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GPU-based Pedestrian Detection for
Autonomous Driving

Victor Campmany Canes

Abstract— Pedestrian detection has gained a lot of prominence during the last few years. Besides
the fact that it is one of the hardest tasks within computer vision, it involves huge computational costs.
Obtaining acceptable real-time performance, measured in frames per second (fps), for the most
advanced algorithms is nowadays a hard challenge. In this work, we propose a GPU implementation
of a well-known pedestrian detection system (i.e., HOGLBP-SVM) specially designed for the Tegra
X1 embedded GPU. It includes LBP and HOG as feature descriptors and SVM as classifiers. We
introduce significant algorithmic adjustments and optimizations to adapt the problem to the NVIDIA
GPU architecture without sacrificing accuracy. The aim of this work is to offer a real-time system
providing reliable results.

Keywords— Autonomous driving, pedestrian detection, computer vision, CUDA, massive paral-
lelism

Resum- La detecci6 de vianants ha estat un tema de molt interés els darrers anys. A part
de ser una de les tasques més complexes de la visié per computador, implica uns costos com-
putacionals molt elevats. Obtenir un rendiment de temps real acceptable, mesurat en imatges
processades per segon (fps), per la majoria d’algoritmes més avancats és una fita complicada.
Aquest treball proposa una implementacié en GPU d’un conegut detector de vianants (i.e., HOGLBP-
SVM) dissenyat expressament per la Tegra X1, una GPU encastada. El detector inclou els metodes
LBP i HOG com descriptors de caracteristiques i un SVM com a classificador. El sistema introdueix
ajustos algoritmics i optimitzacions per adaptar el problema a l'arquitectura d’'una GPU NVIDIA
sense sacrificar precisié. Lobjectiu és proporcionar un sistema de temps real que alhora sigui robust.

Paraules clau— Conducci6 autonoma, deteccié6 de vianants, visié per computador, CUDA,
paral-lelisme massiu

+
These algorithms require high computation capability and
real-time response.

Recently, with the appearance of embedded GPUs, au-
tonomous driving is becoming attainable. Before its pres-

1 INTRODUCTION

consequently, autonomous driving is emerging as
a solution. Autonomous driving will not only in-
crease safety, but will also develop a system of a coopera-
tive self-driving cars which will reduce pollution and con-
gestion. Furthermore, it will enable handicapped people,
elderly persons and kids to have more freedom.
Autonomous driving requires perceiving and understand-
ing the vehicle environment (e.g., road, traffic signs, pedes-
trians, vehicles) using sensors (e.g., cameras, LIDAR’s,
sonars, radar). It also requires a robust self-localization
(using GPS, inertial sensors and visual localization in pre-
cise maps), controlling the vehicle and planning the routes.

HUMAN factor causes most of the driving accidents;
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ence, GPU-based autonomous driving applications were
non-viable because of the high power consumption of GPUs
and the need to be attached to a desktop computer. Nowa-
days, the new NVIDIA’s Tegra X1 ARM processor repre-
sents a promising approach. Tegra X1 is a low consumption
processor designed for high demanding real-time applica-
tions. Recently NVIDIA launched the Jetson TX1 and the
DrivePX embedded platforms. Jetson TX1 equipped with
one Tegra X1 processor is specially designed for robotics
while NVIDIA Drive PX equipped with two TX1 proces-
sors is specially designed for autonomous driving.

Accordingly, in this work we propose a pedestrian de-
tector for the Tegra X1 ARM processor. The pedestrian
detector is a key module for robotic applications and au-
tonomous vehicles. It requires reliable algorithms and de-
mands huge computational resources. Its aim is to distin-
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guish and locate humans on a digital image. Pedestrians
present a wide variation in their poses, clothes, illumina-
tions and backgrounds making pedestrian detection one of
the hardest tasks of computer vision. Pedestrian detection
has been an active research topic in the last twenty years.
Several survey articles [1-3] show the advances achieved in
this topic. One of the state of the art detectors is the Random
forest of Local Experts [4]. However, the real-time con-
straints in the field are tight, and recent works [4] proved
that general purpose processors are not able to achieve real-
time performance.

