumento de las medidas de seguridad 

aplicadas en los aeropuertos y en los propios aviones, contribuyendo también al 

eventual retraso de los vuelos, e incluso a las cancelaciones de los mismos.  

De ahí que las consecuencias actuales de la congestión y de los retrasos que conllevan 

se traduzcan en innumerables perdidas no sólo en tiempo y dinero para las compañías 

aéreas y aeropuertos que ofrecen estos servicios, sino también para los usuarios 

finales en relación a la calidad del servicio recibido.  

La Comisión Europea por ejemplo, prevé que para 2030, de continuar con la evolución 

actual, 19 aeropuertos europeos, estarán saturados. La congestión consiguiente podría 

provocar retrasos que afectarán al 50 % de todos los vuelos de pasajeros y de 

mercancías. 

Frente a ello, existen diferentes enfoques y mecanismos regulatorios entre los países 

para hacer frente a esta realidad. Mecanismos tales como técnicas de data sharing 

para mejorar la predictibilidad en el transporte aéreo 

Es por ello, que este proyecto se centra en el importante papel de la predicción y el 

análisis de los retrasos en los vuelos, para así conocer más de cerca todos los factores 

involucrados en él y poder mejorar un servicio que como bien se ha comentado es el 

epicentro para la evolución y el crecimiento del sector aéreo en general. 

 

Objetivo y tareas del proyecto 
Objetivos generales: 

El objetivo general de este proyecto consiste en analizar la aplicabilidad de las 
técnicas de las ciencias de datos para solucionar los problemas de predicción en los 
tiempos de llegada a los aeropuertos de los vuelos realizados, en este caso, en 
Arizona(EEUU).  

 



Objetivos parciales: 

Para lograr el objetivo general, se especifican a continuación una serie de objetivos 
parciales que conformarán el conjunto de hitos a corto plazo necesarios para dar 
respuesta al objetivo principal.  

Los objetivos parciales son los siguientes: 

 Aprender el conocimiento necesario sobre los impactos de los retrasos 
aéreos en el transporte aéreo con el fin de realizar una base solida teórica 
que fundamente el proyecto. 

 Conocer las diversas técnicas de análisis y creación de modelos de 
predicción. 

 Analizar y  definir los datos históricos de los vuelos realizados en Arizona 
(Estados Unidos) desde enero a septiembre de 2015. Esta es la base de datos 
con la que se trabaja a lo largo del proyecto. 

 Procesar y  transformar todos los datos disponibles en la base de datos de 
los vuelos de Arizona con el fin de obtener unos datos claros y significativos 
para su posterior modelaje y  extracción de conocimiento. 

 Comparar y seleccionar las mejores técnicas y  modelos de predicción.  

 Creación de los modelos de predicción seleccionados mediante 
programación informática y  técnicas de minería de datos con el  fin de 
proporcionar un modelo preciso de predicción de los tiempos de retrasos 
aéreos. Estos modelos de predicción a crear son el Random Forest y el 
Gradiente de Árboles Boosting. 

 Esquematizar  y  visualizar mediante gráficos los resultados obtenidos en la 
modelización de los modelos de predicción. 

 Evaluación y comparación de los resultados de los modelos creados con el fin 
de extraer información relevante de cual modelo se adapta mejor para la 
predicción de los tiempos de vuelos aéreos. 

 

 

Valor práctico 

 

El  valor práctico de este proyecto radica principalmente en solucionar un problema 

que hoy en día se produce en el transporte aéreo. Este problema es el de los 

retrasos aéreos. 

Es un problema el cual, afecta en gran medida a todos los usuarios involucrados en 

su  proceso, tanto compañías aéreas y aeropuertos en relación a las grandes 



pérdidas económicas sufridas debido a la utilización ineficiente del sistema, y a los 

usuarios del transporte aéreo en relación con la pérdida de tiempo y de coste de 

oportunidad de no poder realizar otras tareas en ese tiempo perdido, con la 

consecuente percepción negativa en la calidad del servicio final. 

Por ello  este proyecto  pretende cubrir una necesidad importante mediante el 

aprendizaje de conocimiento de las técnicas de minería de datos donde el análisis, 

la investigación, selección y construcción de modelos predictivos son la base para 

proporcionar una herramienta fiable para dar solución al problema de los retrasos 

aéreos. 

 

Metodología 

 

Para la realización y consecución de este proyecto y de los objetivos descritos 

anteriormente se ha llevado a cabo una serie de técnicas de aprendizaje 

automático, inteligencia artificial, programación informática, modelos de análisis 

comparativos y de predicción. Todo esto se puede englobar en el  proceso  de 

minería de datos  ya que este abarca a todo  el  proceso  de extracción de la 

información para luego transformarla a en una estructura comprensible para su uso 

posterior, objetivo éste, general del proyecto.  

Toda esta metodología se desarrolla en cada una de las partes de este proyecto de 

la siguiente forma: 

En relación con la realización de los primeros apartados teóricos de este proyecto se 

utilizan técnicas de filtrado, análisis comparativo y búsqueda intensiva de datos 

bibliográficos con el fin de proveer de información contrastada  y  consistente para 

este proyecto. 

Para el segundo apartado de este proyecto en base a la parte práctica de creación 

de modelos de predicción para los retrasos aéreos, se ha llevado a cabo 

principalmente en un ambiente de programación informática mediante la 

utilización del programa Pycharm. 

Pycharm es un entorno de desarrollo integrado (IDE) que utiliza un código con 

lenguaje Python. Es en este punto,  donde se utilizan las técnicas de programación y  

modelado de estructuras informáticas para la creación en código python del  

modelo de predicción a analizar. 

Para llevar a cabo toda la realización y construcción del modelo de predicción en 

código pyhon, paralelamente se sigue un proceso de minería de datos llamado KDD 

(Knowledge Discovery in Databases), que quiere decir, "Descubrimiento de 

Conocimiento en Bases de Datos" y  es en este, donde se encuentran los 

fundamentos básicos para el correcto seguimiento  y  realización del  modelo. 

Seguidamente se detallan los pasos fundamentales utilizados en este proceso  y  las 

técnicas y  teorías utilizadas: 



 Análisis y  selección de la información y los datos a utilizar para la creación 

del modelo: en este punto se utilizan técnicas comparativas y analíticas. 

 Procesamiento y  transformación de los datos: se utilizan técnicas de 

modelado tanto informático como estadístico, tales como, la 

transformación de la asimetría, centrado y sesgo, estudio de la varianza y  

de la desviación típica y utilización de las teorías de distribución normal de 

Gauss. 

 Selección de las características más importantes en la base de datos en 

relación con la variable a predecir: se utilizan procedimientos como los de 

ingeniería de características (feature engineering) donde enfatizan la 

importancia de una buena preparación de las características y  datos con el  

fin de obtener conocimientos relevantes para dar solución al problema en 

cuestión. 

 Creación de los modelos de predicción: aquí se utilizan modelos 

básicamente centrados en los problemas de regresión. Los modelos 

utilizados se caracterizan, en grandes rasgos, por utilizar algoritmos 

complejos  de aleatoriedad, de construcción en forma de arboles y 

construcción mediante promedios. Además para su  correcto  

funcionamiento se utilizan métodos de validación como la validación 

cruzada. 

 Análisis y  evaluación de los resultados obtenidos de los modelos de 

predicción: se utilizan técnicas para medir y  comparar la calidad de los 

modelos en relación con los resultados generados, tales como, medidas de 

error medio cuadrático (Root Mean Square Error, RMSE) y  análisis visuales 

mediante gráficos. 

Estructura de la tesis 
7 Apartados, 29 Ilustraciones, 101 páginas. 
 

- Introducción: Apartado que describe la situación de los retrasos en el mundo 
del transporte aéreo y ofrece al lector una visión de la estructura y contenido 
de este proyecto. 

- Análisis del impacto de los retrasos en la aviación  
- Predicción de los retrasos aéreos: Apartado donde se estudian los diferentes 

modelos de predicción y los pasos clave para su  realización. 
- Caso de Estudio: Caso de estudio real en el aeropuerto de Arizona(EEUU),  y 

creación de los modelos predictivos Random Forest y Gradiente de Árboles 
Boosting. 

- Conclusiones 

- Bibliografía 

- Anexo: Se muestra todo el código informático realizado en lenguaje Python. 



1. ANALISIS DEL IMPACTO DE LOS RETRASOS EN LA AVIACIÓN 

1.1  Causas de los retrasos y su efecto de propagación en el sistema 
 

Los retraso en los vuelos son un problema grave y generalizado en muchas partes del 

mundo a día de hoy, dado que sus impactos repercuten negativamente para todos los 

usuarios implicados.   

Pero... a qué se debe este problema? Porque se crean retrasos en los aeropuertos de 

alrededor del  mundo? 

Para responder a esta pregunta  se empieza por explicar, a grosso modo, una de las 

situaciones negativas que actualmente se viene desarrollando en el transporte aéreo y 

que es causa importante de los retrasos ocasionados en él. Esta situación señalada, 

trasciende en un escenario donde la congestión es partícipe de ello. La saturación de 

muchos aeropuertos, así  como de las infraestructuras y  servicios de control del tráfico 

aéreo(air traffic control, ATC) hacen que el problema de los retrasos para los usuarios 

del transporte aéreo se haya convertido en algo relativamente habitual. 

Esto se produce porque en la mayoría de los aeropuertos se permite un número 

ilimitado de aterrizajes y despegues, y las compañías aéreas añaden nuevos vuelos sin 

considerar la mayor congestión que ello provocará en las otras líneas aéreas. Todo ello 

conlleva a un exceso de vuelos programados en las horas peak (sobre el equilibrio 

eficiente) provocando entonces los retrasos tanto en los vuelos propios como en el 

resto. 

Por ello, es de vital importancia que se realice una correcta planificación en la 

programación de vuelos (slots) que realizan conjuntamente los aeropuertos y las 

compañías aéreas. Ya que por ejemplo, si por cualquier motivo un avión no puede 

utilizar la franja horaria(slot) que tiene asignada para realizar una operación, como por 

definición, la capacidad del aeropuerto no puede ser expandida, debe ser trasladado a 

otro momento del tiempo con la consecuente externalidad negativa a otros vuelos si la 

programación de la siguiente hora esta completa. 

Aun y  así, en la programación de vuelos se ha de comentar que la existencia 

sistemática de los retrasos ya es tenida en cuenta a la hora de su elaboración, de 

forma que se añade un cierto margen sobre el tiempo medio que sería técnicamente 

necesario para realizar las operaciones. 

En la ilustración 1.1 se muestra la naturaleza compleja del problema: en la parte 

superior del esquema se representan los tiempos programados para la operación de 

un vuelo, detallando los  movimientos en tierra del avión(entre T1 y T2 en el 

aeropuerto de origen, T3 y T4 en el de destino), y  la fase de vuelo(entre T2 y T3). 



Ilustración 1. Esquema de retrasos de un vuelo 

 

Fuente: Fundación BBVA 

 

El  retraso total que se observará en los datos estadísticos correspondientes a un vuelo 

será la combinación de varios tiempos de retraso que se pueden producir, de forma 

independiente en las diversas fases: 

𝑅𝑒𝑡𝑟𝑎𝑠𝑜 𝑡𝑜𝑡𝑎𝑙 = 𝑇4′ −  𝑇4 = 𝑅𝐸𝑇1 + 𝑅𝐸𝑇2 + 𝑅𝐸𝑇3 + 𝑅𝐸𝑇4 

donde: 

RET1= diferencia entre los tiempos programados y reales de retirada de 

calzos. Este retraso puede deberse a muy  diversas causas: pérdida de slot 

programado en el aeropuerto de destino, llegada tarde del avión previsto, 

problemas de tripulación, fallos mecánicos, pasajeros o equipaje. 

RET2= exceso de tiempo empleado en la fase de tierra del  avión en el 

aeropuerto de origen, debido a saturación del espacio aéreo, problemas con 

equipos del aeropuerto(rampas, vehículos, etc.), necesidad de despegue del 

aeropuerto o problemas meteorológicos. 

RET3= retrasos en la fase de vuelo, por necesidad de realizar cambios en la 

ruta programada, o saturación del espacio aéreo. 

RET4= exceso de tiempo  en la fase de tierra en el aeropuerto de destino, por 

pérdida de la posición de aparcamiento programada o por problemas con 

equipos del aeropuerto. 

Como se puede observar, los retrasos aéreos son un fenómeno complejo ya que 

pueden tener su origen en múltiples causas y  producirse durante las diferentes  fases 

de una operación aérea.  



Existen muchos factores que contribuyen al tiempo de realización de un vuelo. La 

puntualidad es el "producto final" de interacciones complejas entre las líneas aéreas, 

operadores de aeropuertos, y proveedores de servicios de navegación aérea (ANSP's) 

desde las fases de planificación y programación hasta el día de operación. Por esta 

razón, los efectos en la red tienen una fuerte impacto en el rendimiento del transporte 

aéreo. 

Mencionar también que aunque este proyecto se centre en los retrasos de los vuelos, 

desde un punto de vista operativo, los vuelos que lleguen con más de 15 minutos de 

antelación a lo planificado pueden tener un parecido efecto negativo sobre la 

utilización de los recursos (respecto a la capacidad en la zona de maniobras de la 

terminal, en la capacidad de la ruta, la disponibilidad de la puerta, etc.) como en el 

caso de  los retrasos de los vuelos. 

Dicho esto, para conocer más de cerca la situación de las causas de los retrasos en el 

sistema del transporte aéreo, seguidamente se muestra información de diferentes 

tipos de análisis realizados por organizaciones de transporte aéreo en base a países, 

por un lado, de la Unión europea y  por otro de Estados Unidos.  
 

Respecto a la gestión del trafico aéreo(ATM) de Europa y los EE.UU. se ha de comentar 

que son muy comparables en términos de área geográfica, longitud media de vuelo, 

etc. Sin embargo, los EE.UU. controlan aproximadamente el 57% más de vuelos (IFR) 

con un 17% menos de los controladores aéreos y el 39% menos de personal en 

general.(Eurocontrol) 

A la hora de analizar y clasificar las causas de los retrasos, en términos generales, los 

retrasos en los EE.UU. y Europa se pueden agrupar en las siguientes categorías 

principales, siempre teniendo en cuenta que para que se contabilice un retraso en una 

categoría causal, este retraso ha de haber sido mayor a 15 minutos: 

 

 Aerolínea + Turnaround Local: 

La causa del retraso  se debe a las circunstancias dentro del control local. 

Esto incluye las líneas aéreas u otras partes, tales como operadores de tierra 

que participan en el proceso de turnaround (por ejemplo, problemas de 

mantenimiento o de la tripulación, de limpieza de la aeronave, del equipaje 

de carga, abastecimiento de combustible, etc.). 

 Tiempo Extremo: condiciones meteorológicas significativas (reales o 

previstas) que a juicio de la compañía, retrasa o impide la realización de un 

vuelo, como por ejemplo,  la formación de hielo, tornados, tormentas de 

nieve, o huracanes. En los EE.UU., esta categoría es utilizada por las 

compañías aéreas para eventos muy raros como los huracanes y no es útil 

para entender el día a día de los impactos del clima. Para realmente ver la 

importancia que tienen los retrasos debido a condiciones no extremas en el 



tiempo de EEUU se ha de observar la clasificación de retrasos por causas en 

el sistema ATM, que es donde éstas se conciben. 

 Aeronaves que llegan tarde (o retraso reaccionario): Retraso a causa de la 

llegada tardía de la anterior aeronave, haciendo que el  vuelo continuo a 

éste se retrase sin poder recuperar el tiempo durante la fase de turnaround 

en el aeropuerto.  

Debido a la naturaleza interconectada del sistema de transporte aéreo, 

largos retrasos primarios  pueden propagarse por toda la red hasta el final 

del mismo día operacional. 

 Seguridad: Retrasos causados por la evacuación de una terminal o zona 

determinada, re-acceso a las aeronaves debido a fallo de seguridad, equipos 

de control que no funcionan, y / u otras causas relacionadas con la 

seguridad. 

 Sistema ATM(retrasos ATFM / NAS): Los retrasos atribuibles a ATM se 

refieren a una amplia gama de condiciones, como las condiciones no 

extremas del clima, las operaciones aeroportuarias, el volumen de tráfico 

pesado, Control del Tráfico Aéreo(ATC). 

 

En la siguiente ilustración 1.2 se muestra un desglose del rendimiento tanto de vuelos 

realizados dentro del tiempo programado por la compañía aérea, como de las causas 

de los retrasos primarios que se dan en las compañías aéreas de Estados Unidos y 

Europa para el año 2013. Estos retrasos se contabilizan y  clasifican cuando el retraso 

es mayor de 15 minutos. 

Ilustración 2. Rendimiento en el sistema de vuelos aéreos: UE vs. US 

 
 

Fuente: Eurocontrol 



Claramente se puede ver que  a las aerolíneas estadounidenses se les atribuye una 

fracción mayor del retraso por causa del sistema ATM que para las aerolíneas 

Europeas donde su  porcentaje más notable es en relación a problemas en las 

compañías aéreas y en los procedimientos y  operaciones de la fase de tornaround.  

El porcentaje tan elevado referente al retraso por causa del sistema ATM(NAS) en 

Estados Unidos es debido mayoritariamente a problemas con el  mal tiempo. 

 

Además de esto se observa que para las compañías aéreas de Estados Unidos y Europa  

también se les atribuye una disminución del rendimiento de sus vuelos debido en gran 

parte por la llegada tardía de las aeronaves y de los problemas de retrasos 

reaccionario. 

En el siguiente gráfico se observa el rendimiento en tiempo de los vuelos tanto en 

Europa como en Estados Unidos desde el  2002 hasta el 2013.  
 

Ilustración 3.  rendimiento en tiempo de Europa vs US 

 
Fuente: Eurocontrol 

 

Se puede ver que de 2004 a 2009, el  nivel de puntualidad de llegada fu similar tanto 

en los EE.UU. como en Europa. Estos cambia radicalmente en 2010 cuando la 

puntualidad degrada dramáticamente en Europa, pero siguió 

mejorando en los EE.UU.. Esta mejora en el rendimiento tiene que ser visto en el 

contexto de la disminución del tráfico como resultado de la crisis financiera y 

económica mundial a partir de 2008. 

 

En 2010, la puntualidad en Europa fue el peor registrado desde 2001, aunque el tráfico 

era todavía por debajo de los niveles de 2008. Los principales factores de este 

deterioro fueron un gran número de acciones industriales y más altos que los retrasos 



habituales relacionados con el clima (nieve, condiciones de congelación) durante las 

temporadas de invierno de 2009 y 2010. La nube de ceniza volcánica en abril y mayo 

de 2010 tuvo un impacto limitado en la puntualidad, ya que la mayoría de los vuelos 

fueron cancelados y son, por tanto, excluidos del cálculo de indicadores de 

puntualidad. 

 

De 2010 a 2012, la puntualidad en Europa ha mejorado de nuevo y ha continuado 

mejorando en los EE.UU.. Sin embargo en 2013, mientras que la puntualidad en 

Europa se mantuvo prácticamente sin cambios, la puntualidad en los EE.UU. vió un 

fuerte descenso que puede ser debido al tiempo desfavorable en 2013 en comparación 

con años anteriores. 

