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Project context
This work has been carried out during my job as statistical consultant in the Servei d’Estadística Aplicada of the Au-
tonomous University of Barcelona. Thus, it is a real consulting project that has been performed by the service. In fact,
this statistical analysis is part of a research project in which several universities from both Spain and France are involved,
and it includes data from hospitals in both countries. In fact, this study will be published in an international scientific jour-
nal of health sciences, in which Llorenç Badiella and I appear as co-authors of the statistical analysis. On the other hand,
this project has been promoted and co-financed by a multinational from the pharmaceutical industry, which commercial-
izes drugs to slow down the development of leukemia. Therefore, given that there are underlying commercial purposes,
a confidentiality process has been carried out: the name of the actual substance of the study has been replaced by a
similar substance, that is, cyclophosphamide is not the actual substance that has been assessed, but one with similar
effects. In this work though the aim is going further than the plain statistical analysis corresponding to the scientific study
mentioned before: on one hand, the theoretical background of the statistical procedures used is explored. On the other
hand, the methodology used is contextualized with the purpose of justifying its use in similar situations as the case of
concern.

Abstract
In the study of time to event data one of the most widely used technique is the Proportional Hazards Model. Nonetheless,
this modeling tool is based on several restrictive assumptions which need to be carefully verified before interpretation
of parameters estimates. One of them is the assumption of proportional hazard which results directly from the model
formula and means that hazard ratio needs to be constant over time. In this work firstly presents the mathematical back-
ground concerning the proportional hazard property. Next,it appraises both methodologies for detecting its trustfulness
an alternatives when it is rejected. As measures for detecction the log(− log(S(t)), where S(t) is the survival function,
against the logarithm of the time whereas is considered and the Schonfled residuals are analyzed. Additionally, as mod-
elling alternatives both the Aalen Model and the Proportional Hazards Model with time-interaction terms are applied.
Afterwards, the theory displayed is illustrated by mean of a real example: the assessment of the Cyclophosphamide
treatment’s effect over the survival pattern of Acute Myeloid Leukemia patients. In this analysis, the proportional hazard
rates assumption for the variable treatment was rejected, refusing thus the time-homogeneous pattern. There were
found confirmatory evidences that the treatment with Cyclophosphamide enlarged the the survival of the patients and
other events related to the disease’s progression (p < 0.01) with respect the standard therapy within the first months of
the disease. However, this study came across with the fact that the effect of the Cyclophosphamide fades away as time
spends, becoming equivalent to the standard therapy from 12 months onwards (p < 0.01).
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Versió en català

Context del treball
Aquest treball ha estat dut a terme durant la meva feina com a consultor estadístic al Servei d’Estadística Apli-
cada de la Universitat Autònoma de Barcelona. Així doncs, es tracta d’un projecte de consultoria estadística
real que s’ha realitzat des del servei. Aquesta tasca de fet forma part d’un projecte d’investigació en el qual es
troben involucrades diverses universitats tant de l’Estat Espanyol com de França, i engloba dades d’hospitals
d’ambdós països. A més, aquest estudi serà publicat en una revista internacional de ciencies de la salut, en el
qual tant el Llorenç Badiella com jo hi apareixem com a autors de l’anàlisi estadística. D’altra banda, aquest
projecte ha estat impulsat i cofinançat per una multinacional de la indústria farmacèutica, la qual té com a
objectiu la comercialització d’un nou medicament que realentitzi el desenvolupament de la Leucèmia. Per
aquesta raó, donat que hi ha objectius comercials al darrera de l’estudi, s’ha dut a terme un procés de con-
fidencialització del treball: el nom la substància real de l’estudi ha estat substituït per una substància similar,
és a dir, la ciclofosfamida no és la substància real que s’ha estudiat, sino que s’ha estudiat una amb efectes
similars. en aquest treball tanmateix, es preté anar més enllà de simplement l’àlisi estadística corresponent
a l’estudi mencionat. D’una banda, s’estudien de forma rigurosa els fonaments teòrics dels procediments
estadístics emprats i per l’altra, es pretén contextualitzar aquesta metodologia amb l’objectiu de justificar el
seu ús en situacions similars a la del cas en estudi.

Resum
En l’estudi del temps transcorregut fins a l’esdeveniment una de les tècniques més àmpliament utilitzades
és el Model de Riscos Proporcionals. No obstant això, aquesta eina de modelització està basada en diver-
sos supòsits restrictius que necessiten ser verificats acuradament abans de poder interpretar les estimacions
dels paràmetres. Un d’ells és l’Assumpció de Riscos Proporcionals que es deriva directament de la fórmula
model i essencialment es tradueix en què el quocient de riscos ha de ser constant en el temps. En aquest
treball, en primer lloc es presenta la formulació matemàtica referent a la propietat de Riscos Proporcionals.
A continuació, es presenten tant metodologies enfocades a la detecció com alternatives quan aquesta no es
compleix. Com a eines de detecció considerem la representació gràfica de la funció log(− logS(t)) (sent
S(t) la corba de supervivència) i l’estudi dels residus de Schonfeld. D’altra banda, com a alternatives quan la
hipòtesi es rebutjada, presentem el model d’Aalen i el model de riscos proporcionals amb termes d’interacció
amb el temps. Posteriorment, la teoria s’il·lustra per mitjà d’un exemple real: l’avaluació de l’efecte del trac-
tament amb ciclofosfamida sobre el patró de supervivència dels pacients amb Leucèmia Mieloide Aguda. En
aquesta anàlisi, es rebutja la propietat de riscos proporcionals, descartant així el patró d’homogeneïtat en el
temps. D’altra banda, es van trobar evidències significatives que el tractament am cilofosfamida allargava la
supervivència dels pacients i retardava altres esdeveniments relacionats amb la progressió de la malaltia, en
comparació amb la teràpia estàndard (p < 0.01). Tanmateix, també es va trobar que l’efecte de la ciclofos-
famida s’esvaeix a mesura que passa el temps, arribant a ser equivalent a la teràpia estàndard a partir dels
12 mesos. (p < 0.01).

Paraules clau: anàlisi de la superviència, model de Cox, riscos no proporcionals, model d’Aalen, interaccions
amb el temps.
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Versión en castellano

Contexto del trabajo
Este trabajo ha sido llevado a cabo durante mi labor como consultor estadístico en el Servei d’Estadística
Aplicada de la Universitat Autònoma de Barcelona. Así pues, se trata un proyecto de consultoría real que
se ha realizado desde el servicio. Esta tarea, de hecho, forma parte de un proyecto de investigación en el
que se encuentran involucradas varias universidades tanto de España como de Francia, y engloba datos de
hospitales de ambos países. Además este estudio será publicado en una revista internacional de ciencias
de la salud, en el que tanto Llorenç Badiella como yo aparecemos como autores del análisis estadístico. Por
otra parte, este proyecto ha sido impulsado y cofinanciado por una multinacional de la industria farmacéutica,
la cual tiene como objetivo la comercialización de un nuevo medicamento que realentice el desarrollo de la
Leucemia. Por ello, dado que hay objetivos comerciales detrás del estudio, se ha llevado a cabo un proceso
de confidencialización del trabajo: el nombre la sustancia real del estudio ha sido sustituido por una sustancia
similar, es decir, la ciclofosfamida no es la sustancia real que se ha estudiado, sino que se ha estudiado
una con efectos similares . En este trabajo sin embargo se pretende ir un poco más alla del propio análisi
estadístico correspondiente al estudio científico mencionado. Por un lado, se estudian de forma rigurosa los
fundamentos teóricos de los procedimientos estadísticos empleados y por otro, se pretende contextualizar
esta metodología con el fin de justificar su uso en situaciones similares a la del caso en estudio.

Resumen
En el estudio de los datos de tiempo hasta un evento dado, una de las técnicas más utilizadas es el Modelo de
Riesgos Proporcionales. Sin embargo, esta herramienta de modelado se basa en varias hipótesis restrictivas
que deben ser cuidadosamente verificadas antes de la interpretar los parámetros estimados. Una de ellas
es la asunción de riesgo proporcional que resulta directamente de la fórmula del modelo y significa que la
razón de riesgo debe ser constante en el tiempo. En este trabajo se presenta en primer lugar el trasfondo
matemático relativo a la propiedad de riesgo proporcional. A continuación, se evalúan ambas metodologías
para detectar su confiabilidad y alternativas cuando se rechaza. Como herramientas de detección consider-
amos la gráfica de la función log(− logS(t)) (siendo S(t) la curva de supervivencia) contra el logaritmo del
tiempo y el análisis de los residuos de Schonfeld. Por otra parte, como alternativas cuando dicha hipóte-
sis es rechazada se consideran el modelo de Aalen y el modelo de riesgos proporcionales con términos de
interacción con el tiempo. Posteriormente, la teoría mostrada se ilustra por medio de un ejemplo real: la
evaluación del efecto del tratamiento con ciclofosfamida sobre el patrón de supervivencia de pacientes con
Leucemia Mieloide Aguda. En este análisis, se rechaza la hipótesis de tasas de riesgo proporcional para la
variable tratamiento, descartando así un patrón de homogeneidad en el tiempo. Se encontraron evidencias
significativas de que el tratamiento con ciclofosfamida aumentó la supervivencia de los pacientes y retrasó
otros eventos relacionados con la progresión de la enfermedad (p < 0,01), en comparación con la terapia
estándar en los primeros meses de la enfermedad. Sin embargo, también se demostró que el efecto de la
ciclofosfamida desaparece conforme el tiempo pasa, convirtiéndose en equivalente a la terapia estándar a
partir de los 12 meses (p < 0,01).

Palabras clave: análisis de la supervivencia, modelo de Cox, riesgos no proporcionales, modelo de Aalen,
interacciones con el tiempo.
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1 Introduction

1.1 The proportional hazard rates assumption in
survival analysis

In statistics (and in science in general) the most
straightforward methodologies for modelling data
are always wanted. However, is is probably true to
say that the easier is a technique, the more under-
lying assumptions requires. One such an example
is the linear regression model: it is very simple but
its validity strongly relies on the assumption of a
response variable normally distributed. In this paper
we consider a similar situation (more unknown than
the previous example though): the proportional haz-
ard rates assumption in the Proportional Hazard Rates
model. The ignorance of this issue when modelling
data might jeopardize the result’s validity.