Any image-based pedestrian detector is composed by
four core modules: the foreground segmentation, the fea-
ture extraction, the classification and the refinement. The
foreground segmentation generates candidate windows to
contain pedestrians. These windows are described using
distinctive patches in the feature extraction stage. Dur-
ing the classification stage the windows are labeled using a
learnt model accordingly to its features. Finally, as a pedes-
trian could be detected by several windows, these windows
are merged in the refinement stage.

We propose to develop a real-time pedestrian detection
system based on [4], specially designed for the Tegra TX1
processor. We have introduced significant optimizations to
adapt the algorithm to the GPU architecture without sacri-
ficing the detector accuracy. Our system is capable of run-
ning in real-time in the DrivePX platform obtaining state of
the art accuracy.

The pedestrian detection application ported to the GPU
is composed by different algorithms. Regarding the feature
extraction process we distinguish two methods: Histograms
of Local Binary Patterns (LBP) [5] and Histograms of Ori-
ented Gradients (HOG) [6]. The foreground segmentation
is done with the Sliding Window (SW) technique and the
classification uses a Support Vector Machine (SVM) [7].

The rest of the paper is organized as follows. Section
2 introduces the state of the art; section 3 describes the
baseline pedestrian detector while section 4 explains the
methodology followed to achieve the objectives. In section
5 we analyze each algorithm and propose a mapping to the
CUDA architecture and, section 6 provides the obtained re-
sults. Finally, section 7 summarizes the work and section 8
outlines the future research lines.

2 STATE OF THE ART

General Purpose GPU (GPGPU) computing consists on us-
ing graphical processing units to perform regular compu-
tation. Traditionally, GPUs where designed to handle 3D
graphics applications. However, the slow CPU improve-
ments in terms of parallel processing incited the experts to
exploit the outstanding capabilities of graphical processing
units. Creating in this way the massively parallel computing
paradigm that we know today.

Computer Unified Device Architecture (CUDA) is a plat-
form created by NVIDIA to develop general purpose appli-
cations for the GPUs [8]. NVIDIA’s GPUs are composed
by tens of processing units called Streaming Multiproces-
sors (SMs). SMs share a L2 cache and an external Global
Memory. Each SM has a Shared Memory that is managed
explicitly and a L1 cache. A CUDA kernel is composed by
thousands of threads executing the same program with dif-

ferent data. Threads are divided into groups of up to 1024
threads called Cooperative Thread Arrays (CTAs), which
are atomically issued in one SM. The threads in a CTA col-
laborate using the on-chip Shared Memory. Each CTA is
divided into batches of 32 threads called warps. Threads
within a warp can cooperate using a private set of registers.
Finally, individual threads have a reserved memory region
in each layer of the memory hierarchy called Local Mem-
ory.

The warp is the minimum scheduling unit and it is exe-
cuted in a SIMD fashion. If threads in the same warp need
to follow different execution paths, each of the paths is ex-
ecuted sequentially having some of the threads active and
the remaining stalled; this circumstance is called divergence
and itis a limitation that needs to be addressed when design-
ing parallel algorithms.

A critical performance issue of the GPU is the memory
access pattern of the algorithm. GPUs achieve full memory
performance when the memory accesses are coalesced. Co-
alesced memory access refers to combining multiple mem-
ory operations into a single memory transaction. To achieve
coalescing, the 32 threads of the warp must access consecu-
tive memory addresses. Data layout, memory transfers and
work distribution become key factors in order to achieve the
best performance when designing GPU algorithms.

Since the appearance of GPGPU, researchers have in-
vested a lot of effort on porting their object detection al-
gorithms to the GPU. Huge efforts have also been put on
Field Programmable Gate Array (FPGA) designs, obtain-
ing outstanding results [9]. Nonetheless, the facilities that
the CUDA environment offers in terms of code maintenance
and reusability are more suitable for the constant chang-
ing field of computer vision. Works such as [10] assert
that exploiting the massively parallel paradigm for object
detection algorithms outperforms a highly tuned CPU ver-
sion [11]. Previously related researches like [12-14] de-
veloped a GPU object detector using the well-known HOG-
SVM approach obtaining a performance boost. However,
in the previously cited works the evaluations are done on a
desktop GPU, which is unfeasible for applications such as
autonomous driving. In this work we propose a real-time
pedestrian detector running on the NVIDIA DrivePX, a low
consumption autonomous driving platform. Furthermore,
as far as we know, the HOGLBP-SVM detection pipeline
[15] has never been ported to the GPU.