La siguiente figura muestra la puntualidad en las llegadas de entre 34 aeropuertos 

principales de Europa y Estados Unidos en 2013.  

 

En los EE.UU., Newark (EWR) tuvo el menor rendimiento en tiempo (llegadas), seguido 

de San Francisco (SFO) y Nueva York Laguardia (LGA). En comparación con 2012, sólo 

tres aeropuertos mostraron mejoras en la puntualidad de llegada. Estos incluyen San 

Francisco (+ 2,7% pt.), Miami (+ 1,8% pt.) Y Newark (+ 1,3% pt.). 

 

Ilustración 4. Puntualidad en las llegadas en los aeropuertos de US vs. UE 



En Europa, los dos aeropuertos de Londres (LHR, LBV) y Lisboa (LIS) tuvieron el nivel 

más bajo en  puntualidad de las llegadas en 2013. En comparación con 2012, Madrid  

(+ 10,2% pt.), Lisboa (+ 5,5% pt.) y Helsinki (+ 4,1% pt.) muestran las mayores mejoras. 

 

Como se puede ver, el rendimiento  en tiempo de todo el sistema es el resultado de 

situaciones de contraste entre los aeropuertos. 

Por ello es importante entender, como bien se ha mencionado, que el rendimiento 

puntual (on-time performance) es el "producto final" de interacciones complejas con 

muchos actores, incluyendo ATM. La puntualidad de llegada se ve influenciada por la 

puntualidad de salida en el aeropuerto de origen y, a menudo por los retrasos que ya 

se produjeron en vuelos anteriores. 

Dependiendo del tipo de operación en los aeropuertos (hub and spoke vs. punto a 

punto) y el itinerario de rutas de la compañía, el rendimiento local puede tener un 

impacto ya no únicamente en las operaciones del propio aeropuerto, sino en toda la 

red a través de un efecto dominó o reaccionario. 

1.2 Consecuencias de los retrasos 
 

Las consecuencias de los retrasos en el transporte aéreo como bien  se ha comentado 

con anterioridad afectan gravemente al buen rendimiento del sector aéreo, en 

particular, tanto para los empresarios de las compañías aéreas y aeropuertos, como 

para los usuarios del transporte aéreo,  y en general, a todo el entorno que le rodea 

tanto económico  como medio ambiental. 

1.2.1 CONSECUENCIAS PARA LAS COMPAÑÍAS AÉREAS Y AEROPUERTOS 
En referencia con las consecuencias de los retrasos para los empresarios tanto 

de las compañías aéreas como de los aeropuertos se refiere a efectos 

monetarios mayoritariamente como veremos a continuación. 

Por ejemplo, en Estados Unidos, los retrasos del transporte aéreo tienen 

consecuencias importantes para su economía. Sólo para los vuelos domésticos 

del año 2007, se estima que los pasajeros sufrieron una demora de 320 

millones de horas, con un costo para la economía estadounidense de más de 

US$41 mil millones. También se ha estimado que debido a las demoras 

aumentó el costo de las operaciones aéreas domésticas en US$19 mil 

millones. (poner fuente de información)  

Análisis más recientes demuestran datos similares a los comentados para el año 

2007. En un análisis del año 2014 extraído de Airlines for America se muestra 

que el coste total directo de los retrasos en relación a las operaciones  de 

aviones fue de $81.18 por minuto, mientras que los costes debidos a retrasos 

en relación con el total directo de operaciones fueron de $9.149: 



Ilustración 5. Tabla de costes de los retrasos en 2014 para US 

Calendar Year 2014 Direct Aircraft 

Operating 

Cost per Block 

Minute 

∆ vs. 

2013 

   2014 Delay Costs 

($mil) 

Fuel $38.34 1.8% $4,321  

Crew – Pilots/Flight 

Attendants 

18.95 7.8% 2,136  

Maintenance 12.36 0.0% 1,393  

Aircraft Ownership 8.52 -1.1% 960  

Other 3.01 6.8% 339  

Total Direct Operating 

Costs 

$81.18 2.7% $9,149  

                                                                                                       Fuente: Airlines for America 

 

1.2.2 Consecuencias para los usuarios 

Las consecuencias para los usuarios se radican básicamente en relación con el 

tiempo y el coste de oportunidad perdido a causa de los retrasos sufridos. A 

demás de una percepción menor en base a la calidad del sistema de transporte 

aéreo. 

1.2.2.1 MARCO REGULATORIO DE LOS RETRASOS EN US Y EUROPA 
Estados Unidos: 

En este país el tratamiento de estas materias es fundamentalmente 

desregulado, situación que explica la ausencia de un marco regulatorio 

específico para el tratamiento de situaciones como los retrasos y 

cancelaciones de vuelo. Es común además que las aerolíneas tengan 

regulaciones de carácter voluntario en su “Compromiso de Servicio al 

Cliente”, pero su aplicación no ha sido del todo bien evaluada por la 

autoridad federal, la que ha promovido cambios regulatorios en algunas 

materias, tales como el tiempo máximo en que se permite mantener en 

espera a pasajeros a bordo de un avión en pista (Tarmac Delay). 

La única materia regulada en Estados Unidos es la denegación de 

embarque causado por la sobreventa de un vuelo –overbooking. En este 

caso, la ley exige compensación y otros beneficios para aquellos 

pasajeros con billete aéreo confirmado y que no pudieron viajar por 

causa de la sobreventa. Sin embargo, como bien se ha mencionado,  el 

resto de las situaciones como es el caso de las cancelaciones de vuelos 



o atrasos prolongados, no tienen ninguna forma de compensación 

reglamentada en Estados Unidos.  

Europa: 

En Europa a diferencia de los Estados Unido sí  que existe una regulación 

para compensar a los usuarios frente a retrasos aéreos, denegaciones 

de embarque o cancelaciones de vuelos. Esta regulación se creó en el 

2004 mediante la publicación del Reglamento N° 261/2004 y se aplica a 

toda clase de vuelos, chárter incluidos, que hayan despegado de 

aeropuertos de un país de la Unión Europea al que resulte aplicable la 

normativa, así como también a aquéllos que, despegando desde un 

terminal aéreo ubicado en un tercer país, tenga como destino uno de 

aquéllos, cuando los transportistas aéreos encargados de efectuar los 

vuelos sean aerolíneas europeas procedentes de la Unión Europea. 

Respecto a los retrasos, el Reglamento N° 261/2004 establece máximos 

de tiempo de espera en función de la distancia del vuelo respectivo. Así, 

en caso de un retraso mayor a esos máximos, la compañía aérea debe 

compensar a los pasajeros afectados en cuestiones que van desde 

suministrar gratuitamente comida y refrescos suficientes hasta el 

reembolso del valor del pasaje.  (para más información de las 

cantidades a reembolsar visite la página web siguiente: 

http://www.seguridadaerea.gob.es/lang_castellano/particulares/derech

os_pax/info_derechos/default.aspx) 

 

1.2.3 Consecuencias para el entorno  

En última instancia y  no menos importante los impactos de los retrasos aéreos 

también afectan  en contra del medio ambiente. 

Esto es así  dado  que si  una aeronave por ejemplo, ha de estar más tiempo 

efectuando las maniobras de espera en el aire o esperando en las rodaduras 

de la pista debido a cambios en los tiempos programados de otros vuelos que 

afecten en su programa de vuelo actual, esto ser verá traducido en mayores 

cantidades de  gasto de combustible por parte de las aeronaves repercutiendo 

así con mayor cantidad de emisiones que deterioran la calidad del aire en la 

atmosfera y además de una mayor contaminación en relación  al ruido emitido 

por los movimientos de las aeronaves. 

 
 

 

 

http://www.seguridadaerea.gob.es/lang_castellano/particulares/derechos_pax/info_derechos/default.aspx
http://www.seguridadaerea.gob.es/lang_castellano/particulares/derechos_pax/info_derechos/default.aspx


1.3 Enfoques para minimizar los retrasos aéreos 
Para reducir los impactos mencionados de los retrasos en el sector aéreo,  existen 

multitud de técnicas y procedimientos creados en diversos programas por 

organizaciones del transporte aéreo. La base de muchos de estos programas se centra 

en técnicas de intercambio de datos (data sharing) para mejorar la previsibilidad en el 

transporte aéreo y así poder controlar y disminuir los problemas de los retrasos en los 

vuelos. Algunos de estos programas se describen a continuación: 

 Airport Collaborative Decision Making (A-CDM): La Toma de Decisiones 

Colaborativas para los Aeropuertos(A-CDM) es un programa conjunto europeo 

creado por las organizaciones Eurocontrol, ACI-Europe, CANSO (Civil Air 

Navigation Services Organisation) e IATA  con el objetivo de mejorar la 

eficiencia de las operaciones aeroportuarias mediante la reducción de los 

retrasos, el aumento de la previsibilidad de los acontecimientos durante el 

progreso de un vuelo y la optimización de la utilización de recursos.  

Todo esto aumentará la capacidad en los aeropuertos participantes.                  

Este objetivo se debe conseguir a través de la mejora del intercambio de 

información  en tiempo real entre los operadores aeroportuarios, los 

operadores aéreos, operadores de tierra y control del tráfico aéreo. El 

concepto en sí, implica una implementación de un conjunto de procedimientos 

operativos y procesos automatizados. A-CDM ha sido implementado ya en un 

gran número de aeropuertos europeos,  y en concreto, durante el año pasado 

en el aeropuerto del Prat de Barcelona.  

 

 System Wide Information Management (SWIM): La Gestión de la Información 

de todo un Sistema(SWIM) es un programa de tecnología avanzada creado por 

la Administración Federal de Aviación(Federal Aviation Administration, FAA) 

para facilitar un mayor sistema de información a la Gestión del Tráfico 

Aéreo(ATM). La información se gestiona a lo  largo de todo el ciclo de vida y en 

base a todo el sistema europeo ATM. Éste provee de acceso para la 

información de la aviación a través de una única conexión.                                        

SWIM utiliza una arquitectura orientada a servicios(SOA) que facilita la 

incorporación de nuevos sistemas y el intercambio de datos y aumenta la 

conciencia de la situación común. Cabe decir que SWIM facilita los requisitos de 

intercambio de datos para NextGen, convirtiéndose así  en columna vertebral 

para  la realización de sus metas.  

 

 The Next Generation Air Transportation System (NextGen): El Sistema de 

Transporte Aéreo de Próxima Generación (NextGen) es un nuevo Sistema 

Nacional del Espacio Aéreo, el  cual, propone transformar el sistema de control 

del tráfico aéreo de los Estados Unidos de un sistema basado en radar con 

comunicación por radio a uno basado en satélites. La tecnología GPS se utiliza 



para acortar rutas y  obtener trayectorias más eficientes con el fin de ahorrar 

tiempo y combustible, reducir los retrasos en el tráfico, aumentar la capacidad, 

y los controladores de permiso para supervisar y gestionar las aeronaves con 

mayores márgenes de seguridad.  De este modo, las comunicaciones por radio 

serán reemplazadas cada vez más por el intercambio de datos y la 

automatización reducirá la cantidad de información que el personal de vuelo 

debe procesar a la vez.  

 

 Single European Sky ATM Research (SESAR): SESAR es el nombre que se le ha 

dado al proyecto tecnológico y operativo para modernizar la Gestión del 

Tránsito Aéreo (ATM) en Europa y que complementa el marco regulatorio de la 

iniciativa comunitaria de Cielo Único Europeo. El objetivo primordial de SESAR 

es garantizar el desarrollo sostenible del transporte aéreo en Europa de forma 

eficiente y segura a través de un enfoque orientado a los resultados. 

Para afrontar el problema de los retrasos plantea herramientas tales como: 

 User-Driven Prioritisation Process (UDPP) departures: Se trata de un 

proceso de priorización en las salidas para los usuarios del tráfico aéreo, 

en el cual, se ofrece una herramienta que permite ganar eficiencia en el 

proceso de consulta y  en la identificación de un compañero para poder 

realizar el cambio de slot si fuera necesario. 

 Gestión de la trayectoria inicial en cuatro dimensiones(i4D): Pretende 

superar las ineficiencias de los radares que utilizan los controladores 

aéreos(ya que estos solo predicen la trayectoria del avión de hasta 5  

minutos por delante) mediante la conexión de las aeronaves y  de los 

sistemas de tierra para así  optimizar la trayectoria de la aeronave en 

tres dimensiones más el tiempo ofreciendo una mayor predictibilidad. 

 

 

 

 

 

 

 

 



2. PREDICCIÓN DE LOS RETRASOS AÉREOS 

2.1 Análisis de los modelos de predicción 
 

Los modelos predictivos (poner referencia) son modelos de relación entre el 

rendimiento específico de un sujeto en una muestra y uno o más atributos o 

características del mismo sujeto. El objetivo del modelo es evaluar la probabilidad de 

que un sujeto similar tenga el mismo rendimiento en una muestra diferente. Esto 

permite valorar riesgos o probabilidades asociadas sobre la base de un conjunto de 

condiciones, guiando así al decisor durante las operaciones de la organización.  

El análisis de estos modelos predictivos se engloba dentro de una aérea de la Minería 

de Datos (Data Mining), el cual, este último es un campo multidisciplinario que 

combina las aéreas de  estadística,  de 

aprendizaje automático(machine 

learning), de inteligencia artificial y el 

de la tecnología de base de datos, con 

el fin de, descubrir patrones en 

grandes volúmenes de conjuntos de 

datos (Knowledge Discovery in 

Databases, KDD). 

 

 

 

 

Este proceso se compone de  una serie de complejas fases, las cuales, se intentan 

simplificar en la siguiente enumeración: 

1. Comprensión: del negocio y del problema que se quiere resolver. 

2. Determinación, obtención y limpieza: de los datos necesarios. 

3. Creación de modelos matemáticos. 

4. Validación, comunicación: de los resultados obtenidos. 

5. Integración: si procede, de los resultados en un sistema transaccional o similar. 

 

Estas fases se estudian más detalladamente en el apartado 2.2., aplicándolas a las 

fases clave que se llevan a cabo en toda realización de un modelo de predicción. 

 

 

 

Ilustración 6. Esquema Data Mining 



Volviendo  al punto de inicio de los modelos de predicción, existen diversas técnicas 

para su  creación y desarrollo. Dichas técnicas, no son más que algoritmos, más o 

menos sofisticados que se aplican sobre un conjunto de datos para obtener unos 

resultados. 

Las técnicas más representativas e influyentes en este proyecto se explican a  

continuación: 

 

 Modelos de Regresión (Regression models): 

El análisis de regresión es ampliamente utilizado para 

la predicción y previsión, donde su uso tiene especial importancia en el 

campo de aprendizaje automático. El análisis de regresión se utiliza también 

para comprender cuales de las variables independientes están relacionadas 

con la variable dependiente, y explorar las formas de estas relaciones.  

En circunstancias limitadas, el análisis de regresión puede utilizarse para 

inferir relaciones causales entre las variables independientes y 

dependientes. Sin embargo, esto puede llevar a ilusiones o falsas relaciones, 

ya que por ejemplo, una correlación entre variables no implica causalidad. 

Se han desarrollado muchas técnicas para llevar a cabo análisis de regresión. 

Su  desempeño en la práctica depende de la forma del proceso de 

generación de datos, y cómo se relaciona con el método de regresión que se 

utiliza. Dado que la forma verdadera del proceso de generación de datos 

generalmente no se conoce, el análisis de regresión depende a menudo 

hasta cierto punto de hacer suposiciones acerca de este proceso. 

o Modelos de Regresión lineal: 

 Regresión lineal simple  

Dadas dos variables (Y: variable dependiente; X: 

independiente) se trata de encontrar una función simple 

(lineal) de X que nos permita aproximar Y mediante:                 

Ŷ = a + bX 

a (ordenada en el origen, constante) 

b (pendiente de la recta) 

A la cantidad e=Y-Ŷ se le denomina residuo o error 

residual. 

 

 

 

https://es.wikipedia.org/wiki/Algoritmo
https://es.wikipedia.org/wiki/Predicci%C3%B3n
https://es.wikipedia.org/wiki/Pron%C3%B3stico_(estad%C3%ADstica)
https://es.wikipedia.org/wiki/Aprendizaje_autom%C3%A1tico
https://es.wikipedia.org/w/index.php?title=Error_residual&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Error_residual&action=edit&redlink=1
https://es.wikipedia.org/w/index.php?title=Error_residual&action=edit&redlink=1


 Regresión lineal múltiple(MLR) 

Es un método utilizado para modelar la relación lineal entre 

una variable dependiente (objetivo) y una o más variables 

independientes (predictoras): 

 

MLR se basa en los mínimos cuadrados ordinarios(OLS), 

donde el modelo se ajusta de tal  manera que la suma de los 

cuadrados de las diferencias de los  valores observados y 

predichos se minimizan. 

El modelo de MLR se basa en varios supuestos (por ejemplo, 

los errores se distribuyen normalmente con media cero y 

varianza constante). Siempre que los supuestos se cumplen, 

los estimadores de regresión son óptimos en el sentido de 

que son insesgados/centrados (unbiased), eficientes y 

consistentes. Insesgado significa que el valor esperado del 

estimador es igual al valor verdadero del parámetro. Eficiente 

significa que el estimador tiene una varianza más pequeña 

que cualquier otro estimador. Consistente significa que el 

sesgo y la varianza del estimador de enfoque de cero como el 

tamaño de la muestra se aproxima al infinito. 

 

 Random Forests (Arboles aleatorios): 

Es una combinación de árboles de predicción tal que cada árbol depende de 

los valores de un vector aleatorio probado independientemente y con la 

misma distribución para cada uno de estos. En esencia, es una modificación 

sustancial de la técnica de bagging que construye una larga colección de 

árboles no correlacionados y luego los promedia.  

Seguidamente en la ilustración 2.1 se puede ver una muestra en general de 

la estructura de los árboles de decisión y, en concreto, del proceso del 

modelo Random Forests: 

 



 

Los árboles son los candidatos ideales para el bagging, dado que ellos 

pueden registrar estructuras de interacción compleja en los datos, con la 

característica de que si crecen suficientemente profundo, tienen 

relativamente alta imparcialidad (sin influencias de sesgos o desviaciones en 

la muestra). 

En random forests, no hay necesidad de validación cruzada(cross-validation) 

o un conjunto de test(test set) separado para obtener una estimación  no 

sesgada del error de prueba, ya que, esto anterior se estima internamente 

durante la ejecución, de la siguiente manera: 

Cada árbol se construye utilizando una muestra bootstrap aggregating 

(bagging) diferente de los datos originales. Alrededor de un tercio de los 

casos se quedan fuera de la muestra de arranque(out of bag, OOB) y no se 

utiliza en la construcción del árbol.  

Cada árbol es construido usando el siguiente algoritmo: 

1. Sea N el número de casos de prueba, M es el número de variables en el 

clasificador. 

