This is a research project aimed at the design of a protein for its application as a cryoprotectant in bacterial stocks, as an alternative to glycerol, whose long term cytotoxicity has been demonstrated.

BACKGROUND AND SIGNIFICANCE

ANTIFREEZE PROTEINS

PROJECT PURPOSE

- Ice recrystallization is the main cause of cell damage during cryopreservation.
- Ice recrystallization inhibition activity prevents this process, while thermal hysteresis tends to generate an ice crystal with sharp ends.
- Cell preservation studies have been performed with soluble AFSs, which can't prevent intracellular ice formation.

METHODOLOGY

PRIMARY SEQUENCE DESIGN

After analysing 11 AFP, the main candidates were:

- Soluble (phage display)
- Small size (phage display)
- Defined ice binding site
- Low stability at 25 and 0ºC

MEMBRANE BINDING SITE DESIGN

The membrane targeting sequence, MTS (from the protein MinD) has shown to be a transpaltable lipid-binding motif.

FINAL DESIGN ANALYSIS

- **In silico testing**
 - Secondary structure prediction (Quick2D)
 - Topology prediction (Membrane Protein Explorer)
 - Aggregation (Aggscan)
 - Stability prediction (FoldX)

- **In vitro testing**
 - Western Blot
 - Liposome

WORKING PLAN

BUDGET AND STAFF

BIBLIOGRAPHY