Survival Analysis is the branch of statistics that
comprises the set of methodologies devoted to the
modelling of time-to-event data. That is to say, an
event of interest is fixed and the time from a set origin
until the event occurs is measured. Survival Analysis
includes a large number of different techniques and
spans over a wide range of application levels. No one
would dispute the fact that one of the most useful
modelling tool in this field, attractive probably by
both its easy application and easy interpretation, is
the Proportional Hazard Rates Model. *

In a similar way as the validity of linear regression
model depends on the normality in the response vari-
able, this technique also depends on an underlying
premise: the proportional hazard rates property. Most
of the studies assume that this hypothesis is fulfilled
without carrying out properly testing procedures.
If this assumption turns out to be false, and this
fact is not taken into account, the results arising
from the analysis may lack validity. In case that
the proportional hazard rates hypothesis is rejected,
other modelling methods must be used. This work
aims to answer questions as: What does exactly this

* This model is also called Cox Regression Model. Both names will be indistinctly used
throughout this work.

property mean? What can be done in case that this
property is rejected? Is the level of awareness among
the scientific community regarding this issue wide
enough? That is to say, it aims to tackle the situation
of non-proportional hazard rates in survival analysis
from a rigorous standpoint. Broadly, this work is
conformed by two distinct parts.

The firsts sections of this work present the mathe-
matical background for approaching the situation
accurately. It starts by a brief summary of survival
analysis (which obviously includes a presentation
of the Cox Regression Model) and a rigorous def-
inition of the proportional hazard rates property.
Subsequently, procedures for testing whether the last
hypothesis is fulfilled are presented. Next, modelling
alternatives for handling data when this premise is
rejected are displayed. On top of that, the level of
awareness of the proportional hazard rates property
testing praxis among the scientific community is
assessed by means of the search engine Pubmed
(see [18]). This last part pointed out a low level of
awareness.

The remainder of the project is devoted to the appli-
cation of the theoretical methodology depicted in the
previous sections to an authentic statistical analysis.
This consisted on real study that, as explained in the
context of the project, it will be published in a scien-
tific journal. Further information can be found in the
next section.

1.2 Study case: Assessing the cyclophosphamide
treatment’s effect over the survival pattern of
Acute Myeloid Leukemia patients

The cancer is one of the main death causes around
the world, being the second cause of death right
after the cardiovascular diseases. It is estimated that
only in the US more than 1.6 million new cases will
be diagnosed within the 2017, from which almost
600.000 will die. Moreover, it is forecasted a signif-
icant increase in the number of cancer cases. Thus,
the prevention, diagnosis and treatment of cancer is
of major concern
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Among all the types of cancer, one of the most
common and severe is leukemia. In this work we deal
with the Acute Myeloid Leukemia (AML), which is a
cancer of the myeloid line of blood cells. It is charac-
terized by the rapid growth of abnormal white blood
cells that accumulate in the bone marrow and inter-
fere with the production of normal blood cells. AML
is the most common acute leukemia affecting adults,
and its incidence increases with age. Although AML
is a relatively rare disease, accounting for roughly
1.2% of cancer deaths in the United States cite, its in-
cidence is expected to increase as the population ages.

The symptoms of AML are caused by replacement
of normal bone marrow with leukemic cells, which
causes a drop in red blood cells, platelets, and
normal white blood cells. These symptoms include
fatigue, shortness of breath, easy bruising and
bleeding, and increased risk of infection. Several
risk factors and chromosomal abnormalities have
been identified, but the specific cause is not clear.
As an acute leukemia, AML progresses rapidly and
is typically fatal within weeks or months if left un-
treated. AML is treated initially with chemotherapy
aimed at inducing a remission; people may go on
to receive additional chemotherapy or a hematopoi-
etic stem cell transplant. A benefit of treatment
with Cyclophosphamide (CYC) in AML patients
has been suggested in relatively small studies. Our
purpose is to establish the roll of CYC in this situation.

When CYC is used to treat cancer, it works by slowing
or stopping the growth of cancer cells in the body. The
literature on the study of decelerating leukemia drugs
shows a variety of approaches. However, it is gener-
ally agreed that a suitable procedure for tackling this
situation is studying time-to-event data until a fixed
event, which represents in some way the progression
of the disease. Patients are split in two groups: one
group receives the experimental drug and the other
one acts as a control group. Broadly speaking, the
next steps consists on studying the survival times un-
til the fixed event and evaluating whether the treated
group presented significant higher survival times in
comparison with the control group. Notice that the

control group is usually treated with a standard ther-
apy rather than remaining untreated. For this pro-
cedure, the patient’s blood is passed through a spe-
cial machine that removes white blood cells (includ-
ing leukemia cells) and returns the rest of the blood
to the patient. In this paper in fact, the CYC is com-
pared with the standard therapy (ST). In the case on
study the main event considered is the overall sur-
vival (OS), that is, the death of the patient. However,
the following secondary events are also considered:
Progression or Free Survival (PFS, progression of the
tumor of death), Tumor Progression (TM) and over-
all survival after progression (P, death after progres-
sion). Furthermore, some other explanatory variables
are also taken into account: age, gender, IPSS score,
Mielodisplasic Syndrome type and 2008 WHO’s dis-
ease classification.

2 Mathematical background

In this section, the theoretical background required
to develop the statistical analysis of this project is
presented. Survival analysis is a branch of statistics
for analyzing the expected duration of time until one
or more events happen. Survival analysis attempts to
answer questions such as: what is the proportion of
a population which will survive past a certain time?
Of those that survive, at what rate will they die or
fail? Can multiple causes of death or failure be taken
into account? How do particular circumstances or
characteristics increase or decrease the probability of
survival?

Some of the more important concepts in Survival
Analysis are presented next.

2.1 The Survival Function

The survival function is the probability that a patient
will survive beyond a specified time. That is, the sur-
vival function S(t) is defined as

S(t) = P(T ≥ t) (1)

where T is the random variable that represents the
time on study. Note that it can be interpreted as the
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proportion of subjects that are not suffered the event
within the elapsed time.

Notice that

S(t) = 1−F(t), (2)

where F(t) is the distribution function T . From equa-
tion (2) the following relation can be derived

dS(t)
dt

=
d(1−F(t))

dt

=−dF(t)
dt

=− f (t), (3)

where f (t) is the density function of T .

If there is censored data, the survival function can be
estimated through the Kaplan-Meier estimator. Let
t1 < t2 < .. . < tk with k < n be the death times of all the
individuals, for each ti we define

• di, the number of deaths in the moment ti

• ni, the number of individuals a risk at time ti.

Then, the Kaplan-Meier estimator of S(t) is

Ŝ(t) = ∏
j

t j<t

(
1−

d j

n j

)
(4)

2.1.1 The log-rank and Wilcoxon tests

In the comparison of two groups of survival data,
there are a number of methods that can be used
to quantify the extent of between-group differences.
Two non-parametric procedures will now be consid-
ered, namely the log-rank test and the Wilcoxon test.

2.1.1.1 The log-rank test In order to construct
the log-rank test, we begin by considering separately
each death time in two groups of survival data.
These groups will be labelled as group A and group
B. Suppose that there are r distinct death times.
t(1) < t(2) < .. . < t(r), and that at time t( j), d1 j individ-
uals in group A and d2 j individuals in group B die.,
for j = 1,2, . . . ,r. Unless two or more individuals in a

group have the same recorded death time, the values
of d1 j and d2 j will either be 0 or unity. Moreover,
suppose that there are n1 j individuals at risk in the
first group just before time t( j), and that there are n2 j

et risk in the second group. Consequently, at time
t( j), there are d j = d1 j + d2 j deaths in total out of
n j = n1 j +n2 j individuals at risk.

Now consider the null hypothesis that there is no
difference in the survival experiences of the individ-
uals in the two groups. One way of assessing the
trustfulness of this hypothesis is to consider the extent
of the difference between the observed number of
individuals in the two groups who die at each of the
death times, and the number expected under the null
hypothesis. Information about the extent of these
differences can then be combined over each of the
death times.

Note that we can regard d1 j as a random variable
which can take any value from 0 to min{d j,n j}. In
fact, d1 j is a random variable with hypergeometric dis-
tribution, and thus, the probability p that the random
variable associates with the number of deaths in the
first group takes the value d j is

p =

( d j
d1 j

)( n j−d j
n1 j−d1 j

)( n j
n1 j

) . (5)

The mean of the hypergeometric random variable d1 j

is given by

e1 j =
n1 jd j

n j
, (6)

so that e1 j is the expected number of individuals who
die at time t( j) in group A.

The next step is combining the information described
above for each death time to give an overall measure
of deviation of the observed values of d1 j from their
expected values under the null hypothesis. The most
straightforward way of doing this is to sum the differ-
ences d1 j− e1 j over the total number of death times r
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in the two groups. This yields to the test’s statistic

UL =
r

∑
j=1

(d1 j− e1 j). (7)

Notice that this this is ∑
r
j=1 d1 j−∑

r
j=1 e1 j, which is the

difference between the total observed and expected
number of deaths in Group A. This statistic will have
0 mean , since E(d1 j) = e1 j. Moreover, since the death
time are independent. the variance of UL is simply
the sum of variances of the d1 j. Now, since d1 j has hy-
pergeometric distribution, the variance of d1 j is given
by

v1 j =
n1 jn2 jd j(n j−d j)

n2
j(n j−1)

, (8)

so that the variance of UL is

Var(UL) =
r

∑
j=1

v1 j :=VL. (9)

Furthermore, it can be shown that UL has an approxi-
mate normal distribution, when the number of death
times is not too small. It follows then that,

UL√
VL
∼N (0,1), (10)

result (10) allows us to perform the hypothesis test.