Ilustración 6. Esquema Random Forests 



2. Sea m el número de variables de entrada a ser usado para determinar la 

decisión en un nodo dado; m debe ser mucho menor que M 

3. Elegir un conjunto de entrenamiento para este árbol y usar el resto de 

los casos de prueba para estimar el error. 

4. Para cada nodo del árbol, elegir aleatoriamente m variables en las cuales 

basar la decisión. Calcular la mejor partición a partir de las m variables 

del conjunto de entrenamiento. 

Las ventajas del random forests son:  

 Es uno de los algoritmos de aprendizaje más certeros que hay 

disponibles. Para un set de datos lo suficientemente grande produce 

un clasificador muy certero.  

 Rapidez de ejecución. 

 Puede manejar cientos de variables de entrada sin excluir ninguna. 

 Da estimaciones de qué variables son importantes en la clasificación. 

 Tiene un método eficaz para estimar datos perdidos y mantener la 

exactitud cuando una gran proporción de los datos está perdida. 

 Computa los prototipos que dan información sobre la relación entre 

las variables y la clasificación. 

 Computa las proximidades entre los pares de casos que pueden 

usarse en los grupos, ofreciendo así una localización de valores 

atípicos, y produciendo vistas interesantes de los datos. 

 Ofrece un método experimental para detectar las interacciones de 

las variables. 

 

Las desventajas del random forests son:  

 Se ha observado que Random forests aún y  proveer de una 

estimación de errores interna(out of bag estimate, obb) y de su 

cálculo de proximidades,   en ciertos grupos de datos con tareas de 

clasificación/regresión ruidosas se puede dar un sobreajusta(overfit) 

aun y  no siendo el caso  habitual.  

 La clasificación hecha por random forests es difícil de interpretar por 

el hombre.  

 Para los datos que incluyen variables categóricas con diferente 

número de niveles, el random forests se parcializa a favor de esos 

atributos con más niveles. Por consiguiente, la posición que marca la 



variable no es fiable para este tipo de datos. Métodos como las 

permutaciones parciales se han usado para resolver el problema. 

 Si los datos contienen grupos de atributos correlacionados con 

similar relevancia para el rendimiento, entonces los grupos más 

pequeños están favorecidos sobre los grupos más grandes. 

 

 Redes neuronales (Artificial Neural Networks): 

Una red neuronal artificial (ANN) es un sistema que se basa en la red neural 

biológica, como el cerebro, aunque no es comparable ya que el número y la 

complejidad de las neuronas utilizadas en una red neural biológica es 

muchas veces más que los de una red neural artificial. 

Un ANN se compone de una red de neuronas artificiales (también conocido 

como "nodos"). Estos nodos están conectados entre sí, y a la fuerza de sus 

conexiones entre sí se les asigna un valor basado en su fuerza: de inhibición 

(máxima siendo -1,0) o de excitación (ser máximo 1,0). Si el valor de la 

conexión es alta, entonces esto indica que hay una conexión fuerte. Dentro 

del diseño de cada nodo, se construye una función de transferencia. Hay tres 

tipos de neuronas en una ANN: nodos de entrada, nodos ocultos y nodos de 

salida. En el siguiente gráfico se muestra el diseño de una ANN: 

                              Ilustración 7. Esquema de Red Neuronal Artificial 

 
 

Los nodos de entrada toman la información, en la forma que puedan 

expresarse numéricamente. La información se presenta como valores de 

activación, donde cada nodo se le asigna un número, el  cual contra mayor 

es el número, mayor es la activación. Esta información se pasa entonces a 

través de la red. Sobre la base de los puntos fuertes de conexión (pesos),  la 



inhibición o excitación, las  funciones de transferencia,  y el valor de 

activación son pasados de nodo a nodo. Cada uno de los nodos suma los 

valores de activación que recibe; a continuación, modifica el valor basado en 

su función de transferencia. La activación fluye a través de la red, a través de 

capas ocultas, hasta que llega a los nodos de salida. Finalmente estos nodos 

de salida reflejan la información procesada de manera significativa para el 

mundo exterior. 

 

 Gradiente de árboles boosting (Gradient Boosting Trees): 

El  gradiente de arboles boosting es una generalización del método boosting 

con una diferencia arbitraria en la función de perdida. Crea modelos de 

predicción mediante el conjunto de modelos débiles de predicción y el uso 

de arboles de decisión. 

Es un proceso efectivo y  preciso el cual se puede utilizar tanto en problemas 

de regresión como de clasificación. 

Las ventajas de GBRT son: 

 manejo natural de los datos de tipo mixto (= características 

heterogéneas) 

 La capacidad de predicción 

 Robustez a los valores atípicos en el espacio de salida (a través de 

robustas funciones de pérdida) 

Las desventajas de GBRT son: 

 Escalabilidad, debido a la naturaleza secuencial de boosting, donde 

para construir cada clasificador es necesario haber construido el 

anterior, esto hace que difícilmente pueda ser paralelizado. 

 

2.2 Pasos clave para la creación de los modelos de predicción 
 

Para la creación de los modelos de predicción existen una serie de pasos clave para su  

correcto funcionamiento. Estos pasos se generalizan en las siguientes tareas: 

1. Selección del conjunto de datos (Selection), tanto en lo que se refiere a las 

variables objetivo (aquellas que se quiere predecir, calcular o inferir), como a 

las variables independientes (las que sirven para hacer el cálculo o proceso), 

como posiblemente al muestreo de los registros disponibles. Es decir se basa 

en la selección de subconjuntos de características o en la construcción de un 

nuevo conjunto de características con el fin de facilitar el aprendizaje y mejorar 

la generalización y la interpretación. 

https://es.wikipedia.org/wiki/Variable_dependiente
https://es.wikipedia.org/wiki/Muestreo_en_estad%C3%ADstica
https://es.wikipedia.org/wiki/Registro_(base_de_datos)


2. Análisis de las propiedades de los datos, en especial los histogramas, 

diagramas de dispersión, presencia de valores atípicos y ausencia de datos 

(valores nulos). 

3. Transformación del conjunto de datos de entrada(transformation), se 

realizará de diversas formas en función del análisis previo, con el objetivo de 

prepararlo para aplicar la técnica de minería de datos que mejor se adapte a los 

datos y al problema, a este paso también se le conoce como pre 

procesamiento de los datos. 

4. Seleccionar y aplicar la técnica de minería de datos(data mining), se construye 

el modelo predictivo, de clasificación o regresión. 

5. Extracción de conocimiento, mediante una técnica de minería de datos, se 

obtiene un modelo de conocimiento, que representa patrones de 

comportamiento observados en los valores de las variables del problema o 

relaciones de asociación entre dichas variables. También pueden usarse varias 

técnicas a la vez para generar distintos modelos, aunque generalmente cada 

técnica obliga a un pre procesado diferente de los datos. 

6. Interpretación y evaluación de datos, una vez obtenido el modelo, se debe 

proceder a su validación comprobando que las conclusiones que arroja son 

válidas y suficientemente satisfactorias. En el caso de haber obtenido varios 

modelos mediante el uso de distintas técnicas, se deben comparar los modelos 

en busca de aquel que se ajuste mejor al problema. Si ninguno de los modelos 

alcanza los resultados esperados, debe alterarse alguno de los pasos anteriores 

para generar nuevos modelos. 

Seguidamente se muestra una ilustración del procesos KDD que es originario en la 

minería de datos y se utiliza para la construcción de modelos, como en este caso, el de 

predicción: 

Ilustración 8. Ilustración de las fases del proceso de Knowledge Discovery in 
Databases(KDD) 

 

 

https://es.wikipedia.org/wiki/Histograma
https://es.wikipedia.org/wiki/Dispersi%C3%B3n_(matem%C3%A1tica)
https://es.wikipedia.org/wiki/Valor_at%C3%ADpico
https://es.wikipedia.org/wiki/Null


3. CASO DE ESTUDIO: Análisis de los retrasos en los vuelos de los 

aeropuertos de Arizona(E.E.U.U) 

3.1 Descripción situacional de los datos a utilizar: Entorno, 

Aeropuertos y Compañías Aéreas de Arizona. 
 

Para la creación del caso de estudio se utilizan datos históricos de los vuelos 

realizados, por las diferentes compañías aéreas operadoras, en los Aeropuertos de 

Arizona (EEUU).   

Entorno de Arizona: 

Arizona es uno de los 50 estados que conforman los Estados Unidos de América, 

localizado en el suroeste del país. Es muy 

conocido por su paisaje desértico, sus cactus y 

la cosmopolita ciudad de Phoenix. 

Debido a su gran extensión y a las variaciones 

de altitud, el estado presenta una extensa 

variedad de condiciones climáticas localizadas. 

Gran parte de Arizona tiene un clima árido o 

semiárido. Estas regiones reciben menos de 40 

centímetros de lluvia al año, siendo muy calurosas en verano y suaves en invierno. No 

obstante, las regiones montañosas de mayor altitud poseen un clima más húmedo y 

frío. La temporada de monzón se extiende de mediados de julio a agosto y trae 

vientos, relámpagos, tormentas y lluvias torrenciales. 

La mayoría del estado está escasamente habitado: la mayor parte de la población de 

Arizona se concentra en dos centros urbanos: Phoenix, la ciudad con mayor 

crecimiento de Estados Unidos, la mayor ciudad y capital del estado, y Tucson.(poner 

referencia)  

Aeropuertos y  compañías aéreas utilizadas en la base de datos: 

Los aeropuertos y las compañías aéreas estadounidenses utilizadas en la base de datos 

se muestran en las dos siguientes tablas. 

En esta primera tabla se pueden observar las 12 compañías aéreas las cuales son 

utilizadas para el análisis de predicción: 

 

 

 



Ilustración 9. Tabla de Base de datos: Compañías aéreas 

 

En la siguiente tabla 2, se muestran los 80 aeropuertos, tanto de destino y origen, 

analizados en los vuelos en la base de datos. Los aeropuertos de Arizona son los 

marcados en color amarillo. Cada vuelo analizado en este proyecto tiene como origen 

o destino uno de los 4 aeropuertos de Arizona(AZ): 

Ilustración 10. Tabla de Base de datos: 
Aeropuerto 

Código de 

aeropuerto 

IATA 

Ciudad del 

Aeropuerto 

ABQ Albuquerque, NM 

ANC Anchorage, AK 

ATL Atlanta, GA 

AUS Austin, TX 

BFL Bakersfield, CA 

BWI Baltimore, MD 

BOI Boise, ID 

BOS Boston, MA 

BUF Buffalo, NY 

BUR Burbank, CA 

CLT Charlotte, NC 

MDW Chicago, IL 

ORD Chicago, IL 

CVG Cincinnati, OH 

CLE Cleveland, OH 

CMH Columbus, OH 

DAL Dallas, TX 

DFW Dallas/Fort Worth, 

TX 

DEN Denver, CO 

DSM Des Moines, IA 

DTW Detroit, MI 

DRO Durango, CO 

ELP El Paso, TX 

FLG Flagstaff, AZ 

FLL Fort Lauderdale, FL 

FAT Fresno, CA 

GJT Grand Junction, CO 

HNL Honolulu, HI 

HOU Houston, TX 

IAH Houston, TX 

IND Indianapolis, IN 

OGG Kahului, HI 

MCI Kansas City, MO 

KOA Kona, HI 

LAS Las Vegas, NV 

LIH Lihue, HI 

LIT Little Rock, AR 

LGB Long Beach, CA 

LAX Los Angeles, CA 

CODIGO IATA ID DE LA COMPAÑIA 
AEREA 

COMPAÑÍA AEREA 

AA 19805 American Airlines 

AS 19930 Alaska Airlines Inc 

B6 20409 JetBlue Aiways 

DL 19790 Delta Airlines Inc. 

EV 20366 Atlantic Southeast Airlines 

F9 20436 Frontier Airlines 

HA 19690 Hawaiian Airlines 

NK 20416 Spirit Airlines 

OO 20304 SkyWest Airlines 

UA 19977 United Airlines, Inc. 

US 20355 US Airways 

WN 19393 Southwest Airlines (Texas) 



SDF Louisville, KY 

MHT Manchester, NH 

MIA Miami, FL 

MKE Milwaukee, WI 

MSP Minneapolis, MN 

MRY Monterey, CA 

MTJ Montrose/Delta, CO 

BNA Nashville, TN 

MSY New Orleans, LA 

JFK New York, NY 

EWR Newark, NJ 

OAK Oakland, CA 

OKC Oklahoma City, OK 

OMA Omaha, NE 

ONT Ontario, CA 

MCO Orlando, FL 

PSP Palm Springs, CA 

PHL Philadelphia, PA 

PHX Phoenix, AZ 

PIT Pittsburgh, PA 

PDX Portland, OR 

RDU Raleigh/Durham, NC 

RNO Reno, NV 

SMF Sacramento, CA 

SLC Salt Lake City, UT 

SAT San Antonio, TX 

SAN San Diego, CA 

SFO San Francisco, CA 

SJC San Jose, CA 

SBP San Luis Obispo, CA 

SNA Santa Ana, CA 

SBA Santa Barbara, CA 

SEA Seattle, WA 

GEG Spokane, WA 

STL St. Louis, MO 

TPA Tampa, FL 

TUS Tucson, AZ 

TUL Tulsa, OK 

DCA Washington, DC 

IAD Washington, DC 

YUM Yuma, AZ 

 

 

Análisis actuales realizados por  U.S. Department of Transportation (US DOT), ofrecen  

diferentes tipos de información y rankings de las compañías aéreas estadounidenses. 

En un ranking realizado para el mes de noviembre de 2015 se muestra el rendimiento 

en tiempo del vuelo de las compañías con los mejores y  los peores porcentajes al 

respecto: 

 En general: 

  83.7 por ciento de las llegadas a tiempo 

 

 Ranking de las compañías aéreas con en el porcentaje de llegadas más alto 

en relación con la hora programada: 

1. Hawaiian Airlines - 93,9 por ciento 

2. Delta Air Lines- 89,5 por ciento 

3. Alaska Airlines - 85,5 por ciento 

 

 Ranking de las compañías aéreas con en el porcentaje de llegadas más bajo 

en relación con la hora programada: 

1. Frontier Airlines - 74,0 por ciento 

2. Spirit Airlines - 75,3 por ciento 

3. Aerolíneas ExpressJet - 80,8 por ciento 

 

http://www.dot.gov/


En relación con los 80 aeropuertos de la base de datos a utilizar en el análisis de 

predicción,  a continuación se verá una ligera pincelada de las características de los 4 

aeropuertos de Arizona. Como bien se ha comentado anteriormente estos son los 

protagonistas de todos los vuelos que se utilizarán para hacer el análisis de predicción 

posterior. Las características en relación con el flujo de pasajeros y  las compañías que 

operan en ellos se detalla a continuación: 

 Aeropuerto de Flagstaff Pulliam (FLG): 

Como se ve en la siguiente imagen, actualmente tiene como única compañía 

aérea operadora SkyWest con un total de 174 mil pasajeros. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Además el aeropuerto de Flagstaff únicamente opera vuelos con destino al 

aeropuerto internacional de Phoenix(PHX). 

 

 Aeropuerto Internacional de Phoenix-Sky Harbor(PHX): 

Es el aeropuerto más grande y concurrido de Arizona, y se encuentra entre 

los aeropuertos comerciales más grandes de Estados Unidos. 

En el siguiente gráfico se muestra como Southwest y US Airways son sus 

mayores compañías aéreas operadoras de entre otras,  con 

aproximadamente 14 y 10 millones de pasajeros transportados 

respectivamente en el año 2015. Si  a esto  le sumamos los 17  millones de 

otras compañías operadoras en el aeropuerto suman un total de 41 millones 

de pasajeros transportados en 2015. 

 

Ilustración 11. Gráfico de Total de pasajeros para vuelos 
en FLG (en miles) 

https://es.wikipedia.org/wiki/Estados_Unidos


            

 

 

 

 

 

 

 

 

 

 

 

 
Fuente: Bureau of transportation statistics 

  

En el siguiente gráfico se pueden observar cuáles son sus 10 aeropuertos de 

destino más utilizados. El aeropuerto de destino que encabeza la lista es 

Denver(CO) con 1 millón de pasajeros transportados en 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: Bureau of transportation statistics 

 

 

Ilustración 12. Gráfico de Partición de compañías en PHX para 
nov. 2014 - oct. 2015 

Ilustración 13. Gráfico de Top 10 destinos aeropuertos de PHX 
(Pasajeros, en miles) 

 



 Aeropuerto Internacional de Tucson (TUS): 

Es el segundo aeropuerto más concurrido de Arizona, después del de 

Phoenix. 

En la siguiente imagen se pueden ver sus mayores compañías aéreas 

operadoras. Encabezando al mayor porcentaje se encuentra una vez mas 

Southwest con 986 mil pasajeros transportados para el  año 2015 (de 

noviembre 2014 a octubre de 2015) un 31, 81% del total para ese periodo. 

En total se transportaron 3.100.000 de pasajeros para el periodo de 

noviembre 2014 a octubre de 2015. 

 

  

 

 

 

 

 

 

 

 

 

 

 
Fuente: Bureau of transportation statistics 

 

 

En el siguiente gráfico se pueden observar cuáles son sus 10 aeropuertos de 

destino más utilizados y  la variación de 2013-2014. El aeropuerto de destino 

que encabeza la lista es Dallas/Fort Worth, TX (DFX) con 274 mil pasajeros 

transportados en el periodo de noviembre 2014 a octubre de 2015. 

  

 

 

 

 

 

 

Ilustración 14. Gráfico de Partición de compañías en TUS para 
nov. 2014 - oct. 2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: Bureau of transportation statistics 

 

 Aeropuerto Internacional de Yuma(YUM): 

Es un aeropuerto de uso compartido junto con la Marine Corps Air Station 

Yuma, por ello se usa sobre todo para la aviación militar, aunque como 

podemos ver en el siguiente gráfico, actualmente opera mayoritariamente la 

compañía aérea Skywest con un movimiento de pasajeros para el año 2015 

de 152 mil pasajeros. 

 

 

 

 

 

 

 

 

 

 

 

 

Ilustración 15. Gráfico de Top 10 destinos aeropuertos de TUS 
(Pasajeros, en miles) 



 

 

 

 

 

 

 

 

 

Fuente: Bureau of transportation statistics 

 

Los destinos del aeropuerto de Yuma únicamente son dos: aeropuerto de Phoenix 

(PHX) y aeropuerto de los Ángeles (LAX). El  mayor porcentaje de pasajeros 

transportados es para el aeropuerto de Phoenix con 75 mil pasajeros transportados 

durante el periodo de noviembre 2014 a octubre de 2015. Aún y así se puede ver un 

incremento notable en relación con los pasajeros trasportados en el  año 2014 al año 

2015 para el aeropuerto de los Ángeles (LAX).Estos datos se pueden ver reflejados en 

el siguiente gráfico: 

 

 

 

 

 

 

 

 

 

 

 

 

Fuente: Bureau of transportation statistics 

Ilustración 16. Gráfico de Total de pasajeros para 
vuelos en YUM (en miles) 

 

Ilustración 17. Gráfico de Aeropuertos de destino de YUM 



3.2 Creación del modelo de predicción en Pycharm 

3.2.1 Exploración de los datos 

  

Como bien se ha visto  en el anterior punto, para la creación del modelo de predicción 

se utilizan datos históricos de los vuelos realizados, por las diferentes compañías 

aéreas operadoras, (referencia de tabla) en los Aeropuertos de Arizona (EEUU) 

(referencia de tabla).   

