Alginate-degrading bacteriophages as a therapeutic treatment against *Pseudomonas aeruginosa* in cystic fibrosis

Daniel Quiñones Celdran – Microbiology – Supervised by Jesús Aranda Rodríguez – 31 May 2017

BACKGROUND

- *Pseudomonas aeruginosa* can cause up to 20% of nosocomial infections [1].
- *P. aeruginosa* colonizes the lung of cystic fibrosis patients.
- *P. aeruginosa* is difficult to control because its resistance to many antibiotics and disinfectants, mainly due to efflux pumps and biofilm [2].
- Phage therapy has many advantages over antibiotics but needs further research.
- The use of genetically-modified phages is an interesting site-directed treatment.

EXPECTED RESULTS

- Reduction in viable cell numbers and total biomass in both early and mature biofilms.
- Significant increase in mice survival in the infected and treated group when compared with non-treated group.
- Cytokine and lactate dehydrogenase levels should be reduced, as well as bacteriophage and viable cell counts, when compared with non-treated group.

INITIAL HYPOTHESIS AND OBJECTIVES

- A cocktail composed by *P. aeruginosa* bacteriophages overexpressing an alginate-degrading enzyme could be an effective treatment in cystic fibrosis patients colonized by this bacterium.
- The aim of this project is to design a phage cocktail based in several lytic and non-transductant phages encoding an alginate lyase, and evaluate its safety and effectiveness in vitro and in vivo.

EXPERIMENTAL DESIGN

1. The Step-by-step method (SBS) will be used for the selection of infective phages against each resistant strain that could appear. The method ends when last phage-resistant mutant is sensible to the first phage [3].

 - **Bacteriophage**
 - *P. aeruginosa* culture
 - Selective pressure
 - *P. aeruginosa* death
 - Phage1
 - Phage2
 - Phage3
 - Phage1 resistant
 - Phage2 resistant
 - Phage3 resistant

 Figure 1: Representation of the SBS method.

2. Bacteriophage Recombining of Electroporated DNA (BRED) will be conducted for gene insertion in the phage genome. The genome and the desired gene are co-electroporated in a strain with a recombination system [4].

 - **Phage genome**
 - DNA purification
 - algl gene
 - Phage1
 - Phage2
 - Phage3

 Figure 2: Representation of BRED Technology.

3. **In vitro biofilm and cell viability analysis** will be performed in microtiter plates and continuous flow cells. Total biomass quantification and cell viability will be determined by Syto9 and FDA assays, respectively.

 - **P. aeruginosa** culture (Pa)
 - Phage cocktail (Pc)
 - Syto9 assay
 - FDA assay

 Figure 3: Diagram of in vitro analysis of early (up) and mature (down) biofilms.

4. For **in vivo** determination of safety and effectiveness, survival rate of mice will be determined as well as quantification of cytokines, LDH, phages and bacteria in bronchoalveolar fluids.

 - **TEST GROUP**
 - *P. aeruginosa* + phage-cocktail
 - **CONTROL GROUP**
 - *P. aeruginosa* + Phage cocktail

 Figure 4: Diagram of in vivo analysis and treatment.

REFERENCES