3 PEDESTRIAN DETECTION

We will use Histograms of Local Binary Patterns (LBP) [5]
and Histogram of Oriented Gradients (HOG) [6] for the fea-
ture extraction. Both methods can be used individually with
an SVM classifier, obtaining the LBP-SVM and HOG-SVM
pipelines. As previous researches have shown [15] combin-
ing both HOG and LBP by concatenating its feature vec-
tors give better detection accuracy, creating the well-known
HOGLBP-SVM pipeline.

LBP is a texture descriptor that, for each pixel in the input
image, computes the output pixel depending on the values
of the 8 nearest neighbor pixel values. Then, a histogram
of these values is computed. The HOG method counts the
occurrence of gradient orientation on a chunk of the im-
age, understanding the gradient as the directional change of
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color in an image.

The Sliding Window (SW) algorithm is used as fore-
ground segmentation method. It splits the image into rect-
angular boxes, called windows, that are the candidates to
contain pedestrians. Each window is classified with a Sup-
port Vector Machine (SVM) [7]. The algorithm discrimi-
nates the windows with pedestrians from the rest. SVM is
a supervised learning model that builds a hyper-plane that
is able to differentiate two categories (e.g. pedestrians from
background). Figure 1 shows the feature description and
classification of a candidate window using HOG, LBP and
SVM.

In order to detect pedestrians of various sizes and at dif-
ferent distances a image pyramid is generated. The im-
age pyramid consists on the computation of multiple down-
scaled copies of the input frame, called pyramid layers, each
of them having different dimensions. Every layer is pro-
cessed with the feature extraction and classification meth-
ods, then the results of all the layers are refined using the
non-maximum suppression algorithm [16].
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Figure 1: HOGLBP-SVM candidate window classification.
Each window of the sliding window is described with a fea-
ture descriptor and then classified using a SVM.

4 METHODOLOGY

An iterative process has been followed to achieve the objec-
tive. We start by implementing a sequential version of each
algorithm. The analysis of this implementation provides a
better overview on the compute requirements, the data de-
pendences and the parallelization options of the algorithm.
With the acquired knowledge, a CUDA accelerated imple-
mentation is developed. Once completed, the algorithm is
evaluated using the available profiling tools in order to de-
tect the performance bottlenecks. After profiling, an opti-
mization evaluation is done with the collected data and the
algorithm is tuned based on the profiler feedback.

5 DEVELOPMENT

We have implemented three different detection pipelines
sharing some of the basic algorithms mentioned in section
3 (i.e. LBP-SVM, HOG-SVM and HOGLBP-SVM). In
this section we present the algorithms and discuss the de-
cisions behind their massively-parallel implementations on
a CUDA architecture. We start describing the general detec-
tion pipelines and the design methodology, and then delve
into the details of each algorithm.

5.1 Pipeline overview

The three detection pipelines considered in this work, or-
dered from lower to higher accuracy and computational
complexity, are LBP-SVM, HOG-SVM and HOGLBP-
SVM. They represent three realistic options for an actual
detection system, where one has to trade off functionality
with processing rate. Figure 2 shows the pipeline stages:
(1) the captured images are copied from the Host memory
space to the Device; (2) the scaled-pyramid of images is
created; (3) features are extracted from each pyramid layer;
(4) every layer is segmented into windows to be classified;
(5) detection results are copied to the CPU memory to exe-
cute the Non-maximum Suppression algorithm that refines
the results. Pipeline differences appear on the feature ex-
traction stage.

Host (CPU)

Image
acquisition

Copy image to the
GPU memory

Device (GPU)

Pyramid

Feature
extraction

Sliding
Window &

Copy results to the ]
e Classification

CPU memory

=

Figure 2: Stages of the pedestrian detection pipeline on an
heterogeneous computing system.

5.2 Local Binary Patterns (LBP)

Local Binary Patterns is a feature extraction method that
gives information of the texture on a chunk of the image.
The process can be divided into two steps: the LBP Map
computation and the LBP Histograms computation.