En la base de datos, concretamente, se trabaja con 9 archivos, los cuales, 

corresponden cada uno a un mes en particular del año 2015 (meses de enero a 

septiembre). Todos los archivos contienen la misma información en columnas, pero 

con distintos datos procedentes de cada mes en cuestión. En total se analizan 262.770 

vuelos realizados entre los 9 meses de 2015. 

Como se verá seguidamente en la explicación, existen campos que contienen un ID, 

este ID representa un número de identificación asignado por US DOT, Departamento 

de Transporte de los Estados Unidos, que es la fuente de donde se extrae toda la 

información de la base de datos a analizar. 

Dicha información está representada en 38 campos específicos (columnas),  los cuales,  

se agrupan en 9 campos más generales, detallados a continuación: 

 PERIODO DE TIEMPO 

o Year: Año de realización del vuelo. 

o Quarter: Trimestre de realización del vuelo. 

o Month: Mes de realización del vuelo. 

o Day_of_month: Día del mes de realización del vuelo. 

o Day_of_week: Día de la semana de realización del vuelo. 

o Fl_date: Fecha completa de la realización del vuelo (dd/mm/aaaa). 

 AEROLÍNEA 

o Unique_Carrier: Código único de la compañía aérea. Cuando un mismo 

código sea utilizado por múltiples compañías aéreas, se utilizará un 

número sufijo para las compañías que primero lo utilizaron, por 

ejemplo: PA, PA (1), PA (2). Se utilizará este campo para el análisis a 

través de varios años. 

o Airline ID: ID de la aerolínea. Es un número que identifica a una única 

aerolínea. Una única aerolínea se define como un "holding and 

reporting" bajo un mismo certificado DOT, independientemente de su 

código, nombre o sociedad de cartera/empresa. 



o Carrier: Código asignado por la IATA y comúnmente usado para 

identificar a las compañías aéreas. El código no siempre es único,  ya 

que el mismo código puede ser asignado a diferentes empresas tras el 

paso del tiempo. Por lo tanto para crear análisis con espacios de tiempo 

diferentes es mejor utilizar el "Unique_Carrier". 

o Fl_Num: Número de vuelo. 

 ORIGEN 

o Origin_Airport_ID: ID del aeropuerto de origen. Se utilizará este campo 

para analizar el aeropuerto a través de varios años ya que un 

aeropuerto puede cambiar su código  y además puede ser reutilizado. 

o Origin_Airport_Seq_ID: ID de la secuencia del aeropuerto de origen. 

Identifica a un único aeropuerto en un punto dado en el tiempo. 

Atribuye al aeropuerto, como el  nombre o coordenadas, los cuales, 

pueden cambiar con el tiempo. 

o Origin_City_Marquet_ID: ID del mercado de la ciudad de origen. Este 

campo se utiliza para consolidar los aeropuertos que sirven a un mismo 

mercado de la ciudad.   

o Origin: Origen del aeropuerto. Campo que muestra el código IATA del 

aeropuerto de origen. 

o Origin_City_Name: Nombre de origen de la ciudad. 

 

 DESTINACIÓN 

La descripción de los campos de este apartado es el  mismo que para el campo 

de origen, con la única diferencia que éste informa de los datos de destino. 

o Dest_Airport_ID: ID que identifica el destino de un único aeropuerto. Al  

igual que el  ID del aeropuerto de origen, se utilizará este campo para 

analizar el aeropuerto a través de varios años ya que un aeropuerto 

puede cambiar su código  y además puede ser reutilizado. 

o Dest_Airport_Seq_ID: ID de la secuencia del aeropuerto de destino. 

Identifica a un único aeropuerto en un punto dado en el tiempo. 

Atribuye al aeropuerto, como el  nombre o coordenadas, los cuales, 

pueden cambiar con el tiempo. 

o Dest_City_Market_ID: ID del mercado de la ciudad de destino. Este 

campo se utiliza para consolidar los aeropuertos que sirven a un mismo 

mercado en la ciudad. 

o Dest: Destino del aeropuerto. Origen del aeropuerto. Campo que 

muestra el código IATA del aeropuerto de destino. 

o Dest_City_Name: Nombre de la ciudad de destino. 

 

 

 



 INFORMACIÓN/PLAN DE SALIDA 

o Dep_Time: Tiempo actual de salida del vuelo (hora local: hhmm). 

o Dep_Delay_New: Diferencia en minutos entre la hora de salida prevista 

y la hora de salida real. Nos muestra si hay retraso o no. (X = 0         Sin 

retraso o salidas anticipadas a la hora prevista / /  X > 0       Con retraso).  

o Dep_Del15: Indicador de retrasos en las salidas de 15  o  más minutos 

(1= Si hay retrasos de 15 o más minutos). 

o Taxi_Out: Tiempo en minutos del Taxi Out (desde que el avión está 

rodando hasta que sale de pista). 

o Wheels_Off: Momento en el que las ruedas (aeronave) están fuera del 

suelo, es decir, momento en que la aeronave despega. 

 

 INFORMACIÓN/PLAN DE LLEGADA 

o Wheels_On: Momento en el que las ruedas (aeronave) están en tierra, 

momento en que la aeronave aterriza. 

o Taxi_in: Tiempo en Taxi _in(desde que el avión aterriza hasta que llega 

al finger). 

o Arr_Time: Tiempo actual de llegada (hora local: hhmm). 

o Arr_Delay_New: Diferencia en minutos entre la hora de llegada prevista 

y la hora de llegada real. Las llegadas antes de tiempo se establecen con 

un 0. 

o Arr_Delay15: Indicador de retrasos en las llegadas de 15  o  más 

minutos (1= Cuando hay retrasos de 15 o más minutos). 

 

 CANCELACIONES 

o Cancelled: Indicador de cancelación de vuelo (1= Cuando hay 

cancelaciones) 

o Cancellation_Code: Especifica la razón de la cancelación mediante un 

código. 

Cuando tengamos el indicador a 1 conforme hay cancelaciones, los campos de 

información de salida e información de llegada, estarán en blanco, no 

contendrán  información. 

 SUMARIO DE VUELO 

o Distance: Distancia entre aeropuertos (millas). 

 

 CAUSAS DE LOS RETRASOS 

o Carrier_Delay: Retraso a causa de la aerolínea (minutos).Por ejemplo: 

problemas de manteniemiento o en la tripulacion, limpieza de los 

aviones, equipaje de carga, abastecimiento de combustible, etc.) 

o Weather_Delay: Retraso a causa del temporal (minutos) real o previsto. 



o NAS_Delay: Retraso a causa del Sistema Aéreo Nacional (minutos).Se 

refiere a una amplia gama de condiciones, como las condiciones no 

extremas del clima, las operaciones aeroportuarias, el volumen de 

tráfico pesado, y el control del tráfico aéreo. 

o Security_Delay: Retraso a causa de la seguridad (minutos). Por ejemplo: 

por evacuación de una terminal o explanada, re-acceso a las aeronaves 

debido a un fallo de seguridad, equipos de control que no funcionan y / 

o las largas colas de más de 29 minutos en las áreas de detección. 

o Late_Aircraft_Delay: Retraso a causa de la llegada tardía de la 

aeronave, haciendo que el  vuelo continuo a éste se retrase. (minutos). 

Sólo tendremos información de las causas de los retrasos si ha habido retrasos 

de más de 15  minutos en las salidas, llegadas o en ambas. 

Para analizar toda esta información se utiliza un lenguaje de programación informática 

llamado Python. Este lenguaje se desarrolla en un programa informático llamado 

Pycharm. 

Dicho esto, a continuación, se verán los pasos fundamentales para la creación del 

nuevo proyecto, y su posterior volcado y manejo de los 9 archivos en el programa 

Pycharm: 

Primero, ha sido necesario crear un nuevo proyecto, con el  nombre de 

"FlightDelaysPrediction". Dentro de este proyecto se ha creado un fichero 

Python llamado "predictionmodel.py", que es donde se desarrollará el código 

en Python. 

Seguidamente, dentro del proyecto principal se ha creado una carpeta llamada  

"dataARIZONA", la cual, contendrá los 9 archivos copiados con la información 

de los vuelos realizados en los Aeropuertos de Arizona. 

9 ARCHIVOS 



Para poder procesar y cargar todos los datos de los 9 archivos en el fichero de 

Python, se ha tenido que empezar a crear el siguiente código: 

 

import pandas as pd 
 
_author_ = 'Nerea' 
 
df1 = pd.read_csv("dataARIZONA/ARIZONA_ENERO.csv") 
df2 = pd.read_csv("dataARIZONA/ARIZONA_FEBRERO.csv") 
df3 = pd.read_csv("dataARIZONA/ARIZONA_MARZO.csv") 
df4 = pd.read_csv("dataARIZONA/ARIZONA_ABRIL.csv") 
df5 = pd.read_csv("dataARIZONA/ARIZONA_MAYO.csv") 
df6 = pd.read_csv("dataARIZONA/ARIZONA_JUNIO.csv") 
df7 = pd.read_csv("dataARIZONA/ARIZONA_JULIO.csv") 
df8 = pd.read_csv("dataARIZONA/ARIZONA_AGOSTO.csv") 
df9 = pd.read_csv("dataARIZONA/ARIZONA_SEPTIEMBRE.csv") 
 
 
result = (df1, df2, df3, df4, df5, df6, df7, df8, df9) 
df = pd.concat(result) 
 
print df.head() 

 

 

Aquí lo que se ha hecho es que desde una de las muchas librerías que tiene el 

lenguaje Python, en este caso  desde "pandas", se ha llamado a la función 

"read" para que nos cargue y nos lea los 9 archivos. 

Seguidamente todos estos 9 archivos que están separados y que  han sido 

asignados a data frames distintas(df1, df2, df3, df4, df5, df6, df7, df8, df9), se 

han ajuntado en un único archivo (DataFrame)  llamado "df" mediante el 

comando concat de la librería de pandas. 



Finalmente, para poder mostrar los resultados de la unión de todos los 

archivos, hemos "printeado" por pantalla las primeras filas del data frame "df" 

con el comando "head()". Los resultados han sido los siguientes: 

 

Se han mostrado por pantalla los 38 campos iguales(columnas) que contenían todos 

los archivos, y  únicamente 5  primeras filas, con su información pertinente, tal y como 

se le había pedido en el código. 

 

3.2.2 Pre procesamiento de los datos 
 

El "Pre procesamiento de Datos" / “La Preparación de Datos” engloba a todas 

aquellas técnicas de análisis de datos que permite mejorar la calidad de un conjunto de 

datos de modo que las técnicas de extracción de conocimiento/minería de datos 

puedan obtener mayor y mejor información (mejor porcentaje de clasificación, reglas 

con más completitud, etc.). Es por esto, que este bloque siguiente presenta los 

apartados de limpieza de datos, análisis visual, transformación de los datos y selección 

de características. 

 



3.2.2.1  Limpieza de los datos no significativos 

En esta segunda fase se procede a eliminar los datos que no aportan ningún tipo de 

información para el  análisis de predicción. Más concretamente se eliminan los campos 

relacionados con el tiempo que no contienen ningún tipo de información, es decir,  

campos vacios debido a vuelos cancelados. Estos campos se muestran, en la pantalla 

de resultados de Pycharm, con el símbolo Na. Se puede ver una muestra de ello en la 

siguiente imagen: 

 

 Para empezar se eliminarán los vuelos cancelados ya que no son de utilidad para 

analizar y  predecir los retrasos en los vuelos. 



 

Para ello, referente a los campos de las cancelaciones(Cancelled y Cancellation_Code), 

se recuerda que un vuelo está cancelado cuando en su campo indica un 1, y un 0 

cuando el vuelo no ha sido cancelado. Respectivamente si  un vuelo no  ha sido 

cancelado, el campo de Cancellation_Code estará vacío, es decir no contendrá ningún 

tipo de información(Na), y si  hay  retraso, contendrá un código informativo, con lo 

cual, el campo no será nulo. 

Así, para eliminar los vuelos cancelados, primero, se ha procedido a asignar como nulo 
a todas las filas del campo "Cancellation_Code": 
 

df = df[df.CANCELLATION_CODE.isnull()] 

 

 

Seguidamente se observarán tanto los campos que contienen valores nulos como los 
que contienen algún tipo de información con el siguiente comando: 
 

print df.isnull().any() 

 

En la siguiente imagen se pueden ver los resultados obtenidos en Pycharm: 
 

 

C:\Python27\python.exe C:/Users/Nerea/PycharmProjects/FlightDelaysPrediction/predictionmodel.py 

YEAR                                        False 

QUARTER                                 False 

MONTH                                    False 

DAY_OF_MONTH                      False 

DAY_OF_WEEK                         False 

FL_DATE                                   False 

UNIQUE_CARRIER                     False 

AIRLINE_ID                               False 

CARRIER                                   False 

FL_NUM                                   False 

ORIGIN_AIRPORT_ID                 False 

ORIGIN_AIRPORT_SEQ_ID         False 

ORIGIN_CITY_MARKET_ID         False 

ORIGIN                                     False 

ORIGIN_CITY_NAME                  False 

DEST_AIRPORT_ID                     False 

DEST_AIRPORT_SEQ_ID             False 

DEST_CITY_MARKET_ID             False 

DEST                                         False 

DEST_CITY_NAME                      False 

 

 

 

 

 

DEP_TIME                                    False 

DEP_DELAY_NEW                         False 

DEP_DEL15                                  False 

TAXI_OUT                                     False 

WHEELS_OFF                                False 

WHEELS_ON                                  True 

TAXI_IN                                         True 

ARR_TIME                                      True 

ARR_DELAY_NEW                          True 

ARR_DEL15                                    True 

CANCELLED                                    False 

CANCELLATION_CODE                    True 

DISTANCE                                      False 

CARRIER_DELAY                            True 

WEATHER_DELAY                          True 

NAS_DELAY                                   True 

SECURITY_DELAY                           True 

LATE_AIRCRAFT_DELAY                True 

Unnamed: 38                               True 

dtype: bool 

Process finished with exit code 0 

 

 

La información que se muestra en la anterior imagen informa con un False de que no 

hay  ninguna fila, del campo en cuestión, que sea nula ,es decir, que no contenga 

ningún tipo de información. Respectivamente los campos que contienen True, nos 

informan que hay filas nulas(Na) , las cuales, no contienen ningún tipo de información.  
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delay_column_names = ["ARR_DELAY_NEW", "ARR_DEL15", "CARRIER_DELAY", 

"WEATHER_DELAY", "NAS_DELAY", "SECURITY_DELAY", "LATE_AIRCRAFT_DELAY"] 

 

df[delay_column_names] = df[delay_column_names].fillna(0) 

 

 

Además de esto se observa también, que se ha resaltado en rojo unos campos que por 

ahora contienen información nula, entre otros, en alguna de sus filas, el objetivo en 

este punto es hacer que contengan algún tipo de información ya que se requieren para 

poder analizar los retrasos en los vuelos. 

Para poder mantener estos campos con algún tipo de información, se procede a 

cambiar los valores nulos(Na) de estas columnas por valores con el numero 0. Este 

proceso se formaliza con el código en Pycharm siguiente: 

 

 

 

 

 

Para comprobar que se han realizado los cambios pertinentes a continuación, se 

muestran por pantalla los nuevos resultados extraídos de Pycharm: 

 

C:\Python27\python.exe C:/Users/Nerea/PycharmProjects/FlightDelaysPrediction/predictionmodel.py 

YEAR                                             False 

QUARTER                                      False 

MONTH                                        False 

DAY_OF_MONTH                          False 

DAY_OF_WEEK                             False 

FL_DATE                                       False 

UNIQUE_CARRIER                         False 

AIRLINE_ID                                   False 

CARRIER                                       False 

FL_NUM                                       False 

ORIGIN_AIRPORT_ID                    False 

ORIGIN_AIRPORT_SEQ_ID            False 

ORIGIN_CITY_MARKET_ID            False 

ORIGIN                                        False 

ORIGIN_CITY_NAME                     False 

DEST_AIRPORT_ID                       False 

DEST_AIRPORT_SEQ_ID                False 

DEST_CITY_MARKET_ID                False 

DEST                                            False 

DEST_CITY_NAME                         False 

 

 

 

 

DEP_TIME                                    False 

DEP_DELAY_NEW                         False 

DEP_DEL15                                  False 

TAXI_OUT                                    False 

WHEELS_OFF                               False 

WHEELS_ON                                 True 

TAXI_IN                                        True 

ARR_TIME                                     True 

ARR_DELAY_NEW                        False 

ARR_DEL15                                  False 

CANCELLED                                   False 

CANCELLATION_CODE                   True 

DISTANCE                                      False 

CARRIER_DELAY                            False 

WEATHER_DELAY                          False 

NAS_DELAY                                   False 

SECURITY_DELAY                           False 

LATE_AIRCRAFT_DELAY                 False 

Unnamed: 38                                 True 

dtype: bool 

Process finished with exit code 0 

 

 

 

Como se puede observar en la anterior imagen, los cambios se han resaltado en color 

verde. Los campos pertinentes han pasado de contener valores nulos(True) a contener 

valores con información(False), en este caso con valor 0. 
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selected_delay_column_names = ["CARRIER_DELAY", "WEATHER_DELAY", "NAS_DELAY", 

"SECURITY_DELAY", "LATE_AIRCRAFT_DELAY"] 

 

mask = (df['ARR_DELAY_NEW'] > 0) & (df[selected_delay_column_names].sum(axis=1) == 0) 

df.ix[mask, 'CARRIER_DELAY'] = df.ix[mask, 'ARR_DELAY_NEW'] 

 

Seguidamente se procede a sustituir los valores que contiene el  campo 

"CARRIER_DELAY" por los valores del campo "ARR_DELAY_NEW" solo en las filas,  

donde la suma de las columnas de los campos con retraso  den 0 y el valor de 

"ARR_DELAY_NEW" sea mayor que 0. Utilizamos el  campo de "ARR_DELAY_NEW" ya 

que es el campo  que registra el  total  de los retrasos obtenidos en un vuelo en 

cuestión. 

Si  no  se realizara esto  lo  que sucedería es que, los campos de las causas de los 

retrasos, no contendrían toda la información exacta de los retrasos,  omitiendo 

información útil de si los vuelos han llegado a su destino a la hora establecida o han 

llegado con algún retraso. Esto es debido a que , si se recuerda, en la base de datos a 

utilizar se explicó que, solo habría información de las causas de los retrasos si se diesen 

retrasos tanto en el aeropuerto de salida como en el aeropuerto de destino.  

Lo que se consigue con esto es poder saber correctamente la información final de si el 

vuelo  realizado  ha llegado a su destino con algún tipo de retraso o  ha llegado sin 

retraso y ha cumplido con su hora establecida de llegada, que a la fin y al cabo, esto 

último,  es lo que se pretende cuando se realiza cualquier servicio de transporte.  