2.1.1.2 The Wilcoxon test The Wilcoxon test is
also used to test the null hypothesis that there is no
difference in the survivor functions for two groups of
survival data. The Wilcoxon test is based on the statis-
tic

UW =
r

∑
j=1

n j(d1 j− e1 j), (11)

where, as in the previous section, d1 j is the number of
deaths at time t( j) in the first group and e1 j is defined
in expression (6). The difference between UW and UL

is that in the Wilcoxon test, each difference d1 j−e1 j is
weighted bu n j, the total nuber of individuals at risk
at time t( j). The effect of this is to give less weight to
differences between d1 j and e1 j for those times when
the number of individuals still alive is small, that is,
at the longest survival times. This statistic is thus less
sensitive that the log-rank-test to deviations of d1 j

from e1 j in the tail of the distribution of survival times.

the variance of UW turns out to be

VW =
r

∑
j=1

n2
jv1 j (12)

where v1 j is given by equation (8). Therefore, under
the null hypothesis, it holds that

U2
W

VW
∼ χ

2
1 . (13)

The Wilcoxon test is hence conducted in the same
manner as the log-rank test.

Remark: when the proportional hazards assumption
is not fulfilled, the Wilcoxon test is more powerful in
comparison with the log-rank test.

2.2 The hazard function and the Proportional
Hazards Model

The hazard function λ (t) is defined as the risk of
event at time t and it can be interpreted as the in-
stant rate of events. From a Poisson Process approach
it may be interpreted as the rate function of the non-
homogeneous Poisson Process that counts the occur-
rence of the events on study. Thereby, it is defined
as

λ (t) = lim
∆t→0

P(t ≤ T < t +∆t|T ≥ t)
∆t

(14)

Note that, if T is a continuous random variable, con-
sidering the following relations holds

λ (t) =
f (t)
S(t)

(15)

where f (t) are the S(t) are the density function and
survival function of T respectively.

2.3 The Proportional Hazard Rates Regression
Model

The Proportional Hazard Rates Regression Model (also
called Cox Regression Model) models the risk function
by means of a baseline hazard function and function
of a set of covariates. This model assumes that the risk
function of the ith individual with covariates values
Xi1,Xi2, . . . ,Xip may be expressed as
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λ (t|Xi) = λ0(t)exp(β1Xi1 +β2Xi2 + . . .+βpXip) (16)

where β1,β2, . . . ,βp are constant coefficients to be
estimated from the data and Xi1,Xi2, . . . ,Xip are the
values of the covariates for the inidividual ith. Es-
timtations are obtained then by Maximum Likelihood.

This model however supposes a strong property,
the hazard rates are proportional among levels of
the covariates. This condition states that covariates
are multiplicatively related to the hazard. In the
simplest case of stationary coefficients, for example,
a treatment with a drug may, say, halve a subject’s
hazard at any given time t, while the baseline hazard
may vary.

Let us consider two any individuals i and j with vec-
tor of covariates X i an X j. Calculating the quotient
between he risks functions we obtain

λi(t|X i)

λ j(t|X j)
=

λ0(t)exp(X iβ )

λ0(t)exp(X jβ )

where β is the coefficient’s vector of the model. Ther-
fore

λi(t|X i)

λ j(t|X i)
= exp((X i−X j)β ) , (17)

, that is to say, the quotient between the hazard
functions of any individuals is a constant. This
property is called the property of proportional
hazard rates for the individuals i and j. That is to
say, the quotient between the hazard functions of any
individuals is a constant. On the contrary, if equation
(17) does not holds we will say that the proportional
hazard rates property is violated. We will henceforth
refer at this property as PH property.

Note that this relation will not hold if and only if the
vector of coefficients β is not a constant but a function
of the time t. Thus, the underlying condition when
this property does not hold is that the covariates act
in a time-varying manner over the risk function.

Consider next the case on study: a survival study

in which each patient has been allocated to one of
two groups, corresponding to a standard treatment
and a new treatment. The proportional hazard rates
property would mean in this case, that the ratio of
the hazard of death at time t in one treatment group
relative to the other is independent of survival time.

In the following sections techniques for the testing the
relation (17) and alternatives for dealing with data
not fulfilling this property are displayed.

2.4 Spreading’s analysis of the PH testing praxis

When carriying out a study involving the Cox re-
gression model The evaluation and testing of the PH
property becomes a fundamental issue. Otherwise
the arising results may lack validity.

This section aims to briefly assess and quantify
the spreading’s degree of the praxis of contrast-
ing whether this premise is fulfilled, among the
health sciences scientific studies. Although other
knowledge branches also make use of these survival
analysis techniques, it is probably true to say that
the main ones are the medicine and health sci-
ences in general. Hence, and following the line of this
work, this branch has been chosen for being analysed.

Even though survival analysis techniques have been
improved in recent years among the health sciences
community, the hypothesis of this work is that the
praxis of testing the PH assumption is still far from
reciving the importance that deserves. This would
suggest that in time-to-event studies things are
not always being properly done (from a statistical
standpoint).

The procedure for performing this analysis is straight-
forward: firstly quantifying the number of articles
that use the Cox Regression Model, and next, ap-
praising how many of them questioned in some way
whether the PH assumption was fulfilled. Thereby,
two things are required: a large enough medical
scientific articles database and a search engine
allowing to filter and making queries. Note that some
new concepts regarding the testing the Porportional
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Hazards assumption and its posterior correction will
be used. Further information will be presented in the
next sections.

Both the database and the search engine are provided
by the National Center for Biotechnology Information
(NCBI) of the US. Specifically, the sub-database
containing health science articles is PubMed (see
[18] for further information). Moreover, by means of
boolean operators, filtering queries in PubMed can
be made with ease. Finally, it only rest choosing the
right words defining the articles wished to be found.

For example, in order to estimate the number of arti-
cles in PubMed which used the Cox Regression Model,
the following is introduced in the search engine:

(Proportional Hazards Model)

OR (Cox Model)

OR (Cox Regression Model)

where the boolean operators OR indicate the articles
containing at least one of the previous keywords are
wished to be returned.

Next, the purpose is to quantify how many of them
took into account the PH assumption in some way,
thus, the following query is performed

((Proportional Hazards Model)

OR (Cox Model)

OR (Cox Regression Model) )

AND

( (time-interaction) OR

(interaction with time)

OR (time-varying)

OR (time-dependant) OR

(Aalen) OR

(Breslow)

OR (Wilcoxon) OR (Gehan)

OR (Schonfeld)) )

† That is, keywords related to the PH testing are
added to the previous search using the link operator

† The words Gehan and Bresolow refer to the Wilcoxon test. The name of the this
contrast varies in literature.

AND . In this manner, the previous search results are
filtered so that there are only kept those articles that
deal with the PH testing in some way.

Additionally, this procedure has been carried out dis-
tinguishing between three of the more remarkable
medical branches with regards of the use of survival
analysis when modelling data. These three are oncol-
ogy, the HIV study and the transplating surgery tech-
niques. The searches in this case are analogues to the
ones before, adding though some keywords related to
each field using and AND operator (filtering thus the
articles by branch). The keywords used, which are
supposed to cover the most of the articles in the data
base in each case, are

• Oncology: oncology, tumour ,tumor , cancer,
metastasis, leukemia

• HIV: HIV, Human Immunodeficiency Virus, im-
munodeficiency, AIDS, Acquired Immunodefi-
ciency Syndrome

• Transplant Surgery: transplantation, transplant,
donor, rejection

The results are gathered in table 1.

Table 1 Total number of articles returned by the search
engine for each medicine field and overall, along with
those that did considered the PH testing in some way in
each case (labeled as Yes). Furthermore, the proportion
of Yes have been calculated. Note that each row arises
from a different query, hence, the sum of the fields’ results
does not yield to the overall results.

Total Total Yes % Yes
Oncology 40,033 952 2.38%
HIV 3,075 135 4.39%
Transplant surgery 6,464 186 2.88%
Overall 88,442 2,455 2.76%

From this table it can be seen that, in all the cases,
a few proportion of the articles took into account
the testing of the PH property. This supports the
hypothesis that too little attention is being paid to
this issue.
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Next, pairwise proportion contrasts are performed
with the aim of detecting differences in the propor-
tion of articles that took into account the PH testing
among branches. The results can be found in table 2

Table 2 p-values of the pairwise comparisons of
proportions of articles considering the PH testing among
different branches. The Bonferroni correction for multiple
comparisons has been applied.

Onc. HIV Transp. Surgery
HIV < 0.001 - -
Transp. Surgery 0.107 < 0.001 -
Overall < 0.001 < 0.001 1.00

From table 1 some conclusions can be pointed out:
firstly, the proportion of articles considering the PH
testing in the field of HIV has been found to be signif-
icantly greater with respect the rest of the groups. In
addition the proportion of the overall case has been
found to be significantly greater than the proportion
in the case of oncology. The rest of comparisons have
turned out to be no significant.

Limitations

Even though some conclusions may be successfully
derived from this study, the major drawback of this
approach is that it has only been quantified the pro-
portion of articles that did not take into account
the validity of the PH assumption among all the
articles of the field. The truly interesting analysis
would consist on quantifying number the articles in
which the PH property was not fulfilled, and this
was not took into consideration. In this way, the
problematic of the lack of the PH’s testing would be
directly assessed.

Nonetheless, this second analysis was impossible to
carry out within the framework of this project. One
one hand, verifying whether the PH assumption was
fulfilled and whether this was considered in the ar-
ticles, would imply to study deeply each of them in-
dividually. Therefore, an enormous amount of work
would be needed for obtaining a large enough sample
size. On top of that, the downloading and consulting
of the most of the articles are subjected to subscrip-
tion, which obviously costs money. Thus, the lack of

subscriptions makes the first step impracticable.

2.5 Testing the proportional hazard rates as-
sumption

As explained in section 2.3, a crucial assumption
made when using the Cox regression model is the of
PH property. We must therefore consider how the va-
lidity of this assumption can be assessed.

2.5.1 The log-cumulative hazard plot

In this section, a straightforward plot that can be
used in advance of model fitting is described.

According to the Cox regression model, the hazard of
death at any time t for the ith individual is given by
expression (16):

λi(t|Xi) = λ0(t)exp(β1Xi1 +β2Xi2 + . . .+βpXip)

= λ0(t)exp
(
β
′X i
)

where β is the corresponding vector of coefficients.
Integrating both sides of this equation over t gives∫ t

0
h(u)du = exp

(
β
′X i
)∫ t

0
λ0(u)du (18)

Defining the cumulative hazard function H(t) as

H(t) =
∫ t

0
h(u)du, (19)

equation (18) can be rewritten as

Hi(t) = exp
(
β
′xi
)

H0(t).