The LBP Map [5] is computationally classified as a 2-
dimensional Stencil pattern algorithm. The central pixel is
compared with each of its nearest neighbors; if the value is
lower than the center a O is stored, otherwise, a 1 is stored.
Then, this binary code is converted to decimal to generate
the output pixel value. Figure 3 illustrates the computation
of a LBP Map value of a pixel.

2152 0o(o0]0
7l6]|1| =» 1| |o| =» (00001001) =9 =» 9
1137 0(0]1

Figure 3: (1) Read central pixel; (2) Compare the central
pixel with the 8 nearest neighbors and generate the binary
code; (3) Convert the binary code to a decimal value; (4)
Store the converted value into the output image.

Finally, we extract the image features by computing the
LBP Histograms. Histograms of blocks of 16 x 16 pixels
are computed over the LBP image. The histograms have
a 50% overlap in the X and Y axis meaning that each re-
gion will be redundantly computed 4 times. We avoided the
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Figure 4: Steps to compute the LBP features of an image: (1) Given a grayscale image compute the LBP map (Algorithm
1); (2) compute the Cell Histograms of the LBP map (Algorithm 2); (3) histogram reduction to generate the Block

Histograms (Algorithm 3).

redundant computing of the overlapped descriptors by split-
ting the Block Histograms into smaller Cell Histograms of
8 x 8 pixels. Then, these partial histograms are reduced in
groups of four (histogram reduction) to generate the output
block histograms. Figure 4 shows the previously described
sequence of operations to compute the LBP.

5.2.1 Analysis of parallelism & CUDA mapping for
computing LBP

We implemented the 2-dimensional Stencil pattern by map-
ping each thread to one output pixel (Algorithm 1). With
this work distribution there are no data dependences among
threads. Each thread performs 9 reads (the central value and
the eight neighbors) and 1 store and, the memory accesses
are coalesced.

Algorithm 1: Massively parallel computation of the
LBP map. Function LBPf performs the operations de-
scribed in Figure 3.

input : I[[H][W]

output: LBP[H][W]

1 parallel for y=0 to H and x=0 to W do
2 | LBPlyl[x] = LBPf(y, x);
3 end

We designed two different solutions to compute the LBP
histograms; the first one, is a straightforward paralleliza-
tion without thread collaboration (Naive scheme); the sec-
ond one, with thread collaboration, is designed to be more
scalable (Scalable scheme).

The Naive scheme follows a Map pattern: each thread
generates a Cell Histogram, avoiding the use of atomic op-
erations. The histogram reduction is performed in the same
way: each thread is mapped to a Block Histogram and the
thread performs the histogram reduction.

The Scalable scheme solution aims for an efficient mem-
ory access and data reutilization. Each thread is mapped
to an input pixel of the image, and using atomic operations
each thread adds to its corresponding Cell Histogram (Scat-
ter pattern, see Algorithm 2). To generate the Block His-
tograms every histogram reduction is performed by a warp
(see Algorithm 3). With this design we attain coalesced
memory access which leads to an scalable algorithm for dif-
ferent image sizes. Our system uses the Scalable scheme as
it attains better performance (see results in section 6.2).

Algorithm 2: Massively parallel computation of the
Cell Histograms (Scalable scheme). Each thread reads
a pixel and updates the corresponding cell. We use
atomic operations (Read-Add-Store) to avoid data races.
S < histogram.

input : LBP[H][W]

output: CH[H/8][W/8][S]
1 parallel for y=0 to H and x=0to W do
2 bin = LBP[y][x];
3 atomicAdd(CH[y/8][x/8][bin], 1) ;
4 end

Algorithm 3: Massively parallel computation of the
histogram reduction to generate the Block Histograms
(Scalable scheme). Function hReduction generates the
Block Histogram (Fa). Hb < H/8 — 1, Wb «
w/8 —1.

input : CH[H/8][W/8][S]

output: Fa[Hb][WDb][S]

1 parallel for y=0 to Hb and x=0 to Wb do
2 SIMD parallel for lane=0 to WarpSize do
3 t = lane;