El código utilizado  en Pycharm es el siguiente: 

 

 

 

 

 

Los resultados se pueden observar en la siguiente página. Veremos cómo los valores 

del  campo de "CARRIER_DELAY" cambian de antes a después de realizar la acción del  

código anterior. Se ha imprimido sólo las 5 primeras filas,  ya que en ellas ya se puede 

ver el cambio, donde en el mismo vuelo anterior no se veía el  retraso  total, ahora se 

ve un retraso total de 8  minutos. 
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También, se procede a hacer una mejora en los resultados por pantalla que nos ofrece 

Pycharm eliminando así, la columna "Unnamed: 38" y la columna "Cancellation_Code" 

ya que no contiene ningún tipo de información(Na). Además también eliminaremos la 

columna "Cancelled" ya que no será de utilidad para este estudio. El procedimiento y 

los resultados se ven en la siguiente imagen: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Columnas "Unnamed: 38", 

"Cancellation_Code"  

"Cancelled" eliminadas. 
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Seguidamente con el comando " df = df.dropna() " se eliminaran todas las filas que 

aún sigan sin ningún tipo de información (Na). El resultado se muestra en la siguiente 

ilustración: 

          

      C:\Python27\python.exe C:/Users/Nerea/PycharmProjects/FlightDelaysPrediction/predictionmodel.py 

YEAR                                          False 

QUARTER                                  False 

MONTH                                     False 

DAY_OF_MONTH                      False 

DAY_OF_WEEK                          False 

FL_DATE                                     False 

UNIQUE_CARRIER                     False 

AIRLINE_ID                                 False 

CARRIER                                     False 

FL_NUM                                     False 

ORIGIN_AIRPORT_ID                 False 

ORIGIN_AIRPORT_SEQ_ID        False 

ORIGIN_CITY_MARKET_ID        False 

ORIGIN                                      False 

ORIGIN_CITY_NAME                 False 

DEST_AIRPORT_ID                    False 

DEST_AIRPORT_SEQ_ID           False 

DEST_CITY_MARKET_ID           False 

DEST                                         False 

DEST_CITY_NAME                    False 

 

 

 

 

 

DEP_TIME                                   False 

DEP_DELAY_NEW                       False 

DEP_DEL15                                  False 

TAXI_OUT                                    False 

WHEELS_OFF                              False 

WHEELS_ON                                False 

TAXI_IN                                        False 

ARR_TIME                                    False 

ARR_DELAY_NEW                       False 

ARR_DEL15                                  False 

DISTANCE                                     False 

CARRIER_DELAY                           False 

WEATHER_DELAY                        False 

NAS_DELAY                                  False 

SECURITY_DELAY                         False 

LATE_AIRCRAFT_DELAY              False 

dtype: bool 

Process finished with exit code 0 

 

 

 

 

Se puede observar como todos los campos contienen algún tipo de información y  

no son nulos(Na), lo vemos mediante la información mostrada de los campos con 

un False, referente de que no hay  ninguna fila que sea nula, como ya se ha 

descrito anteriormente. 

 

Finalmente creamos un archivo CSV con el nombre "flights3" para guardar todos 

los cambios realizados en los archivos de los vuelos contenidos en el  programa 

Pycharm. 
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3.2.2.2 Análisis visual de los datos 

 

Este siguiente fase consiste principalmente  en la visualización mediante gráficos de 

todos los datos de los que se disponen,  para conseguir así un mejor análisis 

representativo de ellos. 

Para poder hacer los gráficos en Pycharm, primero, se ha tenido que instalar otra 

librería más en el programa, esta librería se llama "seaborn". Si se hace memoria, de 

momento, ya se disponen de las siguientes librerías instaladas: 

 numpy 

  scipy 

 pandas 

  matplotlib 

  seaborn 

Seguidamente, antes de crear el código en Pycharm, se han de analizar muy  bien las 

variables de las que se disponen, puesto que hay  muchas y se ha de ser lo más preciso 

posible para crear un análisis que aporte significado y valor al estudio del proyecto. 

Dicho esto se va a hacer un repaso a continuación del tipo y  contenido de datos de los 

que se dispone: 

 

 PERIODO DE TIEMPO 

o Year: número 

o Quarter: número 

o Month: número 

o Day_of_month: número 

o Day_of_week: número 

o Fl_date: número 

 AEROLÍNEA 

o Unique_Carrier: carácter 

o Airline ID: número 

o Carrier: carácter 

o Fl_Num: número 

 ORIGEN 

o Origin_Airport_ID: número 

o Origin_Airport_Seq_ID: 

número 

o Origin_City_Marquet_ID:  

número 

o Origin: carácter 

o Origin_City_Name: carácter 

 

 

 

 

 

 DESTINACIÓN 

o Dest_Airport_ID: número 

o Dest_Airport_Seq_ID: número 

o Dest_City_Market_ID: número 

o Dest: carácter 

o Dest_City_Name carácter 

 INFORMACIÓN/PLAN DE SALIDA 

o Dep_Time: número 

o Dep_Delay_New: número 

o Dep_Del15: número 

o Taxi_Out: número 

o Wheels_Off: número 

 INFORMACIÓN/PLAN DE LLEGADA 

o Wheels_On: número 

o Taxi_in: número 

o Arr_Time: número 

o Arr_Delay_New: número 

o Arr_Delay15: número 

 SUMARIO DE VUELO 

o Distance: número 

 CAUSAS DE LOS RETRASOS 

o Carrier_Delay: número 

o Weather_Delay: número 

o NAS_Delay: número 

o Security_Delay: número 

o Late_Aircraft_Delay: número 

Se utilizan, entre otras funciones, para la 

creación de gráficos. 

         BINARIO(0 ó 1) 

         HORA(hhmm) 

         TIEMPO(minutos) 

         KM 
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Una vez analizados los datos de los que se disponen, se prosigue a la realización de los 

gráficos  mediante código Python  en Pycharm.  

Se han realizado distintos tipos de gráficos, de los cuales, su código y la visualización 

gráfica de cada uno de ellos se explica a continuación: 

 Gráfico de dispersión ("scatterplot"): 

Es la representación gráfica más útil para describir el comportamiento conjunto 

de dos variables, donde cada caso aparece representado como un punto en el 

plano definido por las variables x, y. 

A la hora de la realización de este tipo de gráfico, se ha llevado a cabo con la 

realización de la pregunta siguiente: 

"Hay  algún tipo de relación lineal entre la hora de salida de un vuelo y la 

creación de los retrasos en el aeropuerto de destino?" 

Esta pregunta se ha resuelto mediante la creación del siguiente código en 

Pycharm: 

 

 

 

 

 

 

 

 

 

 

Como se puede observar se han utilizado las variables Dep_Time (hora de salida) y 

Arr_Delay_New(retraso en las llegadas)  para el estudio conjunto de las dos. Los 

resultados se pueden ver en el siguiente gráfico de dispersión: 

 

 

 

 

 

 

def scatterplot(x, y, x_title, y_title): 

    plt.plot(x, y, 'b.') 

    plt.xlabel(x_title) 

    plt.ylabel(y_title) 

    plt.xlim(min(x)-1, max(x)+1) 

    plt.ylim(min(y)-1, max(y)+1) 

    plt.show() 

scatterplot(df.DEP_TIME, df.ARR_DELAY_NEW, "DEP_TIME", 

"ARR_DELAY_NEW") 

print scatterplot 
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                                                            Fuente: Elaboración propia 

Como se observa hay una relación lineal creciente entre la hora de salida de un vuelo  

y el tiempo de retraso en minutos de este. Esto quiere decir que hay más retrasos 

conforme van pasando las horas del día por el efecto que causan los retrasos de 

propagación de los vuelos.  

  

 Histograma ("histplot"): 

Es una representación gráfica de una variable en forma de barras, donde la 

superficie de cada barra es proporcional a la frecuencia de los valores 

representados, ya sea en forma diferencial o acumulada. 

El  código realizado en Pycharm para la creación de histogramas es el siguiente: 

 

 

 

 

 

 

 

 

Ilustración 18.Gráfica de Relación retrasos en las llegadas vs. 
hora de salida 
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En el siguiente histograma se muestra la frecuencia en relación con el rendimiento de 

los vuelos realizados en el tiempo programado y  los que poseen retrasos de más de 15  

minutos.  

 

 

 

 

 

 

 

 

 

 

def barplot(labels, data, x_title, y_title): 

    pos = arange(len(data)) 

    plt.xlabel(x_title) 

    plt.ylabel(y_title) 

    plt.xticks(pos+0.4, labels) 

    plt.bar(pos, data) 

    plt.show() 

 

def histplot(data,x_title, y_title,bins= None,nbins= 10): 

    minx, maxx = min(data), max(data) 

    space = (maxx-minx)/float(nbins) 

    if not bins: 

        bins = arange(minx, maxx, space) 

    binned = [bisect.bisect(bins, x) for x in data] 

    l = ['%i' % x for x in list(bins)+[maxx]]\ 

        if space < 1 \ 

        else [str(int(x)) 

              for x in list(bins)+[maxx]] 

    displab = [x+'-'+y for x, y in zip(l[:-1], l[1:])] 

 

    barplot(displab, [binned.count(x+1)for x in 

range(len(bins))], x_title, y_title) 

 

histplot(df.DEP_TIME, 'DEPARTURE TIME', 'FRECUENCIA') 

print histplot 
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Ilustración 19. Rendimiento para los vuelos de enero 2015 - septiembre 2015 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  Fuente: Elaboración propia 
 

 Gráficos de barras ("barchart"): 

Son una forma de representar y comparar gráficamente un conjunto de datos o 

valores, y está conformado por barras rectangulares de longitudes proporcionales a los 

valores representados.  

 

 

 

 

 

 

 

 

 

 

 

0= Vuelos realizados en el  

tiempo  planificado o con 

menos de 15  minutos de 

retraso 

1= Vuelos con retrasos de 

más de 15 minutos 
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El  código realizado en Pycharm para la creación de los gráficos de barras es el 

siguiente: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Con este tipo de gráficos se ha querido representar más de un escenario. Estos 

escenarios se explican a continuación.    

En un primer escenario,  se muestra el gráfico con la frecuencia de vuelos realizados  

por las compañías aéreas en el periodo de enero 2015 - septiembre 2015: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
# funcion para datos del tipo string(caracter) 

def barchart(x, y, x_title, y_title, numbins=10): 

    data = pd.DataFrame() 

    data[x_title] = df['CARRIER'] 

    data[y_title] = df['ARR_DELAY_NEW'] 

    carrier_group = data.groupby('CARRIER') 

    delays_totals = carrier_group.mean()  # here you 

may use sum() instead of mean(), when it's 

appropriate 

    delays_totals.sort(columns='ARR_DELAY_NEW') 

    ax = delays_totals.plot(kind='bar', 

title="Arrivals Delays Carrier", legend=False) 

    ax.set_xlabel("Carrier") 

    ax.set_ylabel("Average Arrivals Delays") 

    plt.show() 

barchart(df.CARRIER.values, df.ARR_DELAY_NEW.values, 

"CARRIER", "ARR_DELAY_NEW", len(df.CARRIER.unique())) 

print barchart 
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Fuente: Elaboración propia 

 

Se puede observar como la compañía aérea Southwest Airlines (WN) es la que realiza 

un mayor número de vuelos para el periodo de estudio de enero 2015 - septiembre 

2015, con cerca de 100.000 vuelos realizados. A ella le sigue US Airways(US) con 

alrededor de 60000 vuelos realizados y SkyWest Airlines (OO) y American Airlines (AA) 

con 40.000 vuelos realizados. 

 En el siguiente gráfico se muestra el total de vuelos realizados en cada uno 

de los aeropuertos de la base de datos. Se observa claramente que el  mayor 

tránsito de vuelos se realiza en el Aeropuerto Internacional de Phoenix-Sky 

Harbor(phx), con 120.000 vuelos realizados para el  periodo de enero a 

septiembre de 2015. 

 

 

 

 

 

 

 

 

 

 

 

 

Ilustración 20. Gráfico de Total de los vuelos por compañía (enero 
2015-sept. 2015) 
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Fuente: Elaboración propia 

Si reducimos la escala del total de vuelos podemos observar cómo la mayoría de los 

aeropuertos no  pasan de 4000 vuelos realizados desde enero 2015 - septiembre 2015. 

Esto se muestra en el siguiente gráfico: 

 

 

Ilustración 22.  Gráfica de Total de vuelos por aeropuerto (escala 
reducida) 

Ilustración 21.  Gráfico de Vuelos totales por aeropuerto(enero 2015-sept. 2015) 
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Otro dato a destacar es el del aeropuerto de Long Beach, CA (LGB) que en esta base de 

datos únicamente se analiza un vuelo realizado con destino al aeropuerto de  

Phoenix(PHX). 

Para el siguiente escenario se ha querido representar la media de los retrasos tanto 

en las salidas como en las llegadas por compañía aérea para así comparar qué 

compañías aéreas poseen más retrasos en sus vuelos realizados a lo largo del periodo 

estudiado en este proyecto (enero 2015 - septiembre 2015). El resultado ha sido el 

siguiente: 

 

 

Fuente: Elaboración propia 

En los anteriores dos gráficos podemos ver como las compañías con mayores medias 

por retrasos tanto en salidas como en llegadas son: 

 JetBlue Aiways(B6), Frontier Airlines(F9), Spirit Airlines (NK) con una media de 

alrededor de entre 15 a 20 minutos de retraso para el periodo analizado de 

enero 2015-septiembre2015. 

En el siguiente gráfico realizado se ha querido ver cuál era la media de los retrasos en 

las salidas de los aeropuertos para el periodo de enero 2015-septiembre2015. El  

aeropuerto con la media en minutos mayor es la del aeropuerto de Washington, DC 

(IAD) con una media de alrededor de 25 minutos de retraso por vuelo. Le siguen 

Cincinnati, OH (CVG)  y Raleigh/Durham, NC (RDU) con una media de alrededor 18 

minutos de retraso. 

Fuente: Elaboración propia 

Ilustración 23. Gráfica de Media de retrasos en 
las salidas por compañía aérea 

Ilustración 24. Gráfica de Media de retrasos en las 
llegadas por compañía aérea 
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Fuente: Elaboración propia 

 

Para el  último gráfico a analizar de a continuación , se observa la media de los retrasos 

en las llegadas de los aeropuertos para el periodo desde enero 2015-septiembre2015. 

Se puede ver que la media de los retrasos a aumentado para la mayoría de los 

aeropuertos respecto a la media de los retrasos en los aeropuertos de salida. En este 

caso el aeropuerto con mayor media en el tiempo en minutos de retraso ha sido el del 

aeropuerto de Buffalo, NY (BUF) con alrededor de una media de 20 minutos de retraso 

por vuelo. 

 

Ilustración 25.Gráfica de Media de los retrasos en las salidas  del aeropuerto(en 
minutos) 
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Fuente: Elaboración propia 

 

3.2.2.3 Transformación de los datos 

3.2.2.3.1 Ingeniería de características (feature engineering) 
 

Cuando el  objetivo es encontrar el  mejor resultado posible en un modelo  de 

predicción, se necesita obtener el mejor rendimiento posible de las variables  que uno 

posee y  de los algoritmos que utiliza. 

Ahora bien, ¿cómo se obtiene el máximo provecho de los datos utilizados para la 

creación del  modelo  predictivo? 

Este es el problema que la práctica y el proceso de la ingeniería de características 

(feature engineering) resuelve. 

 

Una definición para este concepto sería la siguiente: 

La ingeniería de características (IC) es el proceso de transformar los datos no 

procesados en características que representen mejor el problema subyacente a los 

modelos predictivos, mejorando así la exactitud del modelo en los datos que no se 

ven. 

De esta definición se pueden extraer otra serie de dependencias, las cuales son tareas 

básicas también en el proceso de ingeniería de características: 

Ilustración 26. Gráfica de Media de los retrasos en las llegadas del aeropuerto (en minutos) 
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 Elección de las medidas de rendimiento (RMSE, AUC...) 

 Encuadre del problema (Clasificación, Regresión...) 

 Selección de los modelos de predicción que se utilizan(SVM, redes 

neuronales...) 

 

Se puede decir que la IC, a grosso modo, es la representación del problema. 

 

Por ello un buen análisis de la representación del problema y  de las características de 

las que se posee es esencial para crear un buen modelo de predicción. 

De ahí, que el éxito de todos los algoritmos de aprendizaje automático dependan de 

cómo se presentan los datos. 

 

Pero, ¿qué tan importante es las ingeniería de características? 

 

Las características de la base de datos influyen directamente en los modelos de 

predicción que se utilicen y  en los resultados que se puedan conseguir.  
 

Los datos reales pueden ser impuros, pueden conducir a la extracción de 

patrones/reglas poco útiles. Esto se puede deber a: 

 Datos Incompletos: falta de valores de atributos, …  

 Datos con Ruido 

 Datos inconsistentes (incluyendo discrepancias) 
 

La preparación de datos puede generar un conjunto de datos más pequeño que el 

original, lo cual puede mejorar la eficiencia del proceso de Minería de Datos. 

Se puede decir que, contra mejor se preparen y se elijan las características, mejores 

resultados se podrán conseguir. Aunque no sólo depende de la preparación de estas 

características,  sino también, de factores en relación con el modelo que se elija, los 

datos de los que se dispongan, el encuadre del problema y  las medidas de 

rendimiento que se utilizan para estimar la precisión de los resultados del modelo. 

Como se puede observar, los resultados del  modelo de predicción dependen de 

muchas propiedades interdependientes. 

Es por ello, que se necesiten de buenas características que describan las estructuras 

inherentes de los datos. 

Las ventajas de tener buenas características se resumen en mayor flexibilidad, mayor 

simplicidad en los modelos  y  mejores resultados, dado que si se posee de buenas 

características,  si se da el caso de que se elije un modelo "equivocado" (menos que 

óptimo), aun y  así  se puede obtener buenos resultados. La mayoría de los modelos 

pueden coger una buena estructura en datos. La flexibilidad de las buenas 

características y  la simplicidad del  modelo permitirá utilizar modelos menos 

complejos los cuales son más rápidos para ejecutar, más fácil de entender y más fácil 

de mantener. Esto es  un aspecto muy deseable. 
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import pandas as pd 

 

df = pd.read_csv("dataARIZONA/flightsArizona_2015.csv") 

 

df.to_csv("dataARIZONA/flightsArizona_2015.csv", index=False) 

 

De esta manera, en los dos siguientes apartados se trabaja para la mejora de las 
características existentes en los datos de la muestra observando las características de 
los datos y haciendo transformaciones de ellas para su mejor representación del 
modelo. Además también se seleccionan las características más influyentes en base a 
la variable dependiente a predecir, que es la variable de los retrasos relacionados con las 
llegadas de los vuelos a los aeropuertos. 
 

Transformación de la asimetría, centrado y escalado 

 

En este apartado se trabaja con una primera selección de las características de la base 

de datos de Arizona, con el fin de observar sus atributos en base a sesgo, su escala y la 

existencia o no de valores atípicos en las características/variables de la muestra. 