Taking logarithms at each side of this equation, we get

logHi(t) = β
′xi + logH0(t), (20)

from which it follows that differences in the log-
cumulative hazard functions do not depend on
time. This means that if the log-cumulative hazard
functions for individuals with different values of their
explanatory variables are plotted against time, the
curves so formed will be parallel if the proportional
hazards property is accomplished. Otherwise this
hypothesis would be rejected. In practice, plotting
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the log-cumulative hazard functions against the
logarithm of t rather than t itself provides more inter-
pretable plots and so this form plot is commonly used.

However, it turns out that this analysis can be carried
out only by means of the survival function. This arises
from the fact that the log-cumulative hazard function
accomplishes

logH(t) = log(− logS(t)) (21)

Equation (21) is straightforward to prove:

−d logS(t)
dt

=− 1
S(t)

dS(t)
dt

=
f (t)
S(t)

= λ (t)

where in the last two equallities expressions (3) and
(15) have been used respectively. Next, integrating
both sides of relation above we obtain

− logS(t) =
∫ t

0
λ (t) = H(t)

from which directly follows equation (21).

To use this plot, the survival data are first grouped ac-
cording to the levels of one or more factors. If contin-
uous variables are to feature in this analysis, their val-
ues will first need to be grouped in some way to give
a categorical variable. The Kaplan-Meier estimate of
the survival function of the data in each group is then
obtained. Next, the curves log(− logS(t)) have to be
plotted against log t. If the proportional hazard rates
across the different groups is a likely premise, then
this plot will yield parallel curves. Otherwise this hy-
pothesis should be rejected.

2.5.2 The Schonfeld residuals

In this section a method for determining the validity
of the PH rates based on model’s residuals is explored.
These were proposed by Schonfeld (1982).

An important property of these residuals is that there

is not a single value of the residual for each indi-
vidual, but a set of values, one for each explanatory
variables included in the Cox regression model.

The ith Schonfeld residual for the jth explanatory
variable in the model, is given by

rSi j = δi(xi j− âi j) (22)

where x ji is the value of the jth explanatory variable,
j = 1,2, . . . , p, for the ith individual in the study and,

âi j =
∑l∈R(ti) xilexp

(
β̂
′
X l

)
∑l∈R(ti) exp

(
β̂
′
X l

) (23)

where R(ti) is the set of all individuals at risk at time
ti. Note that non-zero values of these residuals only
arise for uncensored observations. In addition, if the
largest observation in a sample of survival times is
uncensored, the value of âi j for that observation, from
equation (23), will be equal to xi j and thus rSi j = 0..
To distinguish residuals that are genuinely zero from
those obtained from censored observations, the latter
are usually expressed as missing values.

It turns out that a scaled version of the Schon-
feld residuals, proposed by Grambsch and Therneau
(1994), is more effective detecting departures from
the assumed model. Let the vector of Schonfeld
residuals for the ith individual be denoted by rSi =

(rS1i,rS2i, . . . ,rSpi). The scaled, or wheighted Schonfeld
residuals, r∗S ji are then the components of the vector

r∗Si = rVar
(

β̂
′
)

rSi (24)

where r is the number of deaths among the n in-
dividuals, and Var

(
β̂ ′
)

is the variance-covariance
matrix of the parameter estimates in the fitted Cox
regression model. Note that these new residuals are
not difficult to compute.

The Schonfeld residuals are particularly useful in eval-
uating the assumption of proportional hazard rates
after fitting a Cox regression model. Grambsch and
Therenau fact that the ith Schonfeld residual for the
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jth explanatory variable in the model accomplishes

E
(
r∗S ji
)
≈ β j(ti)− β̂ j, (25)

where β j(t) is taken to be a time-varying coefficient
of X j, β j(ti) is the value of the coefficient at the death
time ti, and β̂ j is the estimated value of β j in the fitted
Cox regression model. The proof of expression (25)
can be found in
Consequently, a plot of the values of r∗Si j + β̂ j against
the death times should give information about the
form of the time-dependent coefficient of X j, β j(t)..

Nevertheless, the graphs obtained in this way are
usually quite "noisy" and their interpretation is much
helped by superimposing a smoothed curve that s fit-
ted to the scatterplot. There are a number of such
smoothers that can be obtained, including smoothing
splines, but the one that is most commonly used and
that will be considered in this work, is the LOWESS
(locally weighted scatterplot smoothing) smoother ,
proposed by Cleveland and Loader(1979). Further in-
formation regarding this technique can be found in

2.6 Alternatives to the proportional hazard rates
model

2.6.1 Time-dependent covariates

In section 2.3 the hazard model for an individual was
modeled as a function of fixed-time covariates. These
are explanatory variables recorded at the star of the
study whose values are fixed throughout the course
of the study. In this case in general the main goal was
to assess the relationship between the risk groups
defined by the covariates to the hazard of relapse or
death, controlling for possible confounding variables
which might be related to relapse or death.

It is possible, nevertheless to consider covariates
whose effect over the reponse do depend on the time
t. In fact, time-dependent covariates might also be
considered, however, this approach is not within the
framework of this project.

Even though variables with time-dependent effects
are considered, the Cox model may still be used.

The consideration of covariates with time-dependent
effects is not only a way for testing whether the
proportional hazard rates assumptions is fulfilled,
but also provides an alternative approach when it is
rejected.

When these kind of variables are used to assess the
PH assumption, the Cox Model is extended to contain
product terms (that is, interaction terms) involving the
time-independent variable being assessed and some
suitable function of time. That is, if Xi is a constant
covariate, a time-dependent covariate arising from Xi,
Xi(t) is

Xi(t) = g(t) ·Xi (26)

where t is the time on study. On the other hand, if
the PH assumption is being evaluated for Xi, a Cox
model might be extended to include the variable
Xi(t) in addition to Xi. If this new variable turns out
to be significant in the model, the PH hypothesis
should be rejected for Xi. Note that from a statis-
tical standpoint, this procedure means considering
interactions between the variable t and the rest
of the covariates. Including the interaction in the
model enables interpretation of the parameters that
takes into consideration the fact that the covariate’s
influence on the hazard level is not constant.

It is important to point out that even though a covari-
ate does not have a inherent time-varying pattern, it
does not imply that its effect over the risk function is
constant.

When no prior time-varying pattern of a covariate is
known, as far as the function type is concerned, some
authors suggest using logarithm rather than any other
function (Quantin, et al., 1996), the others however
underline that there is no theoretical reason to choose
logarithm as this approach is seen rather as a techni-
cal solution that enables to avoid numerical problems
(Allison, 1995).

2.6.2 The Aalen’s Nonparametric, Additive Haz-
ard Model

The proportional hazards model, discussed in the pre-
vious two chapters, assumes that the effects of the
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covariates are to act multiplicatively on an unknown
baseline hazard function.

Estimation of the risk coefficients was usually based
on the partial likelihood. In the proportional haz-
ards model, these risk coefficients were unknown
constants whose value did not change over time. In
this section, we present an alternative model based
on assuming that the covariates act in an additive
manner on an unknown baseline hazard rate. The
unknown risk coefficients in this model are allowed
to be functions of time so that the effect of a covariate
may vary over time.

In this case though, we have a set of covariates with
time-dependent effects , X(t) = (X1(t),X2(t), . . . ,Xp(t)).
We assume that the hazard rate at time t, for an indi-
vidual with covariate vector X(t), is a linear combina-
tion of the Xk(t)’s, that is to say,

λ (t|X(t)) = β0(t)+
p

∑
k=1

βk(t)Xk(t). (27)

where the βi(t) are the coefficient functions of the
time t to be estimated from the data.

As opposed to the proportional hazards model where
likelihood bases estimation techniques are used,
estimations of the risk coefficients are based on a
least squares technique. The derivation of these
estimators is based on the Poisson Process approach
to survival analysis.

Let us consider data defined as a 3-tuple with
the form (Tj,δ j,X j), j = 1, . . . ,n, where Tj is
the on study time, δ j the event indicator, and
X j(t) = (X j1(t),X j2(t), . . . ,X jp(t)) is a vector of dimen-
sion p of, possibly, time-dependent covariates.

For individual j, we shall consider, given X j(t), the
following expression for the risk function

λ (t|X j(t)) = β0(t)+
p

∑
k=1

βk(t)X jk(t) (28)

where βk(t), k= 1, . . . , p are unknown parametric func-
tions to be estimated. Direct estimations of the β (t)

are difficult to found in practise. However, the cumu-
lative risk functions Bk(t), defined as

Bk(t) =
∫ t

0
βk(s)ds, k = 0,1, . . . , p, (29)

turn out to be easily estimated. Thus, the estimates of
Bk(t) are used to extract conclusions of the functions
βk(t): by the fundamental theorem of calculus, crude
estimates of βk(t) are given by the slope (derivative)
of the estimate of Bk(t).

To find the estimates of Bk(t) a least-squares tech-
nique is used. We need to define a n× (p+ 1) design
matrix, X(t) as follows:

For the ith row of X(t) we set:

• X i(t) = (1,Xi1(t),Xi2(t), . . . ,Xip(t)) if inidividual i is
at risk at time t

• X i(t) = (0,0, . . . ,0) otherwise.

Let I(t) be a n×1 vector with ith element equal to 1 if
subject i dies at t and 0 otherwise. The least-squares
estimate of the vector B(t) = (B0(t),B1(t), . . . ,Bp(t))

t is

B̂(t) = ∑
Ti≤t

(
X t(Ti)X(Ti)

)−1 X t(Ti)I(Ti). (30)

The variance-covariance matrix of B(t) is

V̂ar
(

B̂(t)
)
= ∑

Ti≤t

(
X t(Ti)X(Ti)

)−1 X t(Ti)ID(Ti)

·
((

X t(Ti)X(Ti)
)−1
)t
. (31)

3 Study case: asssessing the Ciclophos-
phamide treatment’s effect over the sur-
vival pattern of AMl

3.1 Description of the study

The study is briefly described next.

Study Objective

Primary objective

14 | 1–31



• To analyze and compare the survival pattern of
AML patients treated with cyclophosphamide or
standrad therapy.

Secondary objective

• To analyze and compare the survival pattern of
AML patients with different demographic fea-
tures.

Study design

Exploratory study, observational, prospective, multi-
centric.