4 while t<S do

5 Fa[y][x][t] = hReduction(t);

6 t=t+ WarpSize;
7

8

9

end
end

end

5.3 Histogram of Oriented Gradients (HOG)

The method of Histograms of Oriented Gradients [6]
counts the occurrence of gradient orientation on a chunk
of the image. The process could be divided into two steps:
Gradient computation and the Histograms computation.
Gradient computation is used to measure the directional
change of color in an image. The algorithm follows a 2 di-
mensional Stencil pattern. The gradient of a pixel has two
components, the magnitude (w) and the orientation (). The
orientation is the directional change of color and the mag-
nitude gives us information of the intensity of the change.
Figure 6 shows how the gradient of a pixel is obtained.
Histograms are computed by splitting the Gradient image
into blocks of 16 x 16 pixels with 50% overlap in X and Y
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Figure 5: Steps to compute the HOG features: (1) given a grayscale image, compute the gradient (Algorithm 4); (2)
compute the Block Histograms with trilinear interpolation (Algorithm 5).
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Figure 6: (1) compute dx and dy with the 4 nearest neighbor
pixels; (2) compute w and 6; (3) store w and 6.

axis (the same configuration as the LBP Histograms). In
this case, because of histograms trilinear interpolation we
can not compute 8 x 8 pixels Cell Histograms and then carry
out the histogram reduction. Trilinear interpolation is used
to avoid sudden changes in the Block Histograms vector
(aliasing effect) [6]. Each Block Histogram is composed by
four concatenated 8 x 8 pixels Cell Histograms. Different
bins of the Block Histogram receive a weighted value of the
orientation (¢) multiplied by the magnitude of the gradient
(w). Depending on the pixel coordinates, each input value
could be binned into two, four or eight bins of the Block
Histogram. The sequence of steps to compute the HOG
features is described in Figure 5.

5.3.1 Analysis of parallelism & CUDA mapping for
computing HOG

The gradient computation kernel follows a Map pattern: in-
dividual threads are mapped to each output pixel (Algo-
rithm 4). Single threads perform 4 reads and 1 store, and
coalesced memory accesses are achieved.

Algorithm 4: Massively parallel computation of the
Gradient. Each thread in the kernel performs the op-
erations in Figure 6.
input : I[H][W]
output: M[H][W], O[H][W]
1 parallel for y=0 to H and x=0 to W do
dx = I[yl[x-1] - I[y][x+1];

2
3 dy = I[y-11[x] - I[y+1][xI;

4 | MIyl[X] = sqrt(dx * dx, dy * dy);
5

6

Olyl[x] = arctan(dx, dy);
end

The Histograms computation has been parallelized as-
signing each thread to the computation of one histogram
(Large-grain task parallelism, see Algorithm 5). With this
structure there is no collaboration among threads and mem-
ory accesses are not coalesced, though, the mapping avoids

the use of the costly atomic memory operations.

We implemented three different kernels following the
scheme in Algorithm 5. The first one stores the data in
Global Memory (HOG Global). To reduce the latency of
the Global Memory we designed two more kernels: one
stores the histograms in Local Memory, taking advantage
of the L1 cache (HOG Local) and the other uses the on-
chip Shared Memory (HOG Shared). In section 6.3 we will
discuss the results of the implementations.

Algorithm 5: Massively parallel computation of the
HOG Histograms. Fb is the vector of the HOG Block
Histograms. Hb < H/8 — 1; Wb <« W/8 — 1;
S < histogram
input : M[H][W], O[H][W]
output: Fb[Hb][Wb][S]
1 parallel for y=0 to Hb and x=0 to Wb do
for i=0t0 16 do
for j=0to 16 do
‘ Fbly][x]=updateBlockHistogram(i, j);
end
end
end

2
3
4
5
6
7

5.4 Sliding Window (SW) & Support Vector
Machine (SVM)

Sliding Window splits the image into highly overlapped re-
gions of 128 x 64 pixels. Each window is described with
a feature vector (). The vector is composed by the con-
catenation of the Block Histograms (computed with HOG
and LBP) enclosed in the given region. Then, every vector
is evaluated to predict if the region contains a pedestrian or
not.