Además también se observa la media y la desviación estándar de cada característica 

seleccionada. 

Este paso es el  pre proceso a la selección de las características más influyentes para la 

variable dependiente (siguiente punto). 

Para empezar dividimos el proceso de transformación de características en dos partes 

 

1) Volcado de las variables en el programa Python, las cuales, se utilizarán 
en el pre proceso/transformación (Paso 2). 
 

 Primero se ha guardado todo el  trabajo realizado en las 
practicas anteriores en un archivo CSV separado: 

 

 

 

 

 Seguidamente se ha creado un nuevo archivo Python llamado 

"featureengineering" y se ha llamado al archivo csv guardado en 

el primer paso: 
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def build_features(features,data): 

    #Firts we add numeric variables 

    features.extend(['YEAR', 'QUARTER', 'MONTH',      

   'DAY_OF_MONTH', 'DAY_OF_WEEK', 'FL_NUM',  

   'ORIGIN_AIRPORT_ID', 'DEST_AIRPORT_ID', 'DEP_TIME', 

   'DISTANCE']) 

    #Secondly we add categorical variables and transform them          

   into the numerical ones 

    features.append('CARRIER') 

    le = LabelEncoder().fit(data['CARRIER']) 

    data['CARRIER'] = le.transform(data['CARRIER']) 

    

 return data 

 

features = [] 

build_features(features, df) 

print df[features].head() 

 

import numpy as np 

from sklearn.preprocessing import LabelEncoder 

from sklearn import preprocessing 

import matplotlib.pyplot as plt 

from sklearn import ensemble 

import scipy.stats as stats 

import random 

 

 Finalmente se seleccionan las variables que se usaran en el pre 

proceso del escalado y centrado: 

 

 

2) Transformación del conjunto de características:  

Para realizar este paso se ha llevado a cabo el siguiente procedimiento: 

 Primero se han tenido que instalar dos librerías más para poder 

crear el código en Pycharm. Estas librerías son "sklearn" y 

"xlwt". 

 Después de instalarlas se importan al programa Pycharm: 

 

 

 Seguidamente se crean gráficos en relación con las variables 

seleccionadas en el primer punto, para investigar su sesgado, su  

escala y  los datos/valores atípicos que puedan haber en cada 

uno de ellos. Aquí solo se mostraran algunos de ellos, para ver 

únicamente su forma. 
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Además de cada una de las variables, aún no procesadas,  

también se analiza su media y su desviación estándar.   

Estos resultados se muestran en la siguiente ilustración:: 

  

 

                                                                 

 

 

 

 

 

 

  

  

 

Fuente: Elaboración propia 

 

Ilustración 27. Gráficos de Variables no procesadas: gráfico, medias y 
desviaciones 
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Se puede observar como en la representación de los gráficos el sesgo de alguno de 

ellos está o muy desviado para la derecha o para la izquierda. 

Además podemos observar que hay  una gran dispersión de las variables 

seleccionadas respecto al valor promedio. Es decir hay gran variabilidad en las 

características. 

Con todo esto podemos ver que existe una asimetría. Esta asimetría se va a corregir 

mediante una transformación (skewness transformation),  con el fin de estandarizar el 

conjunto de datos de la muestra llevándolos hacia una distribución normal. 

Si una distribución es simétrica, existe el mismo número de valores a la derecha que a 

la izquierda de la media, por tanto, el mismo número de desviaciones con signo 

positivo que con signo negativo. 

 

                           

La distribución normal tiene una asimetría cero. Pero en realidad, los valores no son 
nunca perfectamente simétricos y por ello la asimetría de la distribución proporciona 
una idea sobre si las desviaciones de la media son positivas o negativas, es decir, de si  
poseen valores distintos a los de la media. 

Las medidas de asimetría, sobre todo el coeficiente de asimetría de Fisher, se utilizan 

para contrastar si se puede aceptar que una distribución estadística sigue 

la distribución normal. 

 

¿Cómo se realiza esta transformación?  

Mediante transformaciones aplicando un centrado y un escalado de todas las 

características seleccionadas.  

Ilustración 28. Imagen de Distribución Normal (de Gauss) 

 

https://es.wikipedia.org/wiki/Distribuci%C3%B3n_normal
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En la práctica, a menudo ignoramos la forma de la distribución y sólo se transforman 

los datos para centrarlos quitando el valor medio de cada función, y a continuación, se 

ajusta su escala dividiendo las características no constantes para su desviación 

estándar. 

Por ejemplo, muchos de los elementos utilizados en la función objetivo de un 

algoritmo de aprendizaje asumen que todas las funciones están centradas en torno a 

cero y tienen varianza en el mismo orden. Si una característica tiene una varianza que 

es varios órdenes de magnitud más grandes que otros, podría dominar la función 

objetivo y hacer que el estimador sea incapaz de aprender de otras características 

correctamente como se esperaba. 

 

El  escalado es una alternativa a la estandarización haciendo que los valores de las 

características estén entre un mínimo y un valor máximo dado, a menudo entre cero y 

uno, o de modo que el valor absoluto máximo de cada característica esté a escala de 

tamaño unitario.  

La motivación para utilizar esta transformación del escalado es que ofrece una 

robustez de muy pequeñas desviaciones estándar de las características y la 

preservación de cero entradas en los datos dispersos. 

 

Mediante las transformaciones realizadas se pueden ver los siguientes resultados 

visuales y  en relación numérica, con las medias y las desviaciones estándar de las 

características: 

 

Fuente: Elaboración propia 
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Como se puede observar en los gráficos anteriores,  la transformación del escalado, 

no afecta a la forma de la frecuencia de estos. Por lo tanto, la única diferencia entre el 

"antes" y el "después" de la transformación esta únicamente en los valores de la 

variable x, los cuales después de la transformación se han centrado en base al 0, con 

una desviación estándar a 1,  acercándose así más a los datos de una distribución 

normal. Esta transformación también se puede apreciar en la tabla siguiente dónde se 

muestran la media y la desviación estándar de cada una de las características antes de 

ser procesadas y  después de ser procesadas.  

  

 Non-processed Data Processed Data 

Mean Std. Deviation Mean Std. 

Deviation 

YEAR 2015.0 

 

0.0 

 

0.0 0.0 

 

QUARTER 1.99822277361 

 

0.810787590649 

 

-4.75914287811e-17 

 

1.0 

 

MONTH 4.98763933341 

 

2.53308455624 

 

7.48483379921e-17 1.0 

 

DAY_OF_MONTH 15.6782725512 

 

8.76899176443 

 

-2.85548572687e-17 

 

1.0 

 

DAY_OF_WEEK 3.96777778201 

 

1.99229415498 

 

-3.13670780603e-17 

 

1.0 

 

FL_NUM 1659.58065069 1476.88507961 

 

-2.97446429882e-19 

 

1.0 

 

ORIGIN_AIRPORT_ID 13628.8258699 1278.50908029 

 

5.20044521772e-16 

 

1.0 

DEST_AIRPORT_ID 13628.8448485 1278.4086313 

 

-5.71719078817e-16 

 

1.0 

DEP_TIME 1334.20839216 500.178735327 2.45663710498e-17 

 

1.0 

DISTANCE 948.060912817 619.41129556 -1.04917467995e-17 

 

1.0 

CARRIER 7.86125456199 4.0369972964 -4.08853638165e-17 1.0 
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Selección de características 

 

Este es el  último proceso antes de la creación del modelo de predicción. En este punto  

se seleccionan las variables/características mas influyentes para la variable 

dependiente, que en este caso como bien ya se ha comentado anteriormente es la 

variable de retraso en las llegadas al aeropuerto (Arr_Delay_New). 

Una característica puede ser importante si está altamente correlacionada con la 

variable dependiente (variable a predecir).  

Para ver que característica de entre las seleccionadas en el anterior apartado es la más 

influyente o tiene una mayor correlación con la variable dependiente se utiliza el 

modelo Random Forest mediante la creación de código en el programa Pycharm(*). 

El resultado del código creado ha sido el siguiente: 

 

 

 

 

 

 

 

 

 

 

 

Fuente: Elaboración propia 

 

9 Important features(> 15 % of max importance): 

['MONTH' 'DAY_OF_MONTH' 'DAY_OF_WEEK' 'FL_NUM' 'ORIGIN_AIRPORT_ID' 

 'DEST_AIRPORT_ID' 'DEP_TIME' 'DISTANCE' 'CARRIER'] 

 

Features sorted by importance (ASC): 

Ilustración 29. Gráfica de Importancia de las variables en relación con la variable a 
predecir 
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['DAY_OF_WEEK' 'CARRIER' 'DAY_OF_MONTH' 'MONTH' 'DEST_AIRPORT_ID' 

 'ORIGIN_AIRPORT_ID' 'DISTANCE' 'FL_NUM' 'DEP_TIME'] 

 

Como se puede observar las características más importantes, con una importancia 

mayor al 15%, son 9. Las variables de hora de salida (dep_time)  y número de vuelo 

(fl_num) encabezan esta lista con el mayor porcentaje de importancia y  correlación 

con la variable dependiente de los retrasos en la llegada del aeropuerto. 

 

3.2.3 Creación de los modelos Random Forests y Gradiente de Árboles Boosting con 

la estructura de datos Training  with Cross-Validation and Testing. 

 

En este apartado es donde se crean los 2 modelos de predicción seleccionados, de los 

cuales se analizarán y compararán los resultados obtenidos para los datos disponibles 

de los vuelos realizados en los aeropuertos de Arizona.  

Para la creación y evaluación de estos 2 modelos de predicción, primero, se organizan 

los datos de los que se disponen en dos conjuntos: 

 Conjunto de entrenamiento (Training set): En este subconjunto se entrenan el 70% 

del total de los datos disponibles. Es un subconjunto del conjunto de datos 

utilizados para construir modelos predictivos. Se puede decir que es donde el 

algoritmo aprende mediante el entrenamiento del visionado de los datos. En este 

conjunto de entrenamiento existe un proceso intermedio de validación del  

modelo  con el  fin de probar la calidad de dicho modelo y seleccionar el  modelo 

con el  mejor comportamiento. A este proceso se le llama validación cruzada. 

 Validación Cruzada: 

Consiste en repetir y calcular la media aritmética obtenida de las 

medidas de evaluación sobre diferentes particiones. Se utiliza 

para estimar 

cómo de 

preciso es el 

modelo que 

se llevará a 

cabo a la 

práctica. 

La validación 

cruzada es 

una manera 

de predecir el 
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ajuste de un modelo a un hipotético conjunto de datos de 

prueba cuando no disponemos del conjunto explícito de datos 

de prueba 

 

 Conjunto de prueba(Testing set): En este subconjunto se validan el 30% del total de 

los datos disponibles. Es un subconjunto del conjunto de datos para evaluar el 

posible rendimiento futuro de un modelo. Si un modelo se ajusta al conjunto de 

entrenamiento mucho mejor de lo que se ajusta al conjunto de prueba, es posible 

que se esté dando un sobreajuste (overfitting). 

Esta forma de división del conjunto de los datos es debido a que, evaluar el 

rendimiento del modelo únicamente con los datos utilizados para el entrenamiento no 

es aceptable en la minería de datos, ya que puede generar fácilmente modelos más 

optimistas y sobreajuste. Por ello se utiliza el conjunto de prueba para evaluar el 

rendimiento del modelo. 

Para la creación del modelo de predicción se ha querido construir dos modelos con 

diferentes métodos para así, poder analizar y  comparar los resultados de cada uno 

con el fin de evaluar el  modelo que mejor se adapta a los datos disponibles. 

Estos dos modelos seleccionados son: 

 Random Forest 

 Gradiente de Arboles Boosting 

Estos  2 modelos se engloban dentro  de los métodos denominados ensemble 

methods. Estos métodos combinan predicciones de varios estimadores base 

construidos con algoritmos de aprendizaje con el fin de mejorar la generalización y  la 

robustez del estimador. 

Se dividen en dos grupos: 

 Métodos de promedio (bagging),  donde la función principal es construir 

muchos estimadores independientes y promediar las predicciones.  

Bagging ofrece un incremento sobre la precisión de cualquiera de los 

clasificadores individuales utilizados. Además es muy robusto porque el 

modelo compuesto reduce la varianza de los clasificadores individuales a 

diferencia de utilizar un único estimador base. 

Un ejemplo de este modelo es el método de Random Forest.  

 

 Métodos Boosting: los estimadores base se construyen secuencialmente y 

en cada iteración se reduce la desviación de los estimadores combinados. El  

objetivo es combinar varios modelos débiles para producir un conjunto 

fuerte. 
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print ("Creating Random Forest model") 

forest = ensemble.RandomForestRegressor(n_estimators=10, 

min_samples_split=2, bootstrap=True, verbose=True, random_state=111) 

 

print ("Creating Gradient Boosting Trees model") 

gbm = ensemble.GradientBoostingRegressor(loss='ls', n_estimators=100, 

max_depth=50, min_samples_split=150, verbose=True, random_state=111) 

 

Un ejemplo de este modelo es el método de Gradiente de Árboles 

Boosting. 

 

Ambos métodos proporcionan una manera de reducir el sobreajuste, aunque los 

métodos de bagging funcionan mejor con los modelos fuertes y complejos (por 

ejemplo, árboles de decisión plenamente desarrollados), en contraste con los métodos 

boosting que por lo general funcionan mejor con los modelos débiles (por ejemplo, 

árboles de decisión de poca profundidad). 

Los métodos de conjuntos (ensemble methods) se utilizan tanto para los problemas de 

clasificación como de regresión. 

En este caso de estudio, para la implementación de los dos tipos de modelos de 

predicción se utilizan problemas de regresión. 

 

Desarrollo de los modelos de predicción en Pycharm 

A la hora de la realización del  código en Pycharm de los dos modelos de predicción, 

primero se ha creado  una nueva carpeta donde irá el desarrollo de los modelos de 

predicción. Esta carpeta se ha nombrado "prediction.py". 

Seguidamente se ha construido el código en Pycharm de los modelos de predicción.    

En esta parte el código se estructura de la forma siguiente: 

 Primero se han pasado todos los datos  transformados  y  guardados en el 

proceso anterior de feature engineering a esta nueva carpeta. De esta forma se 

ha tenido que llamar al archivo .csv con nombre 

"flightsARIZONA_2015_transformed" guardado en el anterior archivo Python 

"featuresengineering.py" y  cargar los datos.  

 Seguidamente se han establecido todas las variables predictivas, que son todas 

las características de las columnas de nuestro archivo en la base de datos 

(exceptuando la variable a predecir) y después se ha seleccionado la variable a 

predecir, que en este caso son los minutos de retraso en las llegadas al 

aeropuerto("ARR_DELAY_NEW"). 

 El  tercer paso  consiste en la creación de los modelos de regresión Random 

Forest y Gradiente de Árboles Boosting. Las dos iteraciones de código en 

Python  utilizadas para su creación son las siguientes: 
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Como se puede observar cada modelo tiene una serie de campos/parámetros, los 

cuales, tienen gran importancia ya que si se varia el  número  de parámetros variará el 

resultado  final de predicción. Esto es lo que se tratará de estudiar seguidamente. 

Antes de esto se describen los significados de los parámetros de cada modelo y se 

recuerda la función de cada uno: 

 Parámetros modelo Random Forest(RF): 

Función modelo RF: 

RF es un estimador meta que ajusta un numero de clasificación de arboles 

de decisión en varias sub-muestras del conjunto de datos y utiliza el 

promedio para mejorar la exactitud de la predicción y el control  del 

sobreajuste. 

El tamaño sub-muestra es siempre el mismo que el tamaño original de la 

muestra de entrada, pero las muestras se extraen con el reemplazo en caso 

de que el bootstrap= True (predeterminado). 

n_estimators: 

integer, optional / (default =10) 

Es el  número de árboles en el bosque o modelo. 

min_samples_split: 

integer, optional (default=2) 

Es el número mínimo de muestras requeridas para dividir un nodo interno. 

Nota: este parámetro es específico de los modelos de árbol. 

bootstrap: 

boolean, optional (default=True) 

En el caso de que las muestras bootstrap se utilicen cuando se construyen 

los arboles. 

verbose: 

int, optional (default=0) 

Controla el nivel de detalle del proceso de generación de árboles. 

random_state: 

int, RandomState instance or None, optional (default=None) 

Si es un int, random_state es la semilla usada para generar el  numero 

aleatorio; Si  RandomState es una instance, random_state es el generador 

de números aleatorios; Si es None, el  generador de números aleatorios es la 

instancia de RandomState usada por np.random. 
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 Parámetros modelo Gradient Boosting Trees(GBT): 

 

Función modelo GBT: 

GBT construye un modelo aditivo hacia adelante por etapas; esto permite la 

optimización de las funciones de pérdida diferenciables arbitrarias. En cada 

etapa de un árbol de regresión se ajusta en el gradiente negativo de la 

función de pérdida dada. 

loss: 

{‘ls’, ‘lad’, ‘huber’, ‘quantile’}, optional (default=’ls’) 

La función loss se va optimizando. 

'ls' se refiere a la regresión de mínimos cuadrados. 'lad' (menor desviación 

absoluta) es una función de pérdida muy robusta basada en información 

ordenada de las variables de entrada. 'huber' es una combinación de los dos. 

'quantile' permite la regresión cuantil. 

n_estimators: 

int (default=100) 

Es el número de etapas boosting a realizar. GB es bastante robusto frente a 

un sobreajuste (over-fitting), por lo que, un gran número normalmente 

ofrece un mejor rendimiento. 

max_depth: 

integer, optional (default=3) 

Es la profundidad máxima de los estimadores de regresión individuales. La 

profundidad máxima limita el número de nodos en el árbol. Este parámetro 

se ha de ajustar para obtener un mejor rendimiento; el mejor valor 

depende de la interacción de las variables de entrada. Se ignora si 

max_leaf_nodes no es None. 

min_samples_split: 

integer, optional (default=2) 

Es el número mínimo de muestras requeridas para dividir un nodo interno. 

verbose: 

int, default: 0 

Habilita la salida detallada(verbose). Si es 1 entonces imprime el progreso y 

el rendimiento de vez en cuando (contra mas árboles la frecuencia es 

menor). Si es mayor que 1, entonces se imprime el progreso y rendimiento 

para cada árbol. 

random_state: 

int, RandomState instance or None, optional (default=None) 

Si es un int, random_state es la semilla usada para generar el  numero 

aleatorio; Si  RandomState es una instance, random_state es el generador 
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de números aleatorios; Si es None, el  generador de números aleatorios es la 

instancia de RandomState usada por np.random. 

 

 Un cuarto paso es la división de todos los datos en dos partes: en un 70% de 

los datos para el entrenamiento(Training et), donde como antes se ha 

explicado, es donde se entrenan los datos de los que se disponen para que 

el algoritmo pueda aprender y  así luego aplicar estos conocimientos en la 

parte de prueba(Testing Set), que es la otra parte que utiliza el 30% 

restantes del total de los datos, en relación a los vuelos realizados en los 

aeropuertos de Arizona. Esta última parte tratará de predecir (sin conocer 

los datos reales de la variable a predecir), mediante los conocimientos 

adquiridos en la parte de entrenamiento, el tiempo de retraso de los vuelos 

de nuestra base de datos. 