Blinding/masking method(s)

Not applicable

Randomization method(s)

Not applicable

Treatments

• Cyclophosphamide (CYC)

• Standard Therapy (ST)

Variables and analysis sets

A total of 235 patients were enrolled in the study. Allo
them were analyzed.

Primary Response Variable

The primary response variable is the time overall sur-
vival time OS.

Secondary Response Variables

The secondary response variables are the times:

• PFS: progression or free survival.

• TTP: time tumor progression.

• P: overall survival after progression.

Explanatory variables

The primary explanatory variable is:

• Treatment

The secondary explanatory variables are:

1. Sex

2. Age

3. Karyotype

• -7

• 7q-

• 7p-

• Complex

See [12] for further details.

4. IPSS: International Prognostic Scoring System. It
an score that measures the severity of the patient.

• Int-2: Medium severity.

• High: High severity.

5. MDS type

• Novo: primary MDS, no apparent risk fac-
tors can be found.

• Secondary: occurs because of damage to the
DNA from chemotherapy or radiation ther-
apy previously given to treat another medi-
cal condition.

6. 2008 WHO disease’s Classification

• AML/RAEB2

• RARS/RCUD/RCMD/ RAEB-1/others

for further information regarding this variable
check out [14].

Analysis sets

A total of 235 patients were enrolled in the study. All
patients were analyzed.

Missing values imputation procedures

No missing values imputation procedures were ap-
plied.
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Statistical Methods

Statistical Analysis

The statistical analysis was performed using R v3.1.2
and SAS® v 9.4, SAS Institute Inc., Cary, NC, USA.

For all statistical tests a nominal significance level
of 5% (P <0.05) was applied. No adjustments for
multiple tests were performed.

All data spreadsheets, analysis codes and outputs
were electronically stored and archived.

Data Management

All data management, reading and listing was per-
formed using both the R v3.1.2 and the SAS® v.9.4.,
SAS Institute Inc.

Data validation was performed in order to verify data
quality. Missing data, data entry errors or out of
range values were checked and potential inconsisten-
cies between variables were detected, reported and
corrected after consultation with the study investiga-
tors.

Primary Response Variable Analysis

Firstly, the potential relationship between the re-
sponse variable and the explanatory variables was
primarily examined by means of bivariate analyses.
The survivals functions for each explanatory variable
and each group were estimated using the Kaplan-
Meyer estimator with the aim of detecting these
potential relationships.

Secondly, a collinearity study was carried out suc-
cessfully, that is, no significant associations among
explanatory variables were found. Nevertheless, for
the sake of briefness this part is not showing up in
this report.

Next, by means of both a plot of the risk functions
and a Schoenfeld residuals analysis, the hypothesis of
proportional risks between the patients treated with
CYC and ST was rejected.

Once this premise was refused, as alternative to the
proportional hazards model, the Aalen’s Nonpara-
metric, Additive Hazard Model was adjusted with the
aim of obtain useful plots.

Then, in order to assess the CYC treatment’s time-
varying effects, a proportional hazards model with
a time interaction term was considered. Finally, by
means of this modeling tool, the excess of risk due
to the treatment with CYC with respect the standard
therapy was estimated for different points of time
and grouping for the variable karyotype.

Secondary Response Variable Analysis
The model containing time-interactions effects found
in the primary analysis was applied for modeling the
secondary response variables.
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3.2 Results
The results of the analysis are displayed, interpreted
and explained next.

3.2.1 Descriptive summary: Demographic and
Clinical data

Firstly, a table of demographic data was presented.
For the continious variables its mean(

Table 3 Demographic data

[ALL]
N=235

Age 67.5 (14.9)
Gender:

Male 144 (61.3%)
Female 91 (38.7%)

Karyotype:
-7 55 (23.5%)
7q- 38 (16.2%)
7p- 4 (1.71%)
Complex 137 (58.5%)

IPSS:
Int-2 119 (50.6%)
High 116 (49.4%)

Treatment:
ST 120 (51.1%)
CYC 115 (48.9%)

MDS type:
Novo 135 (57.4%)
Secondary 48 (20.4%)
Unknown 52 (22.1%)

WHO 2008 Classification:
AML/RAEB2 122 (52.1%)
RARS/RCUD/RCMD/ RAEB-1/others 82 (35.0%)
Unknown 30 (12.8%)

3.2.2 Potential risk factors related to Death Event
at 1 year

Next, a table with the risk factors related to the OS
event at one year from the start is presented.
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No event Event
HR p.overall N

N=113 N=122

Age 69.4 [58.7;75.4] 72.0 [64.0;78.6] 1.02 [1.00;1.03] 0.032 234
Gender: 0.371 235

Male 65 (57.5%) 79 (64.8%) Ref.
Female 48 (42.5%) 43 (35.2%) 0.84 [0.58;1.22]

Karyotype: <0.001 234
-7 32 (28.6%) 23 (18.9%) Ref.
7q- 30 (26.8%) 8 (6.56%) 0.44 [0.20;0.98]
7p- 2 (1.79%) 2 (1.64%) 1.48 [0.35;6.28]
Complex 48 (42.9%) 89 (73.0%) 1.87 [1.18;2.96]

IPSS: <0.001 235
Int-2 69 (61.1%) 50 (41.0%) Ref.
High 44 (38.9%) 72 (59.0%) 1.93 [1.34;2.77]

Treatment: <0.001 235
ST 46 (40.7%) 74 (60.7%) Ref.
CYC 67 (59.3%) 48 (39.3%) 0.51 [0.36;0.74]

MDS type: 0.647 235
Novo 68 (60.2%) 67 (54.9%) Ref.
Secondary 22 (19.5%) 26 (21.3%) 1.07 [0.68;1.68]
Unknown 23 (20.4%) 29 (23.8%) 1.23 [0.80;1.90]

WHO 2008 Classification: 0.091 234
AML/RAEB2 54 (48.2%) 68 (55.7%) Ref.
RARS/RCUD/RCMD/ RAEB-1/others 46 (41.1%) 36 (29.5%) 0.66 [0.44;1.00]
Unknown 12 (10.7%) 18 (14.8%) 1.09 [0.65;1.83]

3.2.3 Baseline Analysis - Treatment: Demo-
graphic and clinical data against Treatment

A table of the clinical and demographic data stratifiy-
ing by treatment is displayed.
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ST CYC
OR p.overall N

N=120 N=115

Age 73.8 [62.5;78.9] 69.8 [60.0;74.8] 1.00 [0.98;1.02] 0.051 234
Gender: 0.110 235

Male 80 (66.7%) 64 (55.7%) Ref.
Female 40 (33.3%) 51 (44.3%) 1.59 [0.94;2.71]

Karyotype: 0.804 234
-7 29 (24.2%) 26 (22.8%) Ref.
7q- 22 (18.3%) 16 (14.0%) 0.81 [0.35;1.88]
7p- 2 (1.67%) 2 (1.75%) 1.11 [0.11;11.3]
Complex 67 (55.8%) 70 (61.4%) 1.16 [0.62;2.19]

IPSS: 0.134 235
Int-2 67 (55.8%) 52 (45.2%) Ref.
High 53 (44.2%) 63 (54.8%) 1.53 [0.91;2.57]

MDS type: <0.001 235
Novo 61 (50.8%) 74 (64.3%) Ref.

Secondary 7 (5.83%) 41 (35.7%) . [.;.]
Unknown 52 (43.3%) 0 (0.00%) . [.;.]

WHO 2008 Classification: <0.001 234
AML/RAEB2 47 (39.2%) 75 (65.8%) Ref.
RARS/RCUD/RCMD/ RAEB-1/others 43 (35.8%) 39 (34.2%) . [.;.]
Unknown 30 (25.0%) 0 (0.00%) . [.;.]

3.2.4 Exploratory Analysis: Bivariate Study

The first step for carrying out a multivariate study is a
bivariate exploratory analysis. This procedure aimed
to figure out which of the considered explanatory vari-
ables had a potential effect over the response variable.
Thus, survival plots for each explanatory variable and
for each group were represented.

Regarding figure 1, some observations can be made.
On one hand, it is highly probable that the sex and
the age did not have a significant effect over the
response variable inasmuch as the survival curves for
the different levels of each variable intersect and the
confident intervals overlap.

On the other hand, it stands to reason that the
variable Karyotype could have a significant effect
over the response, being the type 4 the level with a
lowest survival average time.

Finally, there is an strong chance that the variable
IPSS had a significant effect over the reponse vari-
able (being the level High the one with lowest survival

time), inasmuch as the survival curves did not inter-
sect and for some periods the confindent intervals do
not overlap.

3.2.5 Primary Analysis: comparison CYC treat-
ment vs ST

The goal of this section is to asses the effect of the
treatment over the variable response, that is, if the
treatment have statistically significant effect over the
PFS time.

The Kaplan-Meyer estimator of the survival curves
was calculated and represented, distinguishing be-
tween patients treated or not with CYC. Moreover,
95% level confident intervals were plotted for both
curves thus, allowing to contrast differences between
CYC-treated patients and the non-treated (that is,
treated with the ST).
Next, with the purpose of quantifying the extent of
between-groups differences, hypothesis tests whether
both curves were equal were carried out. The results
are displayed in table 4.
The results in table 4, all together with some knowl-
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Fig. 1 Survival plots for the study’s explanatory variables

Table 4 Results of the tests whether there is equality
between the survival curves of each treatment.

test chisq df p.value
Log-Rank 3.4 1 0.063
Wilcoxon 11.5 1 <0.001

edge of each test works, allow to understand the
treatment’s effect in the response variable.

The log-rank test gives the same importance to all
the observations whilst the Wilcoxon test consists in a
weighted version of the former. Since the number of
observations decreases over time, the Wilcoxon test
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Fig. 2 Estimated survival curves for the treatments
STand CYC along with 95% confident intervals.

is more powerful when detecting differences in the
early times and the log-rank test is more sensitive to
deviations in large times.

Hence, since is has been obtained p= 0.178 for the log
rank test, it means that there are no globally signifi-
cant differences in the survival curves. Nonetheless,
since it has been obtained a p < 0.01 in the Wilcoxon
test, it is reasonable to think that there are significant
differences between curves for the early stages of the
disease.