Support Vector Machine (SVM) is a supervised learning
method that is able to discriminate two categories, in our
case pedestrians from background [7]. After training the
SVM, we obtain a model that performs as an n-dimensional
plane that distinguishes pedestrians from background. The
SVM training is done offline. However, the SVM infer-
ence is done online. SVM gets as input a feature vector
(Z) and computes its distance to the model hyper-plane ().
This distance is computed with the dot product operation.
Then, the window is classified as pedestrian if the distance
is greater than a given threshold and as background other-
wise. Figure 7 shows the steps needed to evaluate each win-
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Figure 7: Sliding Window and SVM inference of the HOG and LBP features: (1) each window is evaluated computing
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5.4.1 Analysis of parallelism & CUDA mapping for
SW-SVM

We first implemented a naive version (Naive SVM) with a
Large-grain task parallelism and no thread collaboration.
Each thread is responsible of the computation of the dot
product between the candidate window () and the model
(). The approach was not scalable and became critical as
it is the kernel with the largest workload of the pipeline (see
results on section 6.4).

To efficiently compute the dot product we designed a
CUDA kernel where each warp is assigned to a window (&)
of the transformed image (Warp-level SVM). The compu-
tation of the dot product is divided between the threads in
the warp. Once intra-warp threads have computed the par-
tial results, these are communicated among threads using
register shuffle instructions and then reduced. Algorithm 6
shows the mapping of the Sliding Window and SVM infer-
ence to the massive parallel architecture.

We decided to use a warp-level approach to avoid the
overhead of thread synchronization as warps have implicit
hardware synchronization. This configuration allows the
full utilization of the memory bandwidth as the memory ac-
cesses are coalesced.

6 EXPERIMENTS & RESULTS

In this section we present the obtained performance results.
We carry out the performance evaluation of individual al-
gorithms and the application pipeline. All the experiments
are ran with an Intel 17-5930K processor, a NVIDIA GTX
960 and a NVIDIA Tegra X1 as the target processor. First,
we present the whole pipeline results and following we will
discuss the results of individual methods. We will measure
the efficiency of each of the algorithms with the follow-
ing performance metric: processed pixels per nanosecond
(px/ns); we will also refer to it as Performance.

The pipeline experiments in section 6.1 are done using
12 pyramid layers. The performance evaluation in the re-
maining subsections is done with a single pyramid layers as
it is focused on the individual algorithms.

We should not directly compare the performance of the
GTX 960 and the Tegra X1. A desktop GPU is designed
to be reliable for graphical based application and the power
consumption is not the main priority. The Tegra X1 em-
bedded system, though, is intended to operate in con-

del (Algorithm 6).

Algorithm 6: Massively parallel computation of the
Sliding Window and the SVM inference. N is the SVM
trained model, Hn and Wn are the number of Block His-
tograms fitting in a window and .S’ is the histogram size.
Hb<=H/8-1,Wb<=W/8 —1.

input : Fa[Hb][WD][S], Fo[Hb][Wb][S]

N[Hn][Wn][S]
output: scores[Y][X]

parallel for y=0 to Y and x=0 to X do
SIMD parallel for lane=0 to WarpSize do
t = lane;
for i=0 to Hm do
for j=0 to Wm do
while ¢<S do
res += Fa[i+y][j+x][t] * N[i][1[t];
res += Fb[i+y][j+x][t] * N[1][j][t];
t=t+ WarpSize;
end
end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18 end

end
res = SIMDreductionSum(res);
if lane == 0 then
| scores[y][x] = res;
end

end

strained environments and power consumption is a con-
cern. To compare both systems we introduce a new metric:
Per formance/W att. To assess the Watt consumption we
use the Thermal Design Power (TDP). TDP is the amount
of heat generated by the processor in typical use cases; the
attribute is provided by the manufacturer company.

6.1 Pipeline overview

In this section we evaluate the overall results of the sys-
tem in terms of processing performance and the accuracy of
the methods. To evaluate the application we use the KITTI
dataset [17]. First we analyze the processing performance
and then we detail the accuracy of the system.

To evaluate the Per formance we use a video sequence
with an image size of 1242 x 375 pixels. Table 1 presents
the performance results of the LBP-SVM, HOG-SVM and
HOGLBP-SVM pipelines, measured in processed frames
per second (FPS). Results show the achieved FPS for the
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multithreaded CPU baseline application [4] and the GPU
accelerated version, for both desktop GPU and Tegra XI1.
Results prove that we have accomplished the objective of
running the application in real-time under the low consump-
tion ARM platform.