 

 Finalmente se extraen los resultados, tanto  los reales como  los predichos, 

en referencia a la variable a predecir de minutos de retraso de los vuelos en 

las llegadas a los aeropuertos, en relación con los dos modelos utilizados en 

el  proceso de predicción.   

La explicación del procedimiento, los métodos de evaluación y  la 

comparación de los resultados entre modelos se detalla en el siguiente 

punto " 3.3 Análisis de los resultados". 

 

3.3 Análisis de los resultados   

3.3.1 Evaluación de los modelos: Root Mean Square Error (RMSE) y análisis visual de 
los retrasos reales y predichos en las llegadas 

 

Para analizar los resultados de los modelos de predicción utilizados, primero se 

analizan individualmente los resultados de cada modelo y luego se comparan. Estos 

resultados se analizan mediante el error medio cuadrático (Root Mean Square Error, 

RMSE) y un análisis visual donde se comparan los resultados en tiempo de los retrasos 

reales y los resultados de los retrasos predichos en el modelo de predicción para las 

llegadas: 

 

 Root Mean Square Error(RMSE): 

RMSE es una medida que cuantifica la calidad de las predicciones. Es decir mide 

las diferencias entre los valores predichos por un modelo o un estimador y los 

valores realmente observados.  

Estas diferencias individuales se denominan residuos cuando los cálculos se 

realizan sobre la muestra de datos que se utilizó para la estimación, y se 

denominan errores de predicción cuando se calcula fuera de la muestra. El 
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RMSE sirve para sumar las magnitudes de los errores en las predicciones para 

varios tiempos dentro  de una única medida de poder predictivo. RMSD es una 

buena medida de la precisión, pero sólo para comparar los errores de 

predicción de los diferentes modelos para una variable particular y no entre las 

variables, ya que es dependiente de la escala. La fórmula es la siguiente: 

 

 

 

 

 

 

 

Contra menor sea el  valor del  error  de la anterior ecuación mejor será la 

predicción, es decir, la diferencia entre el  modelo  real  y el  de predicción será 

menor, por lo  tanto el modelo de predicción se adaptara/asemejará mejor a 

los datos reales.  

El  mejor valor para un modelo de predicción seria el de con RMSE=0. 

 Análisis visual de los retrasos reales y predichos en las llegadas: 

Se comparan los resultados obtenidos mediante una gráfica con dos funciones 

de variables, una función para los datos reales y otra función para los datos 

predichos en el modelo  de predicción en relación al  tiempo  en minutos de 

retrasos en las llegadas.  

 

Para la realización del análisis individual de los resultados de cada modelo el 

procedimiento y los resultados han sido los siguientes: 

3.3.1.1 Procedimiento y resultados de Random Forest en Python: 

Como  bien se ha comentado  anteriormente para la creación de los modelos, en este 

caso el de Random Forest, se necesita especificar una serie de parámetros los cuales, 

dependiendo del valor que se les asignen, pueden influir en el resultado  de predicción 

final tanto  positiva como  negativamente. A continuación se ven las pruebas 

realizadas: 

Prueba 1: valor bajo en los parámetros de n_estimators y  min_samples_split 

PARÁMETROS SELECCIONADOS:  

forest = ensemble.RandomForestRegressor(n_estimators=12, min_samples_split=2, 
bootstrap=True, verbose=True, random_state=111) 
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RESULTADOS: 
Creating Random Forest model 

Splitting 'alldata' into two sets: 70% Training and 30% Testing 

Training Random Forest model using 'train_fold' 

[Parallel(n_jobs=1)]: Done  12 out of  12 | elapsed:    4.8s finished 

Testing Random Forest model using 'test_fold' 

[Parallel(n_jobs=1)]: Done  12 out of  12 | elapsed:    0.0s finished 

Estimating prediction error Root Mean Squared Error 

1.8673720728                  Mejor cualificación del error respecto a las pruebas realizadas. 

 

GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 

 

 

 

 

 

 

 

 

 

 

 

Prueba 2: valores elevados en relación con los parámetros 'n_estimators' y 

'min_samples_split' 

PARÁMETROS SELECCIONADOS: 

forest = ensemble.RandomForestRegressor(n_estimators=500, 

min_samples_split=600, bootstrap=True, verbose=True, random_state=111) 

 

RESULTADO: 

Creating Random Forest model 

Splitting 'alldata' into two sets: 70% Training and 30% Testing 

Training Random Forest model using 'train_fold' 

[Parallel(n_jobs=1)]: Done  49 tasks       | elapsed:   18.7s 

[Parallel(n_jobs=1)]: Done 199 tasks       | elapsed:  1.3min 

[Parallel(n_jobs=1)]: Done 449 tasks       | elapsed:  2.9min 

Variables superpuestas: 

buen resultado  en la 

predicción del modelo, 

con los datos de 

predicción muy parecidos 

a los de la realidad. 
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[Parallel(n_jobs=1)]: Done 500 out of 500 | elapsed:  3.2min finished 

Testing Random Forest model using 'test_fold' 

[Parallel(n_jobs=1)]: Done  49 tasks       | elapsed:    0.0s 

[Parallel(n_jobs=1)]: Done 199 tasks       | elapsed:    0.4s 

[Parallel(n_jobs=1)]: Done 449 tasks       | elapsed:    1.1s 

[Parallel(n_jobs=1)]: Done 500 out of 500 | elapsed:    1.2s finished 

Estimating prediction error Root Mean Squared Error 

6.13409658464 

 

GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 

 
Prueba 3: elevado valor de n_estimators y  bajo valor en min_samples_split 

PARÁMETROS SELECCIONADOS: 

forest = ensemble.RandomForestRegressor(n_estimators=200, min_samples_split=2, 
bootstrap=True, verbose=True, random_state=111) 
 
RESULTADOS: 
 

[Parallel(n_jobs=1)]: Done  49 tasks       | elapsed:   19.4s 

[Parallel(n_jobs=1)]: Done 199 tasks       | elapsed:  1.3min 

Testing Random Forest model using 'test_fold' 

[Parallel(n_jobs=1)]: Done 200 out of 200 | elapsed:  1.3min finished 

[Parallel(n_jobs=1)]: Done  49 tasks       | elapsed:    0.0s 

Gráfico con valores 

de predicción muy  

distantes de la 

realidad. GRAN 

dispersión. 
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[Parallel(n_jobs=1)]: Done 199 tasks       | elapsed:    0.5s 

[Parallel(n_jobs=1)]: Done 200 out of 200 | elapsed:    0.5s finished 

Estimating prediction error Root Mean Squared Error 

1.900786022 

 

GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prueba 4: valor pequeño de n_estimators y  alto valor en min_samples_split 

PARÁMETROS SELECCIONADOS: 

forest = ensemble.RandomForestRegressor(n_estimators=12, min_samples_split=400, 

bootstrap=True, verbose=True, random_state=111) 

RESULTADOS 

Creating Random Forest model 

Splitting 'alldata' into two sets: 70% Training and 30% Testing 

Training Random Forest model using 'train_fold' 

[Parallel(n_jobs=1)]: Done  12 out of  12 | elapsed:    4.5s finished 

Testing Random Forest model using 'test_fold' 

[Parallel(n_jobs=1)]: Done  12 out of  12 | elapsed:    0.0s finished 

Estimating prediction error Root Mean Squared Error 

5.28275344842 
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GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 
Conclusiones de los resultados de las pruebas en el modelo Random Forest: 

Podemos observar como  valores muy  elevados en los parámetros de n_estimators y   

min_samples_split ofrecen una baja calidad y  rendimiento en relación al tiempo de 

computación del modelo y en base a los resultados de predicción obtenidos. Esto  se 

observa en el  alto resultado en el estimador del error medio cuadrático (Root Mean 

Square Error, RMSE), el  cual, muestra que el modelo  realizado  de predicción difiere 

notablemente con el  modelo real, aspecto este último negativo. 

3.3.1.2 Procedimiento y resultados de Gradiente de Árboles Boosting en Python 

Al  igual  que en el  caso  de Random Forest, se necesita especificar una serie de 

parámetros los cuales, dependiendo del valor que se les asignen, pueden influir en el 

resultado de predicción final tanto  positiva como  negativamente. A continuación se 

ven las pruebas realizadas: 

Prueba 1: valor elevado en los parámetros de n_estimators, max_depth 

min_samples_split 

PARÁMETROS SELECCIONADOS:  

gbm = ensemble.GradientBoostingRegressor(loss='ls', n_estimators=100, 

max_depth=50, min_samples_split=150, verbose=True, random_state=111) 
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RESULTADOS 

Creating Gradient Boosting model 

Splitting 'alldata' into two sets: 70% Training and 30% Testing 

Training Gradient Boosting model using 'train_fold' 

      Iter       Train Loss   Remaining Time  

         1         884.5176            1.47m 

         2         717.2084            1.65m 

         3         581.6734            1.57m 

         4         471.8840            1.54m 

         5         382.9415            1.49m 

         6         310.7928            1.46m 

         7         252.3415            1.43m 

         8         204.9912            1.40m 

         9         166.6057            1.39m 

        10        135.4609            1.37m 

        20          18.0789            1.23m 

        30            2.9232            1.09m 

        40            0.6782           57.14s 

        50            0.2244           48.03s 

        60            0.1051           39.70s 

        70            0.0637           31.07s 

        80            0.0381           21.83s 

        90            0.0233           12.01s 

       100           0.0159            0.00s 

Testing Gradient Boostong model using 'test_fold' 

Estimating prediction error Root Mean Squared Error 

0.806225481327 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Se puede observar 

como la función de 

perdida(Train Loss) va 

disminuyendo a medida 

que se va construyendo  

el árbol. Ya que el 

algoritmo busca la 

optimización de estos. 
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GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 
Prueba 2: valor bajo en los parámetros de n_estimators, max_depth 

min_samples_split 

PARÁMETROS SELECCIONADOS:  

gbm = ensemble.GradientBoostingRegressor(loss='ls', n_estimators=10, 

max_depth=50, min_samples_split=15, verbose=True, random_state=111) 

RESULTADOS: 

Creating Gradient Boosting model 

Splitting 'alldata' into two sets: 70% Training and 30% Testing 

Training Gradient Boosting model using 'train_fold' 

      Iter       Train Loss   Remaining Time  

         1         883.9241           10.09s 

         2         716.2160            9.04s 

         3         580.3837            7.95s 

         4         470.3448            6.85s 

         5         381.0678            5.76s 

         6         308.8424            4.63s 

         7         250.2318            3.51s 

         8         202.7565            2.35s 

         9         164.3091            1.20s 

        10         133.1590            0.00s 

Testing Gradient Boostong model using 'test_fold' 

Estimating prediction error Root Mean Squared Error 

11.7607584506 
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GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 
Prueba 3: valor bajo en los parámetros de n_estimators y min_samples_split y  valor 

elevado en max_depth  

PARÁMETROS SELECCIONADOS:  

gbm = ensemble.GradientBoostingRegressor(loss='ls', n_estimators=10, 

max_depth=500, min_samples_split=15, verbose=True, random_state=111) 

 

RESULTADOS: 

Creating Gradient Boosting model 

Splitting 'alldata' into two sets: 70% Training and 30% Testing 

Training Gradient Boosting model using 'train_fold' 

      Iter       Train Loss   Remaining Time  

         1         883.9241           10.71s 

         2         716.2160            9.36s 

         3         580.3837            8.20s 

         4         470.3448            7.06s 

         5         381.0678            6.03s 

         6         308.8424            4.83s 

         7         250.2318            3.63s 

         8         202.7565            2.42s 

         9         164.3091            1.21s 

        10         133.1590            0.00s 

Testing Gradient Boostong model using 'test_fold' 

Estimating prediction error Root Mean Squared Error 

11.7607584506 

 

 

Gráfico con valores 

de predicción muy  

distantes de la 

realidad. GRAN 

dispersión. 



      
      

84 

 

 

GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 
 

Prueba 4: valor bajo en los parámetros de max_depth y min_samples_split y  valor 

elevado en n_estimators 

PARÁMETROS SELECCIONADOS:  

gbm = ensemble.GradientBoostingRegressor(loss='ls', n_estimators=500, 

max_depth=10, min_samples_split=15, verbose=True, random_state=111) 

 

RESULTADOS: 

Creating Gradient Boosting model 

Splitting 'alldata' into two sets: 70% Training and 30% Testing 

Training Gradient Boosting model using 'train_fold' 

      Iter       Train Loss   Remaining Time  

         1         887.7999            4.57m 

         2         723.2880            4.55m 

         3         589.9508            4.54m 

         4         481.9737            4.52m 

         5         394.4905            4.50m 

         6         323.6563            4.50m 

         7         265.9884            4.49m 

         8         219.3998            4.48m 

         9         181.4262            4.48m 

        10         149.9825            4.47m 

        20          30.4971            4.38m 

        30          11.8855            4.30m 



      
      

85 

 

        40           5.7766            4.32m 

        50           2.8819            4.36m 

        60           1.7145            4.34m 

        70           1.1360            4.30m 

        80           0.7414            4.22m 

        90           0.4945            4.12m 

       100           0.3764            4.03m 

       200           0.0295            3.08m 

       300           0.0037            2.07m 

       400           0.0007            1.05m 

       500           0.0001            0.00s 

Testing Gradient Boostong model using 'test_fold' 

Estimating prediction error Root Mean Squared Error 

1.33604168168 

 

 

GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 
 

Prueba 5:  valor  más elevado en el parámetros de n_estimators en comparación con la 

"Prueba 1". 

 

PARÁMETROS SELECCIONADOS:  

gbm = ensemble.GradientBoostingRegressor(loss='ls', n_estimators=500, 

max_depth=50, min_samples_split=150, verbose=True, random_state=111) 
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RESULTADOS 

Creating Gradient Boosting model 

Splitting 'alldata' into two sets: 70% Training and 30% Testing 

Training Gradient Boosting model using 'train_fold' 

      Iter       Train Loss   Remaining Time  

         1         884.5176            6.88m 

         2         717.2084            7.18m 

         3         581.6734            7.17m 

         4         471.8840            7.10m 

         5         382.9415            7.08m 

         6         310.7928            7.09m 

         7         252.3415            7.07m 

         8         204.9912            7.06m 

         9         166.6057            7.07m 

        10         135.4609            7.08m 

        20          18.0789            7.15m 

        30           2.9232            7.22m 

        40           0.6782            7.22m 

        50           0.2244            7.08m 

        60           0.1051            7.15m 

        70           0.0637            7.31m 

        80           0.0381            7.47m 

        90           0.0233            8.04m 

       100           0.0159            8.35m 

       200           0.0033            8.30m 

       300           0.0017            6.03m 

       400           0.0010            3.15m 

       500           0.0007            0.00s 

Testing Gradient Boostong model using 'test_fold' 

Estimating prediction error Root Mean Squared Error 

0.805627244272 
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GRÁFICO ENTRE LOS RETRASOS PREDECIDOS Y LOS RETRASOS REALES: 

 
Conclusiones de los resultados de las pruebas en el modelo Gradiente de Árboles 

Boosting: 

 

Se puede observar que para el modelo de Gradiente de Árboles Boosting los mejores 

resultados en relación con el error medio cuadrático (Root Mean Square Error, RMSE) 

se han mostrado  cuando  el número en las etapas de  creación del árbol es elevado  

(n_estimators). El  mínimo RMSE conseguido ha sido en la última prueba 5  con 

0.805627244272. 

Esto  quiere decir, que contra más iteraciones se hagan en el modelo mejores 

resultados se obtienen en función del rendimiento en los tiempos estimados de 

retraso  en las llegadas de los  vuelos a los aeropuertos. 

Un aspecto  a destacar es el  tiempo  en la realización del  modelo  de predicción que 

tiende a ser elevado en cuanto aumentamos el  numero  de iteraciones a realizar. A 

demás, si  comparamos los resultados del problema 1 y  del  problema 5 veremos que 

la diferencia de error no  es mucho mejor para el 5 y  sí que hay una diferencia notable 

para el  tiempo  de procedimiento entre uno y otro. 

 

 

3.3.2 Comparación de los modelos 

 

De entre los resultados de los dos modelos podemos observar que el  que ha conseguido  un 

menor error medio cuadrático (Root Mean Square Error, RMSE) en las diferentes 

realizaciones de las pruebas con los parámetros ha sido el de Gradiente de Árboles 

Boosting(GB) con un RMSE de 0.805627244272,  aunque para este modelo  el  tiempo  

de ejecución es mayor que para el modelo Random Forest(RF) ya que el  primero  



      
      

88 

 

necesita de un mayor nombre de iteraciones para conseguir un buen resultado del  

modelo  de predicción. 

Para Random Forest, en cambio el mejor modelo  analizado  muestra un RMSE de 

1.8673720728. Este modelo se caracteriza por utilizar un nombre bajo en sus 

parámetros de n_estimators y  min_samples_split, es decir, en los parámetros en 

relación al número  de árboles del  modelo y el numero  mínimo  d muestras 

requeridas para dividir un nodo interno. Por lo  que es un buen estimador del 

rendimiento  en relación con el tiempo  de ejecución y  los resultados obtenidos de la 

predicción de los tiempos de retraso en las llegadas de los vuelos a los aeropuertos de 

Arizona. 
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CONCLUSIONES 
 

Para este último  apartado  de conclusiones se quiere hacer referencia principalmente  

a los objetivos planteados en el inicio de este proyecto. Se puede decir que el  

resultado  en verso  a la realización de éstos es exitoso, ya que se han cumplido  la 

totalidad de ellos. 

Dicho esto se puede empezar explicando  los resultados que se han ido  obteniendo  a 

lo  largo de este proyecto. 

En la parte inicial se han estudiado los impactos que los retrasos aéreos generan en el 

transporte aéreo. Primero se ha podido  ver como estos retrasos son consecuencia de 

diversos factores que influyen drásticamente en su desarrollo. Se han visto  factores 

tales como la congestión de los vuelos  en los  aeropuertos debido a la planificación 

inadecuada  de las compañías aéreas al no tener en cuenta los vuelos planificados del  

resto  de las compañías. Esto conlleva a un exceso de vuelos programados en las horas 

punta provocando entonces los retrasos tanto en los vuelos propios como en el resto. 

De aquí  también se extrae otra consecuencia implícita en los  retrasos que es la de el  

efecto  de propagación a lo  largo de sus operaciones. Este efecto  es debido  al  

modelo secuencial que poseen las operaciones en el  transporte aéreo, donde si un 

vuelo de una compañía aérea se retrasa, si  no  se elimina este retraso, afectará tanto  

a los vuelos posteriores de la misma compañía como a los vuelos y  operaciones de 

todo  el  entorno aeroportuario, dado  que el  aeropuerto es una estructura limitada 

donde no se concibe una circulación sin permiso de entrada con una hora(slot) 

programada para cada vuelo.  