Thus, it is within the bounds of possibility that the
CYC treatment’s effect has a time-varying pattern: it
seems that it has an increasing effect in the patient’s
survival time during the early disease’s stages but it
fades away as time spends.

Moreover, this fact can be corroborated by the figure
2, in which the curve for the patients treated with CYC
is below that from those treated with the STand, the
survival curves do not intersect and the confidence in-
tervals do not overlap in the early stages whereas they
do from approximately 400 days onwards.

3.2.6 Proportional hazard rates hypothesis ascer-
tainment

When modeling the risk function in survival analysis
a key assumption is proportional hazards among
the levels of the explanatory variables. In the case
that concerns us, this property consists in supposing
that the risk for those patients treated with CYC
is some times lower/higher than the risk for those
treated with the ST. This is a very important step
because of the suitable modeling method for the risk
function strongly depends on whether this hypothesis
is fulfilled. In fact, the underlying phenomena that
might cause a lack of proportionality is a time-varying
effect of the covariables. Thereby, contrasting the
proportional risk property it will actually be tested
the time-homogeneity of the variable’s effect.

In this section our goal is to check the truthfulness of
this property for the covariable treatment.

Method 1: plotting the curve log(− log(S(t))) vs log t

First, plotting the curve log(− log(S(t))) vs log(t) for each
level of each covariable, a visual analysis was performed.
If the proportional hazard rates hypothesis were likely, the
obtained lines in each case should be parallel.
Since both lines intersect the proportional hazard rates
assumption is not a likely premise.

Method 2: Tests and plots based on the Schoenfeld
Residuals

If the model assumptions ‡ two facts must occur

• The residuals must scatter around the 0 and should
not show any trend.

• The model’s coefficient estimation for the treatment
covariable should remain constant over time.

Thereby, the Schonfeld residuals and the parameters es-
timations were estimated in function of time in order to
check those premises.
From figure 4 it could be seen that the variable treatment
does not fulfill the criteria above. Hence, it can be con-
cluded that a proportional hazard rates model is not a suit-
able option when modeling this data.

‡ Constant treatment effect and, thus, proportional hazard rates for this covariable.
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3.2.7 Alternative to proportional hazard rates
model

As explained before, f the PH assumption turns out to be
false, and this fact is not taken into account, the results

arising from the analysis may lack validity. Next, two alter-
natives are presented.

3.2.7.1 Aalen’s Nonparametric, Additive Hazard
Model The proportional hazards model, discussed in the
previous section, assumes that the effects of the covariates
are to act multiplicatively on an unknown baseline hazard
function. Moreover, the risks coefficients were unknown
constants whose value did not change over time.

Since the required assumptions by the proportional haz-
ards model have been rejected, an alternative model based
on assuming that the covariates act in an additive manner
on an unknown baseline hazard rate was considered. This
model is known as Aalen’s nonparametric additive hazard
model. In this model the unknown risk coefficients are
allowed to be functions of time so that the effect of a
covariate may vary over time.

Although this alternative is a nonparametric model,
and therefore does not allow to quantify the effect of a
covariable over the response variable, the arising plots
can be a useful tools when describing the effect of the
covariables and its time variation on the response variable.
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Fig. 5 Cumulative coefficient’s estimations for each
covariable with 95% confident intervals.

Since of the plots above show cumulative estimates rather
than estimates, its interpretation arises from analyzing the
increasing/decreasing behavior of the curves instead of
the curve itself. It holds that a factor level increases the
risk in a given period of time, if for that period the curve is
increasing (and vice versa, it decreases the risk if the curve
is decreasing).

With this in mind, some qualitative deductions can be
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made. On one hand, the cumulative intercept estimate
was always increasing thus, according to this model, the
basal risk increases over time. On the other hand, the
cumulative coefficient estimation corresponding to the
patients treated with CYC, showed a decreasing pattern
until the day 400 approximately, which turned into a
increasing pattern from that day onwards. This fact
suggests again a time-varying effect of the CYC treatment
over the response variable: first, it decreases the risk
whereas it increases it from around 400 days onwards.

It must be pointed out that as the time spends the sample
size decreases, whence, the estimations corresponding to
early times are more reliable than those from late times.
It only takes to have a look at the length of the confi-
dence intervals to realize of this fact. Hence, although the
curve corresponding to the CYC treatment starts decreas-
ing again from approximately the 600 days, this measure
is not trustworthy, thus, we can’t conclude that this treat-
ment decreases the risk again after that moment.

3.2.7.2 Cox regression model with time-inter-
actions. When the proportional hazard rates model
assumptions are rejected, an alternative modeling method
must be sought. Regarding the previous sections, there
are grounds for believing that the cause of this fact is a
variation of the CYC’s effect over time.

A suitable option that takes into account a time varying ef-
fect of the covariables (and thus, a lack of proportionality
among hazard rates) turns out to be a Cox Risk Regres-
sion Model with an interaction term between these and the
time. The results can be found in table 5.
With regards of table 5 some conclusions were pointed out.

Firstly, taking into account the minimmum AIC as model
selection criteria, the estimations from simplified model
were chosen as the appropriate ones.

Secondly, the CYC treatment effect was found to be signifi-
cant (p<0.001). Furthermore, the regression coefficient
corresponding to the CYC treatment, codified with respect
the reference category ST(and thus, showing the excess
of risk for patients treated with CYC instead of ST), was
found to be β̂CYC = −3.00. The negative sign of this
figure suggests an overall hazard rate’s reduction for those
patients treated with CYC with respect those treated with
ST.

On top of that, the interaction term between CYC and the
time turned out to be statistically significant, corroborating

Table 5 Multivariate Cox Regression with time-interaction
terms. The groups of 2008 WHO Classification
RAEB-2/AML and RARS/RCUD/RCMD/RAEB-1/others
have been labelled by 1 and 2 respectively.

First model Simplified model
Age 0.03 (0.04) 0.012 (0.01)∗

Sex - Female −0.22 (0.18)
Sex - Male Ref.
IPSS-High 2.15 (0.84)∗ 0.53 (0.15)∗∗

IPSS-Int-2 Ref.
Karyotype- comp. 0.96 (0.45) 0.57 (0.18)∗∗

Karyotype-7p- −0.16 (0.35)∗ −0.39 (0.73)
Karyotype-7q- −12.68 (450.00)∗∗ −0.24 (27.85)
Karyotype –7 Ref. Ref.
MDS Type - Secondary 0.53 (1.15)
MDS Type - Novo Ref.
2008 WHO Clas. - 1 0.69 (1.34)
2008 WHO Clas. - 2 Ref.
CYC-Yes −3.00 (2.34)∗∗ −3.62 (0.91)∗∗

CYC-No Ref. Ref.
CYC *Karyotype −0.17 (0.17)
CYC* (MDS type) 0.01 (0.52)
CYC*log(t) 0.2 (0.62)∗ 0.56 (0.16)∗∗

age* log t 0.00 (0.01)
IPSS*log(t) −0.28 (0.17)
Age*log(t) 0.00 (0.00)
IPSS*CYC*log(t) −0.04 (0.06)
Karyotype*CYC −0.02 (0.12)
AIC 1227.2.20 1114.677
R2 0.47 0.52
Max. R2 1.00 1.00
Num. events 147 201
Num. obs. 172 233
Missings 2 2
PH test 0.00 0.00
∗∗p < 0.01, ∗p < 0.05

thus, a varying of the CYC treatment’s effect over time. This
significant interaction brought up the question whether in
some of the disease’s stages both treatments could become
equivalent. In this way, this interaction term was analyzed
in detail in order to describe this time-varying effect explic-
itly. The goal was to quantify the CYC treatment’s effect for
different stages of the disease.
On account of this fact, the risk’s excess due to the CYC treat-
ment with respect the ST was estimated for different stages
of the disease. This quantity can be understood as a con-
stant that multiplies the risk of an individual (with average
values for the rest of the variables) treated with CYC in-
stead of the ST. Therefore, for a given stage of the disease:
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• If this quantity is near to 0, the CYC treatment causes
a huge risk’s reduction with respect the ST. Hence, the
former is more effective than the latter.

• This risk’s reduction decreases as this value is ap-
proaching to 1, thus, both treatments start becoming
equivalent.

• If this quantity is exactly one this means that the CYC
treatment does not make any improvement on risk’s
reduction with respect the ST. Hence, both treatments
are equivalent.

• If this quantity is above 1, the CYC treatment causes a
risk’s increase with respect the ST. Hence, the former
is less effective than the latter.

Regarding the biref explanation above, the interpretation
of the figure 6 is as follows:

• At the start, the hazard rate estimate is near to 0.
Thus, the treatment with CYC causes a high reduction
in the risk with respect de ST.

• This quantity increases within the first and 6 month.
Therefore, both treatments start becoming equivalent
as time spends.

• Finally, at 1 year, even though the estimate is below
one, the differences between the estimate and the
unity are not statistically significant. Therefore, all
the evidences suggest that once a year have past, the
treatment with CYC makes no improvements when
reducing the risk (with respect de ST). Hence, both
treatments are equivalent.

3.2.8 Assesing the interaction between treatment
and Karyotype

Notwithstanding the fact that the interaction term be-
tween the Karyotype and the treatment was found to
be non-significant when modeling the risk function, this
contradicted the investigator’s knowledge and experience,
whom claimed that the patients with complex Karyotype
should respond better to the CYC treatment. Therefore,
this interaction was assessed by other means.

First, the observations corresponding to the Karyotype 7p-
were removed due to its reduced number. Thereafter, the
hazard rates (for those patients treated with CYC with
respect those treated with the ST) were estimated and
plotted grouping by the variable Karyotype. However,

the number of observations corresponding to the types -7
and 7q- were still not large enough, causing thus a huge
estimate’s standard errors.

An alternative approach consisted on joining the Kary-
otypes -7 and 7q- and comparing the hazard rate estimates
for this joined group with the estimates for the complex
karyotype . Thereby, the figure 7 was obtained. Moreover,
a table containing the HR’s estimates along with 95% confi-
dence intervals and the p−value of the test whether HR= 1
were presented. Each table corresponds to one karyotype
group (CK and non-CK): tables 6 and 7 respectively.

Table 6 HR of the OS event due to the CYC treatment
with respect the ST approach for the group non-complex
karyotype. 95% intervals, and p-values of the test
whether the HR is the unit have also been included.