Pipeline | LBP HOG HOGLBP
CPU 4 3.2 2.5
GTX 960 | 263 175 119
Tegra X1 40 27 20

Table 1: Performance of the detection pipelines measured
in processed frames per second (FPS) in the different archi-
tectures.

Figure 8 illustrates the miss rate depending on the false
positive per image (FPPI). FPPI is the number of candidate
windows wrongly classified as pedestrians, it can be under-
stood as the tolerance of the system. As the FPPI increases,
the miss rate decreases leading to a more tolerant system.
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Figure 8: The numbers on the legend are the area bellow
the curve (the lower the better). It is the objective term to
be minimized in order to attain a reliable detector.

The system is able to achieve state of the art accuracy
with the HOGLBP-SVM detection pipeline. The remain-
ing pipelines (LBP-SVM and HOG-SVM) have slightly
lower accuracy; nonetheless, they demand less computa-
tional power to achieve real-time performance which make
them suitable for less powerful GPUs.

6.2 Local Binary Patterns (LBP)

This section analyzes the two schemes developed to carry
out the LBP computation. Figure 9 shows the obtained re-
sults for different image sizes. The performance is mea-
sured in px/ns (the higher the better).

The experiments done with the profiling tools confirm
that the memory operations are the bottleneck of the process
both on the CPU and the GPU. As the workload becomes
bigger, the Naive scheme suffers a decrease of performance
caused by the poor memory management. However, the
Scalable scheme performance remains constant for the exe-
cuted experiments.

Obviously, running the kernels on the Tegra X1 pro-
cessor has a decrease of performance, even though, if we

ECPU mGPU - Naive
2,5

GPU - Scalable ® Tegra X1 - Naive ™ Tegra X1 - Scalable

2
1,5

1

0,5 I
0 — [ | — -‘ — -‘ — -

320x240 960x480 1280x853 2272x1704

Performance

Image size

Figure 9: Performance of the LBP feature extraction pro-
cess (LBP map + LBP Histograms).

take into account the Per formance/W att metric we con-
clude that the X1 processor achieve a higher performance
ratio for the executed experiments. Table 2 exposes the at-
tained Per formance/W att for the Scalable scheme. The
Tegra’s performance by power unit is 2.4 times higher than
the GTX 960’s one.

GPU | Per formance/W att
GTX 960 - Scalable 0,02
Tegra X1 - Scalable 0,048

Table 2: Per formance/W att of the extraction of the LBP
features (LBP map + LBP Histograms).

6.3 Histograms of Oriented Gradients

(HOG)

In this section we present the results of the HOG computa-
tion for the CPU version and the GPU implementations. Ev-
ery GPU kernel suffers a problem of non coalesced memory
access, so the memory hierarchy is not efficiently managed.
Additionally the parallelism is low, and the GPU compute
resources are not fully exploited.

The Local Memory kernel takes advantage of the L1
cache to store the histograms. However, the threads running
in a Streaming Multiprocessor (SM) have a working set big-
ger than the size of L1 cache, leading to a high miss rate. To
prove the fact and find out the suitable number of threads
per SM we carried out various experiments restricting the
number of resident threads per Multiprocessor (see Figure
10). As a consequence of the limitation of threads per SM,
the working set is smaller and the data could fit into the L1
cache. Figure 10 shows the relation between the number of
resident threads per SM and the performance measured in
processed pixels per nanosecond. Empirically we can con-
firm that the best performance is at 256 threads per SM. The
remaining experiments for the HOG Local kernel are done
using the optimal number of threads (256 threads per SM).

The HOG Shared kernel takes advantage of the fast on-
chip Shared Memory. In this case the working set per thread
is the same as the one described for the HOG Local ker-
nel. However, in this case we do not have L1 cache miss
problems as Shared Memory is explicitly managed by the
programmer. Despite a GPU utilization of 25% because of
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Shared Memory limitations, we obtain a significant increase
of performance compared to the HOG Local kernel.
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Figure 10: Performance of the HOG Local kernel for dif-
ferent number of threads per SM on the GTX 960.

Figure 11 shows the performance measured in number of
pixels processed per nanosecond for the CPU code and the
three CUDA kernels. The Shared Memory version out-
stands all the previously implemented solutions, obtaining
a 4x speedup compared to the Local Memory version.
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Figure 11: Performance of the HOG feature extraction pro-
cess (Gradient computation + HOG Histograms).

