Natural Killer T cell-based immunotherapy for cancer

Final Degree Project (TFG) Biology Degree 2016 - 2017

Jaume Vila Gatius

1. Introduction

Cancer is one of the most threatening diseases nowadays and immunotherapy is a successful field of research. Therefore, oncology immunotherapy has become a potential source of investigation, and its main results are related to cell therapy and monoclonal antibodies My work is based on cell therapy, specifically, on Natural Killer T cells

Objectives

To describe NKT functions and roles in tumor immunity To take a deep look into current NKT cell-based therapies To analyze relevant clinical trials and future directions

2. Natural Killer T cells

Characteristics

Antigen-CD1d complexes recognition They express TCR and NK receptors They develop and mature in the thymus

Features	Type I (iNKT)	Type II (vNKT)
TCR α chain	Vα24Jα18	Diverse
TCR β chain	Vβ11 (and others)	Diverse
Subsets (coreceptors)	CD4 ⁻ CD8 ⁻ (DN) CD4 ⁺ CD8 ⁺	CD4 ⁻ CD8 ⁻ (DN) CD4 ⁺ γδ T cells
Antigens	Glycolipid (α-GalCer)	Sulfatide moieties
Main role in cancer	Enhance immune response	Suppress immune response

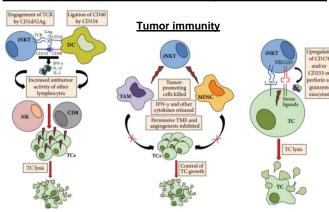


Figure 1: Altman J. et al. Journal of Immunology Research. 2015.

3. NKT cell-based immunotherapy of cancer

Therapy objectives

Elimination of MHC +/- cells in order to avoid tumor relapse Use of adjuvants as tumor cells are low immunogenic To induce DC maturation to promote efficient responses

- Free α-GalCer injection

It activates antitumor immune responses directed by iNKT cells, but it shows conflicting effects as it induces Th-0-like cell responses (cytokine mix)

↑Hydrophobic → pro-inflammatory, Th-1 cytokines ↑Solubility → anti-inflammatory, Th-2 cytokines

Trial

Toleration, safety and transient increase of NKT cells have been observed but it also has shown inefficient immune outcomes responses with a long period of anergy

- Autologous DCs loaded ex vivo with α-GalCer

It increases iNKT cell expansion and its INF-y production. Moreover, it is tolerated and less likely to generate anergy of iNKT cells than a plain α -GalCer injection. Finally, various routes of administration have been successful

outcomes

Tumor size and necrosis reduction have been observed It has shown disease stabilization in some cases

- Tumor cells loaded with α-GalCer

It has high specificity, yet it needs adjuvants so as to be effective

Cancer	Immunotherapy
CD1d+	αGC-loaded tumor cells
CD1d -	αGC + cross-presentation

Trial outcomes

IFN-γ route enhancement: activation of iNKT, NK and CTL

Novel: Immune memory after its combination with anti-4-1BB Ab reported

- Other α-GalCer immunotherapies

Anti-PDL1 Ab: it promotes iNKT Th-1 cytokine production and NK activation Anti-ganglioside GD2 Ab: it shows iNKT-NK interaction and enhancement Antibody + CD1d/αGC complexes: they induce tumor-specific CTL activation Live bacteria as αGC vector: it activates tumor-specific CTL

- Ex vivo expansion of autologous iNKT cells

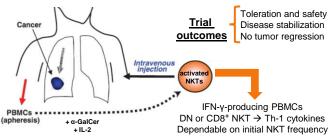


Figure 2: Motohashi S. et al. Cancer Science, 2008

Combination immunotherapy

Ex vivo expanded autologous iNKTs and α-GalCer-pulsed DCs

Trial

Toleration and no severe side effects reported It shows moderated responses in NKT and NK cell activities outcomes It induces partial response, stable disease and tumor regression

4. Conclusions

- Immunosupressive TME eradicates antitumor responses
- Small NKT population, which is even lower in cancer patients, is associtaed with worse prognosis
- · All studies are small scale trials without long monitoring
- Differences between mouse and human in CD1d and iNKT frequencies
- Novel: reserach in humanized mouse models, αGC analogs, delivery vectors
- Trials with mature DCs or PBMCs have shown better results than DCs
- Combination immunotherapy is not as good as expected theorically
- Irradiated tumor approaches are the best candidate for vaccination
- iPS: reinfusion of larger numbers of NKT promotes CTL activation Novel CARs: NKT transduced with CAR.GD2 induces persistent activity

5. Bibliography

- McEwen-Smith R. Et al. The Regulatory Role of Invariant NKT Cells in Tumor Immunity. Cancer Immunology Research. 2015;3(5):425-435.
- Altman J. et al. Antitumor Responses of Invariant Natural Killer T Cells, Journal of Immunology Research. 2015:1-10.
- Mattarollo S. et al. NKT cell adjuvant-based tumor vaccine for treatment of myc oncogenedriven mouse B-cell lymphoma. Blood. 2012;120(15):3019-3029.
- Motohashi S. et al. Clinical applications of natural killer T cell-based immunotherapy for cancer. Cancer Science. 2008;99(4):638-645.