HR Lower 95% CI Upper 95% CI p-value
Start 0.028 0.001 0.767 0.034

1 month 0.213 0.049 0.935 0.041
3 months 0.412 0.157 1.079 0.071
6 months 0.624 0.300 1.296 0.206

1 year 0.952 0.486 1.866 0.885

Table 7 HR due to the CYC treatment with respect the ST
approach for the group Complex karyotype. 95%
intervals, and p-values of the test whether the HR is the
unit have also been included.

HR Lower 95% CI Upper 95% CI p-value
Start 0.031 0.001 0.711 0.030

1 month 0.184 0.055 0.621 0.006
3 months 0.328 0.166 0.649 0.001
6 months 0.471 0.286 0.778 0.003

1 year 0.682 0.372 1.251 0.217

Logically, the overall pattern showed in the figure 7 is the
same that was observed in the figure 6. Nevertheless, al-
though the interaction between karyotype and treatment
was found non-significant, it seems that the excess of risk
due to the CYC treatment (with respect the ST) within a
year for those patients with complex karyotype is subtly
smaller than for those with non-complex karyotype. Thus,
it stands to reason that the treatment with CYC in the early
stages of the disease has a more effective effect in those
patients complex karyotype.

3.2.9 Secondary response variables analysis

Even though the mainly goal of this report was to ana-
lyze the variable response PFS, that is, the time until the
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Fig. 6 CYC vs ST HR’s evolution over time. The HR estimates are presented along with 95% confidence intervals and
the p-value of the test whether HR = 1.

Fig. 7 Excess of risk due to CYC treatment with respect the ST for different disease’s stages. The rest of variables have
been set at the average values.

event survival or tumor progression, some other response
variables can provide useful an alternative information. In
this section, the effect of the treatment with CYC over the
following secondary response variables:

• PFS or Progression or Free Survival time. It is the time
until the event Progression of the tumor or death of the
patient.

• TTP or time tumor progression. It is the time until the
event progression of the tumor.

• P or overall survival after progression. It is the time
between the event tumor progression and death.

was briefly assessed.

Table 8 Secondary response variables against treatment

ST CYC
p.overall N

N=120 N=115

PFS 223 [93.8;520] 303 [183;492] 0.003 235
TTP 223 [93.8;520] 303 [183;492] 0.003 235
P 15.0 [1.00;65.0] 78.0 [27.2;149] <0.001 103

As for the primary response variable, the main goal in this
case is modelling the risk function for each of the events
associated to the secondary response variables. Similarly
to the previous case, the hypothesis of proportional risks
among the levels of the factor treatment will be supposed
false.

1–31 | 25



Countinuing with this approach, a suitable procedure
was to apply again a Cox Regression model with time-
interactions terms. However, for the sake of simplicity and
taking into account the results depicted in table 5, the only
variables considered in this case were those from the sim-
plified model. Table 9 summarizes de results obtained.

Table 9 Multivariate Cox Regression with time-interaction
terms for the events associated to he secondary
explanatory varibles.

PFS TTP P
IPSS-High 0.49 (0.15)∗∗ 0.63 (0.21)∗∗ −0.02 (0.21)

IPSS- Int 2 Ref. Ref.
Kar. -Complex −0.15 (0.24) −0.30 (0.38) −0.51 (0.38)

Kar.- 7p- −0.26 (0.73) −13.00 (568.94) -
Kar. -7q- 0.63 (0.18)∗∗ 0.81 (0.26)∗∗ −0.04 (0.26)

Kar. - -7 Ref. Ref.
CYC-Yes −3.77 (0.91)∗∗ −3.69 (0.21)∗ −1.58 (0.44)∗∗

CYC - No Ref. Ref.
CYC*log(t) 0.6 (0.16)∗∗ 0.66 (0.27)∗ 0.35 (0.12)∗∗

AIC 1854.03 876.82 736.37
R2 0.40 0.32 0.26
Max. R2 1 1 1
Num. events 202 96 97
Num. obs. 234 234 103
Missings 0 1 0
∗∗p < 0.01, ∗p < 0.05

The table 9 led to some interesting conclusions. First,
it has been found that the treatment with CYC has a
significant effect over the risk function corresponding to
the three events considered (with p < 0.01 in the first and
third case and with p < 0.05 in the second case).

On the other hand, due to negative sign of all the
coeficient’s estimates for the treatment CYC, there are
confirmatory evidence that the treatment with CYC caused
a risk’s reduction of the considered events.

Furthermore, as the interaction term between the treat-
ment with CYC was found to be statistically significant in
the three cases, this suggested a time-varying effect of the
treatment with CYC for the three events considered (with
p < 0.01 in the first and third case and with p < 0.05 in
the second case). Additionally, the sign of the estimates
corresponding to this term was found to be positives in
the three cases, showing thus an increase of the events
risk as time spent. That is, in the early disease’s stages the

treatment with CYC caused a high reduction of the risk
(with respect the ST) but this effect faded away as time
spent.

To sum up, the pattern followed by the secondary response
variables was found to be analogue at that followed by the
primary response variable.

4 Discussions

4.1 The PH assumption in the Cox Model
On the one hand, the importance of the proportional haz-
ard rates hypothesis when modelling survival data has been
demonstrated. If this property is not fulfilled, the estimates
arising should be interpreted carefully. Next, in order to
determine the differences between a Cox model with and
without time interaction terms (thus, correcting by lack of
PH and not correcting) a Proportional Hazards Model was
fitted. Such results can be found in table 10.

Table 10 Multivariate Cox Regression

First model Simplified model
Age 0.01 (0.01)∗∗ 0.01 (0.01)∗∗

Sex - Female −0.03 (0.15)
IPSS-High 0.53 (0.15)∗∗ 0.53 (0.15)∗∗

IPSS-Int-2 Ref.
Karyotype- comp. −0.33 (0.24) −0.32 (0.24)
Karyotype-7p- −0.32 (0.73) −0.30 (0.73)
Karyotype-7q- −8.68 (337.00)∗∗ −0.17 (22.85)
Karyotype –7 Ref. 0.56 (0.18)∗∗

MDS Type - Secondary 0.63 (1.34)
MDS Type - Novo Ref.
2008 WHO Clas. - 1 0.57 (1.03)
2008 WHO Clas. - 2 Ref.
CYC-Yes −0.46 (0.15)∗∗ −0.47 (0.15)∗∗

CYC-No Ref.
AIC 1805.13 1803.17
R2 0.20 0.20
Max. R2 1.00 1.00
Num. events 201 201
Num. obs. 233 233
Missings 2 2
∗∗p < 0.01, ∗p < 0.05

From tables 5 and 10 it can be seen that, in general, the
results arising from both modelling approaches agree.
However, note that the Cox Model without interaction
terms does not grasp the time-varying pattern of the CYC’s
effect: the interpretation from this model is merely that
the treatment with CYC reduces significantly the risk of
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death (p < 0.001) with respect the standard approach
for any time. Nevertheless, this statement is not true:
as explained before, the CYC’s effect fades away as time
spend, becoming equivalent to the ST approach from the
year onwards. Taking into account that the experimental
treatments for AML tend to have extremely harmful side
effects over the patients, it is highly important to detect
when a treatment will have no improvement over the pa-
tient health status with respect a more harmless approach.
In this case, if the alternatives to the PH model had
not been taken into account, the final conclusion would
have been that the best procedure for any time would
be to give CYC to the patients, causing them therefore,
to suffer unnecessary pain and discomfort. In summary,
when modelling survival data the PH assumption must be
conscientiously tested and corrected if necessary.

With regards of the spreading analysis of the PH testing and
correction, it has been found a lack of awareness among
the health sciences community. Therefore, there is still
much work to do in this context. This project (or one with
similar purposes) might be a suitable work to be spread in
order to increase the level of attention on this issue.

4.2 Study case
First of all, the differences between treatments in terms
of their effect over the survival pattern of the patients
were successfully detected by means of the survival curves
estimates. Regarding this first analysis, the CYC treatment
apparently improved the survival in with respect the ST
within the early times.

Secondly, the hypothesis of proportional hazard rates
between treatments was assessed and rejected. This
fact displayed a lack of homogeneity over time of the
treatment’s effect.

Afterwards, the Aalen model was applied as an alternative
to the proportional hazard rates model. The obtained
plot corroborated the time-varying treatment’s effect. In
addition, it showed a risk’s reduction during the early
stages of the disease in those patients treated with CYC
with respect of the ST.

Next, in order to quantify the effects of all the covariates
(and the time’s effect as well) a Cox regression model with
time-interaction effects was considered. On one hand, the
covariates with a significant effect in the risk’s variation
were found to be the age, the IPSS-High, and the Complex
Kariyotype. The three were found to have an increasing

effect in the risk’s function.

On the other hand, the results showed both a significant
effect of the CYC treatment and a significant interaction
between time and treatment. Even though the overall CYC
effect was a risk’s reduction, when the risk’s estimates for
different periods of time were calculated, the following
was detected: in the early stages the treatment with CYC
produced a risk’s reduction with respect the ST. However,
as the time spends, both treatments started becoming
equivalent until the point that CYC treatment posed no
improvement with respect the ST. This situation is reached
approximately in two years.

Then, although the interaction between karyotype and
treatment was found to have no effect over the risk’s
function, taking into account the investigator’s experience
this interaction was assessed. It turned out that those
patients with complex karyotype responded better to the
treatment with CYC than those with karyotypes -7 and
7q- within a year §. That is,in the early stages of the
disease, the risk for those patients with complex karyotype
slightly smaller than the risk for those with karyotype -7
and 7q-. Once reached the year, these differences became
non-significative.