The results prove that the first parallel version was not
competitive even with a CPU code. For all the experiments,
the CPU version performs similarly compared to the HOG
Local kernel executed on the Tegra X1. However, the HOG
Local kernel performance in the GTX 960 is slightly better
than in the CPU. This fact determine that the limitations in
terms of memory bandwidth of the Tegra system require a
greater effort to gain significant speed-ups with respect to a
CPU implementation.

Regarding the Shared Memory kernel, we increase the
performance more than 2 times on both devices compared to
the HOG Local kernel. Table 3 presents the accomplished
Per formance/W att of the Shared Memory design. De-
spite being almost 3 times slower, the Tegra X1 perfor-
mance by power unit doubles the Per formance/W att of
the GTX 960.

GPU | Per formance/W att
GTX 960 — Shared Mem. 0,0061
Tegra X1 — Shared Mem. 0,0129

Table 3: Achieved Per formance/W att of the HOG fea-
tures computation (Gradient computation + HOG His-
tograms).

6.4 Sliding Window (SW) & Support Vector
Machine (SVM)

The classification via Sliding Window is the most time con-
suming part: it takes up to 55% of the time to process an
image. For this reason, we have put a lot of effort to de-
velop an efficient CUDA version and the results have been
satisfactory.

The Warp-level kernel achieves almost full GPU occu-
pancy, and peak memory performance. Figure 12 shows the
performance of the two kernels (Naive kernel and Warp-
level kernel) and the CPU implementation measured in
number of pixels processed per nanosecond. Achieving ef-
ficient coalesced memory access allowed us to attain 10x
speed-up relative to the Naive kernel on the GTX 960. The
Tegra X1 Warp-level kernel also takes advantage of the
memory coalescing and obtains an 8x increase of perfor-
mance. However, the Warp-level scheme suffers a decrease
of performance as the image becomes bigger. When the
image does not fit in the L2 cache the miss rate increases
and data needs to be fetched and retrieved from the slower
Global Memory.

MCPU MGPU-Naive MGPU-Warp-level MTegraX1-Naive M TegraX1-Warp-level

0,7
0,6
0,5
0,4

0,3

Performance

0,2

01 [
|

320x240

_mil_

1280x853

960x480

—mi_N

2272x1704
Image size

Figure 12: Performance of the Sliding Window + SVM
candidate window evaluation.

Table 4 shows the Per formance/W aitt for the Warp-
level scheme. The Tegra performance by power unit is again
higher, in this case almost double.

GPU | Per formance/W att
GTX 960 — Warp-level 0,005
Tegra X1 — Warp-level 0,009

Table 4: Achieved Per formance/W att of the the Sliding
Window + SVM candidate window evaluation.

7 CONCLUSIONS

In this work we show a massively parallel implementation
of a pedestrian detector that uses LBP and HOG as features
and SVM for classification. Our implementation is able to
achieve the real-time requirements on the autonomous driv-
ing platform, the NVIDIA DrivePX.

Our experiments confirm the importance of adapting
the problem to the GPU architecture. Smart work dis-
tribution and thread collaboration are key factors to at-
tain significant speed-ups compared to a high end CPU.



VICTOR CAMPMANY CANES: GPU-BASED PEDESTRIAN DETECTION FOR AUTONOMOUS DRIVING 9

The stated facts become even more critical when the de-
velopment is done under a low consumption platform like
the Tegra X1 processor. For the developed algorithms the
Per formance/W att of the Tegra X1 doubles the GTX
960 one. The evidence determines that the Tegra ARM
platform is an energy efficient system able to challenge the
desktop GPU performance when running massively parallel
applications.

With the methodology followed, we could compare the
performance of different massively parallel mappings for
a given algorithm and find out its drawbacks. We consider
that this methodology has been successful to understand the
organization and behavior of the CUDA architecture.

8 FUTURE WORK

This work opens the gate to promising possibilities in the
real-time autonomous driving applications. The developed
system could be generalized to multi-class detection in or-
der to recognize other objects appearing in a driving scene
such as cars, motorcycles or traffic signs.

The next step is to improve the accuracy of the system
with a Random Forest classifier. Additionally the pedestrian
detector is ready to be integrated with a 3D-vision system
to improve the perception of the scene.
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