Otras consecuencias se han podido  ver mediante el estudio  comparativo  de los 

vuelos en los Estados Unidos y  la Unión Europea. De estos análisis se extrae una 

clasificación precisa la cual es  dividida en 5 grupos: 

 Aerolínea + Turnaround Local 

 Tiempo Extremo 

 Aeronaves que llegan tarde (o retraso reaccionario) 

 Seguridad 

 Sistema ATM(retrasos ATFM / NAS) donde se incluyen los retrasos debidos a 

condiciones no extremas en el tiempo. 

 

De los datos más relevantes en el periodo para 2013 se traducen con que, para la 

Unión Europea las 2 principales causas de retraso se debe a un 5,9% por causas de la 

aerolínea + turnaround Local y  un 7, 7% a retrasos reaccionarios,  a diferencia que las 

causas en los  vuelos  de los Estados Unidos donde sus dos mayores porcentajes son en 

relación al  sistema ATM con causas debidas mayoritariamente al mal  tiempo  y causas 

por retrasos reaccionarios, con un 6,8% y un 7,6% respectivamente.  

También destacar que alrededor del 80% de los vuelos realizados se han llevado  a 

cabo dentro  del  tiempo  planificado  tanto  para UE como para US. 
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Seguidamente, en otro  punto  de estudio, se han podido investigar las consecuencias 

de estos retrasos. 

En este punto se ha podido ver como  éstos repercutían tanto a compañías aéreas y a 

aeropuertos en base a mayores costos económicos en relación de la ineficiencia 

operativa en los tiempos de operaciones, como a los usuarios que utilizan este medio  

de transporte en relación con el  tiempo y  los costes de oportunidad perdidos por los 

retrasos sufridos en los vuelos, lo  cual ha significado una percepción menor de la 

calidad del servicio final para éstos. 

 

También se han podido ver los diferentes tipos de enfoques para minimizar los 

retrasos aéreos. Éstos son junto con los  modelos de predicción una herramienta 

indispensable para la mejora del problema en el sistema. Muchos  de  estos enfoques 

descritos se basan en técnicas del intercambio de datos (data sharing) para mejorar la 

previsibilidad en el transporte aéreo y así poder controlar y disminuir los problemas de 

los retrasos en los vuelos.  

 

Otro  objetivo  de este proyecto  era conocer los diferentes modelos de predicción 

mediante su análisis. Respecto a este punto hemos podido  desarrollar los modelos de 

Random Forest, Regresión Lineal, redes Neuronales y Gradiente de Arboles Boosting. 

Hemos podido  ver como  cada uno  de sus algoritmos poseía de una caracterizada 

composición y  forma de construcción del modelo  en cuestión, donde en esta 

diferenciación, radica el poder de elección frente a un modelo  o otro el cual  se pueda 

adaptar al problema o  modelo  a desarrollar de la mejor forma. 

 

Para el  correcto  funcionamiento y  construcción del  modelo  de predicción también 

se proponía  analizar los diferentes pasos claves de minería de datos que se llevan a 

cabo para una correcta creación del  modelo de predicción. Estos pasos han sido 

desarrollados y  llevados a la practica en el  caso  de estudio de predicción de los  

tiempos de retrasos en los vuelos realizados en los aeropuertos de Arizona para el  

periodo de enero a septiembre de 2015. 

Respecto  a los resultados y  conclusiones mas importantes de estos puntos se 

muestran a continuación: 

En relación con los  análisis realizados  de las 12  compañías aéreas y de los 80 

aeropuertos de la base de datos se han podido extraer que las compañías con más 

retrasos para el  periodo de estudio de enero a septiembre de 2015  han sido JetBlue 

Aiways(B6), Frontier Airlines(F9), Spirit Airlines (NK) con una media de alrededor de 

entre 15 a 20 minutos de retraso. 

En relación con el porcentaje mayor de retrasos en los aeropuerto de salida el  que 

concibe un porcentaje mayor es el de de Washington, DC (IAD) con una media de 

alrededor de 25 minutos de retraso por vuelo. 
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 Y  en relación con el aeropuerto  con el  mayor porcentaje de retrasos en los 

aeropuerto de llegada  es el de Buffalo, NY (BUF) con una media de alrededor de 20 

minutos de retraso por vuelo. 

  

En relación con el último apartado de los resultados en la creación de los modelos de 

predicción con Random Forest  y Gradiente de Arboles Boosting, se han extraído las 

siguientes conclusiones: 

Los dos modelos han sido  capaces de predecir los tiempos de retrasos en las llegadas 

a los aeropuertos de los vuelos de Arizona con unos resultados predichos muy  

semejantes a los datos reales. Esto se puede observar mediante los resultados 

obtenido con la medida de evaluación de la predicción en base al error cuadrático 

medio RMSE. El modelo de Gradiente de Árboles Boosting  ha obtenido un RMSE de 

0.80562724427, mientras que Random Forest ha obtenido un RMSE peor de 

1.8673720728. 

A demás de estos datos anteriores y de todas las pruebas realizadas en base a las 

modificaciones en los parámetros de cada modelo, se ha podido extraer que el modelo 

de Gradiente de Árboles Boosting tiene unos mejores resultados en relación con el 

error cuadrático medio RMSE en relación con la predicción de los tiempos de retrasos, 

pero  necesita de mayores pruebas e iteraciones para encontrar el mejor modelo,  con 

lo  cual el  rendimiento no es del todo óptimo.  

En contrapartida a esto, el Random Forest aún y  tener un número más elevado de 

RMSE y  no tener una predicción que se ajusta tan bien como el Gradiente de Árboles 

Boosting, el RF tiene la capacidad de encontrar un buen resultado de predicción en un 

menor tiempo de ejecución que el de GB, dado  que este puede trabajar en paralelo  a 

diferencia que el modelo de trabajo secuencial GB,  de ahí que el  GB necesite un 

numero  grande en sus parámetros para conseguir unos buenos resultados de 

predicción. 
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ANEXO (código en Python)  
El código se divide en 3  diferentes archivos: "dataanalysis.py", 

"featuresengineering.py" y "prediction.py". Estas 3 archivos se muestran a 

continuación: 

Archivo "dataanalysis.py": 
 

 

import pandas as pd 

import seaborn as sbn 

import matplotlib.pyplot as plt 

from numpy import arange 

import bisect 

 

#plt.style.use('ggplot') 

sbn.set_style("whitegrid") 

 

_author_ = 'Nerea' 

 

df1 = pd.read_csv("dataARIZONA/ARIZONA_ENERO.csv") 

df2 = pd.read_csv("dataARIZONA/ARIZONA_FEBRERO.csv") 

df3 = pd.read_csv("dataARIZONA/ARIZONA_MARZO.csv") 

df4 = pd.read_csv("dataARIZONA/ARIZONA_ABRIL.csv") 

df5 = pd.read_csv("dataARIZONA/ARIZONA_MAYO.csv") 

df6 = pd.read_csv("dataARIZONA/ARIZONA_JUNIO.csv") 

df7 = pd.read_csv("dataARIZONA/ARIZONA_JULIO.csv") 

df8 = pd.read_csv("dataARIZONA/ARIZONA_AGOSTO.csv") 

df9 = pd.read_csv("dataARIZONA/ARIZONA_SEPTIEMBRE.csv") 

 

result = (df1, df2, df3, df4, df5, df6, df7, df8, df9) 

df = pd.concat(result) 

 

df = df[df.CANCELLATION_CODE.isnull()] 

#print df 

 

#print df.isnull().any() 

 

#Ejercicio 2.3 

delay_column_names = ["ARR_DELAY_NEW", "ARR_DEL15", "CARRIER_DELAY", 

                      "WEATHER_DELAY", "NAS_DELAY", "SECURITY_DELAY", 

"LATE_AIRCRAFT_DELAY"] 

 

df[delay_column_names] = df[delay_column_names].fillna(0) 

 

#print df.isnull().any() 

 

#Ejercicio 2.4 

selected_delay_column_names = ["CARRIER_DELAY", "WEATHER_DELAY", 

"NAS_DELAY", "SECURITY_DELAY", "LATE_AIRCRAFT_DELAY"] 

 

mask = (df['ARR_DELAY_NEW'] > 0) & 

(df[selected_delay_column_names].sum(axis=1) == 0) 

df.ix[mask, 'CARRIER_DELAY'] = df.ix[mask, 'ARR_DELAY_NEW'] 

 

#print df 

 

 

df = df.drop("Unnamed: 38", 1) 

df = df.drop("CANCELLATION_CODE", 1) 
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df = df.drop("CANCELLED", 1) 

#print df.head() 

 

df = df.dropna() 

 

#print df.isnull().any() 

#print df 

#print df.head() 

 

df.to_csv("flights3.csv") 

 

def scatterplot(x, y, x_title, y_title): 

    plt.plot(x, y, 'b.') 

    plt.xlabel(x_title) 

    plt.ylabel(y_title) 

    plt.xlim(min(x)-1, max(x)+1) 

    plt.ylim(min(y)-1, max(y)+1) 

    plt.show() 

 

def barplot(labels, data, x_title, y_title): 

    pos = arange(len(data)) 

    plt.xlabel(x_title) 

    plt.ylabel(y_title) 

    plt.xticks(pos+0.4, labels) 

    plt.bar(pos, data) 

    plt.show() 

 

def histplot(data,x_title, y_title,bins= None,nbins= 2): 

    minx, maxx = min(data), max(data) 

    space = (maxx-minx)/float(nbins) 

    if not bins: 

        bins = arange(minx, maxx, space) 

    binned = [bisect.bisect(bins, x) for x in data] 

    l = ['%i' % x for x in list(bins)+[maxx]]\ 

        if space < 1 \ 

        else [str(int(x)) 

              for x in list(bins)+[maxx]] 

    displab = [x+'-'+y for x, y in zip(l[:-1], l[1:])] 

 

    barplot(displab, [binned.count(x+1)for x in range(len(bins))], 

x_title, y_title) 

 

# funcion para datos del tipo string(caracter) 

def barchart(x, y, x_title, y_title, numbins=10): 

    data = pd.DataFrame() 

    data['DEST'] = df['DEST'] 

    data['ARR_DELAY_NEW'] = df['ARR_DELAY_NEW'] 

    carrier_group = data.groupby('DEST') 

    delays_totals = carrier_group.sum()  # here you may use sum() 

instead of mean(), when it's appropriate 

    delays_totals.sort(columns='ARR_DELAY_NEW') 

    ax = delays_totals.plot(kind='bar', title="Arrivals Delays by 

Destination Airport", legend=False) 

    ax.set_xlabel("DEST") 

    ax.set_ylabel("Total Arrivals Delays(minutes)") 

    plt.show() 

 

 

# funcion para datos de tipo integer (numeros) 

def barchart(x, y, x_title, y_title, numbins=10): 

    datarange = max(x)-min(x) 
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    bin_width = float(datarange)/numbins 

    pos = min(x) 

    bins = [0 for i in range(numbins+1)] 

 

    for i in range(numbins): 

        bins[i] = pos 

        pos += bin_width 

        bins[numbins] = max(x)+1 

        binsum = [0 for i in range(numbins)] 

        bincount = [0 for i in range(numbins)] 

        binaverage =[0 for i in range(numbins)] 

 

    for i in range(numbins): 

        for j in range(len(x)): 

            if x[j]>=bins[i] and x[j]<bins[i+1]: 

                bincount[i] += 1 

                binsum[i] += y[j] 

    for i in range(numbins): 

        binaverage[i] = float(binsum[i])/bincount[i] 

 

    barplot(range(numbins), binaverage, x_title, y_title) 

 

scatterplot(df.DEP_TIME, df.ARR_DELAY_NEW, "DEP_TIME", 

"ARR_DELAY_NEW") 

print scatterplot 

 

histplot(df.DEP_DEL15, 'DELAY > 15', 'FRECUENCIA') 

print histplot 

 

barchart(df.DEST.values, df.ARR_DELAY_NEW.values, "DEST", 

"ARR_DELAY_NEW", len(df.DEST.unique())) 

print barchart 

 

df.to_csv("dataARIZONA/flightsArizona_2015.csv", index=False) 

 

 

Archivo "featuresengineering.py": 

import pandas as pd 

import numpy as np 

from sklearn.preprocessing import LabelEncoder 

from sklearn import preprocessing 

import matplotlib.pyplot as plt 

from sklearn import ensemble 

import scipy.stats as stats 

import random 

 

__author__ = 'Nerea' 

 

df = pd.read_csv("dataARIZONA/flightsArizona_2015.csv") 

 

# Ejercicio 4.1.3 

def build_features(features,data): 

    #Firts we add numeric variables 

    features.extend(['YEAR', 'QUARTER', 'MONTH', 'DAY_OF_MONTH', 

'DAY_OF_WEEK', 'FL_NUM', 

                     'ORIGIN_AIRPORT_ID', 'DEST_AIRPORT_ID', 

'DEP_TIME', 'DISTANCE']) 

    #Secondly we add categorical variables and transform them into the 

numerical ones 
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    features.append('CARRIER') 

    le = LabelEncoder().fit(data['CARRIER']) 

    data['CARRIER'] = le.transform(data['CARRIER']) 

 

    return data 

 

features = [] 

build_features(features, df) 

print df[features].head() 

 

# Ejercicio 4.2.3. 

for x in range(0, len(features)): 

    plt.figure(x) 

    plt.hist(df[features].values[:, x]) 

    plt.title(features[x]) 

    plt.xlabel("Value") 

    plt.ylabel("Frequency") 

    plt.show() 

 

# Ejercicio 4.2.4 

for x in range(0, len(features)): 

    print "%s Mean:" % features[x] 

    print df[features].values[:, x].mean(axis=0) 

    print "%s Std.Dev.:" % features[x] 

    print df[features].values[:, x].std(axis=0) 

 

df_scaled = preprocessing.scale(df[features]) 

 

for x in range(0, len(features)): 

    print "%s Mean:" % features[x] 

    #print stats.skew(df_scaled[:,x]) 

    print df_scaled[:,x].mean(axis=0) 

    print "%s Std.Dev.:" % features[x] 

    print df_scaled[:, x].std(axis=0) 

 

delayed_minutes = df['ARR_DELAY_NEW'] 

 

#Fit a random forest with(mostly) default parameters to determine 

feature importance 

random.seed(111) 

forest = ensemble.RandomForestRegressor(n_estimators=10, 

                                        min_samples_split=2, 

                                        n_jobs=-1) 

forest.fit(df_scaled, delayed_minutes) 

feature_importance = forest.feature_importances_ 

 

#Make importances relative to max importance 

feature_importance = 100.0 * (feature_importance / 

                              feature_importance.max()) 

 

#A threshold below which to drop features from the final data set. 

#Specifically, this number represents the percentage of the most 

important feature's importance valeu 

fi_threshold = 15 

 

# Get the indexes of all features over the importance threshold 

important_idx = np.where(feature_importance > fi_threshold)[0] 

 

#Create a list of all the feature names above the importance threshold 

features = np.array(features) 

important_features = features[important_idx] 
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print "\n", important_features.shape[0], "Important features(>", 

fi_threshold, "% of max importance):\n",\ 

    important_features 

 

#Get the sorted indexes of important features 

sorted_idx = np.argsort(feature_importance[important_idx]) 

print "\nFeatures sorted by importance (ASC):\n", 

important_features[sorted_idx] 

 

#Plot the importance of features 

pos = np.arange(sorted_idx.shape[0]) + .5 

plt.subplot(1, 2, 2) 

plt.barh(pos, feature_importance[important_idx][sorted_idx], 

align='center') 

plt.yticks(pos, important_features[sorted_idx]) 

plt.xlabel('Relative Importance') 

plt.title('Variable Importance') 

plt.draw() 

plt.show() 

 

#Remove non-important features from the feature set, and reorder those 

remaining 

df_scaled = df_scaled[:, important_idx][:, sorted_idx] 

 

df_scaled = pd.DataFrame(df_scaled) 

df_scaled['ARR_DELAY_NEW'] = delayed_minutes 

important_features = np.append(important_features, ['ARR_DELAY_NEW']) 

sorted_idx = np.append(sorted_idx, len(important_features)-1) 

 

#Save final processed features in the csv file 

df_scaled.to_csv("dataARIZONA/flightsARIZONA_2015_transformed.csv", 

header=important_features[sorted_idx], index=False) 

 

 

for x in range(0, len(df_scaled.columns)): 

    plt.figure(x) 

    plt.hist(df_scaled.values[:, x]) 

    plt.title(features[x]) 

    plt.xlabel('Value') 

    plt.ylabel('Frequency') 

    plt.show() 

 

 

Archivo " prediction.py ": 

import pandas as pd 

import tabulate as t 

import matplotlib.pyplot as plt 

import numpy as np 

import statsmodels.api as sm 

import matplotlib.pyplot as plt 

import pandas as pd 

import numpy as np 

from sklearn import ensemble 

from sklearn import cross_validation 

 

 

def RMSE(y, yhat): 

    rmspe = np.sqrt(np.mean((y - yhat)**2)) 

    return rmspe 
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df = pd.read_csv("dataARIZONA/flightsARIZONA_2015_transformed.csv") 

 

alldata = df.ix[:, 0:(len(df)-1)] # selecting predictors, i.e. all 

columns except 'ARR_DELAY_NEW' 

target = df['ARR_DELAY_NEW'] # selecting variable to be predicted 

 

#print ("Creating Random Forest model") 

print ("Creating Gradient Boosting model") 

#forest = ensemble.RandomForestRegressor(n_estimators=12, 

min_samples_split=400, bootstrap=True, verbose=True, random_state=111) 

gbm = ensemble.GradientBoostingRegressor(loss='ls', n_estimators=500, 

max_depth=50, min_samples_split=150, verbose=True, random_state=111) 

 

print ("Splitting 'alldata' into two sets: 70% Training and 30% 

Testing") 

train_fold, test_fold, train_y, test_y = 

cross_validation.train_test_split(alldata, target, test_size=0.3, 

random_state=123) 

 

#print ("Training Random Forest model using 'train_fold'") 

print ("Training Gradient Boosting model using 'train_fold'") 

#m = forest.fit(train_fold, target[train_y]) 

m = gbm.fit(train_fold, target[train_y]) 

 

#print ("Testing Random Forest model using 'test_fold'") 

print ("Testing Gradient Boostong model using 'test_fold'") 

predicted_y = m.predict(test_fold) 

 

results = pd.DataFrame() 

results['Real ARR_DELAY_NEW'] = target[test_y] 

results['Predicted ARR_DELAY_NEW'] = predicted_y 

results.to_csv("dataARIZONA/predictionresults1.csv", index=False) 

 

print ("Estimating prediction error Root Mean Squared Error") 

print RMSE(target[test_y], [y for y in predicted_y]) 

 

# VISUALIZE PREDICTED AND REAL ARRIVAL DELAYS 

plt.plot(target[test_y].iloc[0:100], marker='o', linestyle='--', 

color='b') 

plt.plot(predicted_y[0:100], marker='o', linestyle='--', color='r') 

plt.legend(['Real Arrival Delays', 'Predicted Arrival Delays'], 

loc='upper left') 

plt.show() 

 