Finally, after carrying out the primary response variable
analysis (the variable PFS), the secondary response vari-
ables OS, TTP and P were studied. The obtained results for
these variables were analogues to those found in the pri-
mary analysis. That is, the treatment with CYC implied a
risk’s reduction (with respect the ST) of the events associ-
ated to the secondary variables, but this effect faded away
as time spent.
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5 Appendix: Codes

5.1 R codes
Table of demographic data

res <- compareGroups( ~ age + sexo +

cariopronost + IPSSrenew +

CYC + SMD2p + diagWHO_cat ,

bd4,include.label <- TRUE,

max.xlev<-20)

resto <- createTable(res,show.all<-TRUE,

show.n<-FALSE)

caption <- "Demographic data"

Potential risk factors related to Progression/Death
Event at 6 months

bd4$s1 <- pmin(0.5*365,bd4$t1)

bd4$c1 <- 0

bd4$c1[bd4$status1<-<-1

& bd4$s1<-<-bd4$t1 ] <- 1

bd4$s1 <- with(bd4,

Surv(s1, as.integer(c1<-<-1)))

label(bd4$s1)<-"6 months OS Event"

res <- compareGroups( s1 ~ age + sexo +

cariopronost + IPSSrenew +

CYC + SMD2p + diagWHO_cat ,

bd4,include.label <- TRUE, method<-4 )

rest <- createTable(res,show.ratio<-TRUE,

show.p.ratio<-FALSE,show.n<-TRUE)

caption <- "6 months OS Event"

Demographic and clinical data against Treatment

res <- compareGroups( CYC ~ age + sexo +

cariopronost + IPSSrenew

SMD2p + diagWHO_cat,

bd4,include.label <- TRUE, method<-4)

rest <- createTable(res,show.ratio<-TRUE,

show.p.ratio<-FALSE,show.n<-TRUE)

caption <- "Demographic and clinical data

against Treatment"

Survival curves for the explanatory variables.
¶

#the following packages ar required

library(survival)

library(rms)

#Defining the survival time

bd4$T1 <- with(bd4, Surv(t1,

as.integer(status1<-<-1)))

label(bd4$T1)<-"OS Event"

#Plot:

#The age must be classified in categories

¶ Since all the plots are constructed analogously, only one case is shown
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cuts <- c(7,40,60,95)

c1 <- cut(bd4$age,breaks<-cuts)

#Defining an object of class npsruv

surv.age <- npsurv(bd4$T1~c1)

#The plot is constructed through

#the survplot function

survplot(fit <- surv.age,

lty<-c(1,2,3),

lwd<-1,

conf <- "bands" ,

xlab <- "Time",

ylab <- "Estimated Survival \n Probability",

xlim<-c(0,1500),

#legend instead of direct label

label.curves <- FALSE,

# show only levels, no label

levels.only <- F,

# if label used, abbreviate

abbrev.label <- F,

# log(-log Survival) plot

loglog <- FALSE,

# log time

logt <- FALSE,

# time increment

time.inc <- 250,

# dot grid

dots <- F,

# number at risk

n.risk <- F,

sep.n.risk <- 0.056,

adj.n.risk <- 1,

y.n.risk <- -0.24,

cex.n.risk <- 0.7 )

legend(950,1, bty<-"n",

title<-"Age",

c("7-40","40-60","60-95"),

lty<-c(1,2,3),

lwd<-1,y.intersp<-0.8,

x.intersp<-0.2,seg.len<-0.8)

Log Rank and Wilcoxon tests

#Log-Rank test

test1<-survdiff(T1 ~ CYC, data<-bd4, rho<-0)

#Wilcoxon test

test2<-survdiff(T1 ~ CYC, data<-bd4, rho<-1)

Plot of the log(− log(S(t))) against log t curve

surv.CYC <- npsurv(T1 ~ CYC, data <- bd4,

conf.type <- "log-log")

class(p1) <- c(class(p1), "npsurv")

survplot(fit <- surv.CYC,

lty<-c(1,4),

conf <- "bands" ,

xlab <- "log( Time )",

xlim<-c(0,10),

label.curves <- F,

levels.only <- FALSE,

abbrev.label <- FALSE,

loglog <- T,

logt <- T,

time.inc <- 250,

dots <- FALSE,

n.risk <- F,

y.n.risk <- -0.24,

cex.n.risk <- 0.7

)

legend(5,-3.5, bty<-"n",c("BSC","CYC"),cex<-1,

title<-"Treatment",

lwd<-2,

lty<-c(1,4),

y.intersp<-0.7, x.intersp<-0.3,

text.width<-4

,seg.len<-0.8,xjust<-0)

Schonfled residuals

cp2 <- coxph(Surv(t1, status1) ~

age + IPSSrenew +

cariopronost + CYC + SMD2 +

diagWHO_cat, data<-bd4)

test <- cox.zph(cp2, transform <- 'rank')

plot(test[6],cex.axis<-1)

abline(h<-0, lty<-3,col<-"red",

xlim<-c(0,5000))

Aalen’s Nonparametric, Additive Hazard Model

#The functions regarding this model

#are in the timereg package

library(timereg)

aalen.CYC<-aalen(Surv(t1, status1)~CYC,

bd4,max.time<-1100)

plot(aalen.CYC)

Cox Regression Model

cp1<-coxph(Surv(t1, status1) ~ age + sexo +

IPSSrenew + cariopronost +
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CYC + diag_WHO + SMD,

data=bd4)

cp2<-coxph(Surv(t1, status1) ~ age + IPSSrenew +

cariopronost + CYC,

data=bd4)

texreg(list(cp1, cp2),

custom.coef.names = c("Age",

"Sex - Female","IPSS-4",

"Cariotype 2","Cariotype 3",

"Cariotype 4","Aza"),

float.pos="h",

cap="Multivariate Cox Regression",

caption.above = TRUE,

scriptsize = FALSE,

custom.model.names=c("First model",

"Simplified model"),

use.packages=TRUE,

single.row=TRUE,stars = c(0.05, 0.01),

include.adjrs = FALSE)

5.2 SAS codes
Cox Model with time-interaction terms

Complete model

proc phreg data=a;

class CYC sexo IPSSrenew cariopronost

DiagWHO_cat SMD21

/param=glm DESCENDING;

model t1*status1(0)= sexo age cariopronost

IPSSrenew

SMD21

DiagWHO_cat CYC

CYCcario CYCSMD21

CYCDiagWHO_cat

tage tipss tSMD21

tDiagWHO_cat tCYC

tipsstCYC;

tCYC = CYC*log(t1);

tipss= ipssrenew*log(t1);

tipsstCYC = CYC*ipssrenew*log(t1);

tage=age*log(t1);

CYCcario=cariopronost*CYC;

tSMD21 = SMD21*log(t1);

tDiagWHO_cat = DiagWHO_cat*log(t1);

CYCSMD21 = SMD21*CYC;

CYCDiagWHO_cat =DiagWHO_cat*CYC;

run;

Simplified models:

*Simplified 1;

proc phreg data=a;

class CYC sexo IPSSrenew cariopronost

DiagWHO_cat SMD21

/param=glm DESCENDING;

model t1*status1(0)= sexo age

cariopronost IPSSrenew

age cariopronost

IPSSrenew SMD21

DiagWHO_cat CYC tCYC;

tCYC = CYC*log(t1);

run;

*Simplified 2;

proc phreg data=a;

class CYC sexo IPSSrenew cariopronost

DiagWHO_cat SMD21

/param=glm DESCENDING;

model t1*status1(0)= age cariopronost

IPSSrenew CYC tCYC;

tCYC = CYC*log(t1);

run;

Estimation of risk exces in diferents stages of the
disease

proc phreg data=a;

class CYC IPSSrenew cariopronost

/param=glm DESCENDING;

model t1*status1(0)= age cariopronost

IPSSrenew CYC tCYC;

tCYC = CYC*log(t1);

estimate "hr 0d" CYC 1 -1 tCYC

0 0/exp;

estimate "hr 1m" CYC 1 -1 tCYC

3.4 -3.4/exp;

estimate "hr 3m" CYC 1 -1 tCYC

4.5 -4.5/exp;

estimate "hr 6m" CYC 1 -1 tCYC

5.193 -5.193/exp;

estimate "hr 12m" CYC 1 -1

tCYC 5.9 -5.9/exp;

run;

Assessing the interaction between treatment and
karyotype

First, the osbervations of the type 3 are removed. Next the
types 1 and 2 are joined

*Removing the type 3;

data b;

set a;
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if cariopronost=3 then delete;

run;

*Joining types 1 and 2;

data b;

set b;

if cariopronost=1 | cariopronost=2

then cariopronost=5;

run;

Finally, the estimates of the exces of risk due to the CYC
treatment for each karyotype are calculated

*Type 4;

proc phreg data=b;

where cariopronost=4;

class CYC IPSSrenew cariopronost

/ param=glm DESCENDING;

model t1*status1(0)= age cariopronost

IPSSrenew CYC tCYC;

tCYC = CYC*log(t1);

estimate "hr 0d" CYC 1 -1 tCYC 0 0 / exp;

estimate "hr 1m" CYC 1 -1 tCYC

3.4 -3.4 / exp;

estimate "hr 3m" CYC 1 -1 tCYC

4.5 -4.5 / exp;

estimate "hr 6m" CYC 1 -1 tCYC

5.193 -5.193 / exp;

estimate "hr 12m" CYC 1 -1 tCYC

5.9 -5.9 / exp;

run;

*Types 1 and 2;

proc phreg data=b;

where cariopronost=5;

class CYC IPSSrenew cariopronost

/ param=glm DESCENDING;

model t1*status1(0)= age cariopronost

IPSSrenew CYC tCYC;

tCYC = CYC*log(t1);

estimate "hr 0d" CYC 1 -1 tCYC 0 0 / exp;

estimate "hr 1m" CYC 1 -1 tCYC

3.4 -3.4 / exp;

estimate "hr 3m" CYC 1 -1 tCYC

4.5 -4.5 / exp;

estimate "hr 6m" CYC 1 -1 tCYC

5.193 -5.193 / exp;

estimate "hr 12m"

Secondary response variables analysis

*PFS;

proc phreg data=a;
class CYC IPSSrenew cariopronost

/ param=glm DESCENDING;

model t2*status2(0)= age cariopronost

IPSSrenew CYC tCYC;

tCYC = CYC*log(t2);

run;

*Tumor progression;

proc phreg data=a;

class CYC IPSSrenew cariopronost

/ param=glm DESCENDING;

model t3*status3(0)= age cariopronost

IPSSrenew CYC tCYC;

tCYC = CYC*log(t3);

run;

*Death after progression;

proc phreg data=a;

class CYC IPSSrenew cariopronost

/ param=glm DESCENDING;

model t4*status4(0)= age cariopronost

IPSSrenew CYC tCYC;

tCYC = CYC*log(t4);

run;
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