Projecte final de grau

Planta de producció d’Anhídrid Ftàlic

Tutora: Mª Eugenia Suárez Ojeda
Carmen García Navas
Emma Johana Mesa Quiñones
Victor Ruiz Guijarro
Karen Velert Castro

Bellatera, Febrer de 2018
Capítol 4

Canonades, Bombes, Vàlvules i Accessoris
ÍNDICE

4.1. CANONADES .. 3
 4.1.1. Selecció de les canonades ... 3
 4.1.2. Nomenclatura de les canonades .. 5
 4.1.3. L’aïllament tèrmic ... 7
 4.1.4. Paràmetres del llistat de les canonades ... 8
 4.1.5. Llistat de les canonades ... 8

4.2. BOMBES ... 16
 4.2.1. Selecció de les bombes .. 16
 4.2.2. Nomenclatura de les bombes .. 19
 4.2.3. Paràmetres del llistat de les bombes ... 19
 4.2.4. Llistat de les bombes .. 20
 4.2.5. Fulls d’especificacions de les bombes ... 24
 4.2.5.1. Fulls especificacions A-100 .. 24
 4.2.5.2. Fulls especificacions A-200 .. 28
 4.2.5.3. Fulls especificacions A-300 .. 30
 4.2.5.4. Fulls especificacions A-400 .. 32
 4.2.5.5. Fulls especificacions A-600 .. 40

4.3. VÀLVULES .. 44
 4.3.1. Classificació de les vàlvules ... 44
 4.3.2. Selecció de les vàlvules ... 45
 4.3.3. Nomenclatura de les vàlvules .. 48
 4.3.4. Paràmetres del llistat de les vàlvules .. 49
 4.3.5. Llistat de les vàlvules ... 49
 4.3.6. Fulls d’especificacions de les vàlvules ... 54
 4.3.6.1. Full especificacions vàlvula de bola ... 54
 4.3.6.2. Full especificacions vàlvula de papallona ... 56
 4.3.6.3. Full especificacions vàlvula de retenció ... 58
 4.3.6.4. Full especificacions vàlvula de venteig ... 60

4.4. COMPRESSORS ... 62
 4.4.1. Selecció dels compressors ... 62
 4.4.2. Nomenclatura dels compressors .. 64
 4.4.3. Paràmetres del llistat dels compressors ... 65
 4.4.4. Llistat dels compressors ... 65
4.4.5. Fulls d’especificacions dels compressors ... 67

4.5. ACCESSORIS .. 68
 4.5.1. Tipus d'accessoris ... 68

4.6. BIBLIOGRAFIA .. 71
4.1. CANONADES

Les canonades són elements bàsics per a la conducció dels fluids en una planta de procés; es fabriquen segons la naturalesa del fluid que han de transportar, el cabal, la temperatura i la pressió.

Els sistemes de canonades estan constituïts per tres elements diferents, que són:

- Una canonada, a través de la qual circula el fluid.
- Una vàlvula de control que s'encarrega de regular el cabal.
- Accessoris (brides, colzes, etc.).

Aquest apartat fa referència a tots els accessoris disposats a cada línia de procés amb les seves especificacions com el diàmetre nominal de les canonades, el tipus de fluid del qual es disposa i el seu estat, el cabal que hi circula, les condicions de pressió i temperatura, etc.

4.1.1. Selecció de les canonades

A l'hora d'escollir el tipus de canonada per a un corrent concret s'han de tenir en compte les diferents variables que poden afectar a l'estructura de la canonada, com són la corrosió, la temperatura del fluid que hi passarà a través, la pressió a la que es sotmet i el cost econòmic.

L'elecció de la canonada ha de fer-se seguint un ordre en l'avaluació de les diferents variables a tenir en compte. Primerament, es consideren les propietats corrosives del fluid que hi circularà, després s'avaluarà la pressió i la temperatura que ha de suportar la canonada i, finalment, el cost d'aquesta.

Els materials que s'acostumen a emprar en la construcció de canonades en les plantes de procés són:

- **Canonada de ferro fos**: adequada per a conduccions subterrànies de gasos o aigua, instal·lacions sanitàries i sistemes de vapor a baixa pressió.
Capítol 4. Canonades, bombes, vàlvules i accessoris

- **Canonada d’acer**: utilitzada principalment per a fluids que es troben a altes temperatures i pressions. El seu arietge amb crom o níquel forma l’acer inoxidable, el que confereix a la canonada una elevada resistència a la corrosió. S’utilitza en conduccions de fluids alimentaris, olis, etc.

- **Canonada galvànica**: està constituïda pel tub de ferro comú amb un bany de zinc per evitar l’oxidació. S’utilitza en la conducció d’aigua potable.

- **Canonada de plàstic**: s’empra en la indústria química en lloc dels tubs metàl·lics, ja que no es corroeix degut a la seva resistència a agents químics i atmosfèrics.

- **Altres**: existeixen canonades d’altres materials com el llautó, emprades generalment per a la conducció de líquids calents, el coure, per la conducció de combustibles, i el plom, per la conducció d’àcids en la indústria química.

A la planta d'ANPHA S.A. els materials emprats en la construcció de canonades són l’acer inoxidable i l’acer al carboni.

L’acer al carboni s’usa en serveis, com són la sal fosa i l’oli, principalment perquè es tracta de productes amb un índex de corrosió baix i, en aquest cas, la corrosió no suposa una variable que pugui condicionar greument l’estat i la vida de la canonada. Degut a les seves prestacions, l’acer al carboni resulta més barat que l’acer inoxidable i, per tant, s’ha procurat utilitzar en tots els trams possibles.

Per altra banda, el fluid de procés i l’orto-xilè (matèria primera) circularan per canonades d’acer inoxidable, ja que productes com l’anhidrid maleic sí que presenten un cert índex de corrosió i, a part, la gran majoria són fluids constituïts per mescles de productes i són més delicats.
4.1.2. Nomenclatura de les canonades

Per a la simplificació i millor comprensió dels diagrames d’enginyeria, cada línia ha de tenir la seva denominació abreviada que consta d’un grup de quatre lletres,

\[
\text{A – B – C – D}
\]

El significat d’aquestes lletres és el següent:

- **A**: Situada en primera posició, aquesta lletra indica el diàmetre nominal de la canonada, expressat en mm.
- **B**: La segona lletra descriu el tipus de material pel qual està constituïda la canonada. Les abreviacions per a cada tipus de material figuren a la taula 4.1.1.

Taula 4.1.1. Nomenclatura dels materials de les canonades

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CODI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer inoxidable 316L</td>
<td>AISI316L</td>
</tr>
<tr>
<td>Acer al carboni 1045</td>
<td>AISI1045</td>
</tr>
</tbody>
</table>

Pel que fa l’acer al carboni, s’ha escollit un acer de mig carboni (fet amb el 0.45% de carboni). És més fort que els acers de baix carboni, el seu límit elàstic resulta més elevat que, per exemple, l’acer al carboni 1018 i presenta una major resistència a les elevades temperatures.

Pel que fa a l’acer inoxidable 316L, és el més resistent a la corrosió.

- **C**: Exhibeix el tipus de fluid que circula per la canonada. Per a una major precisió, per a les canonades on hi circula més d’un fluid es defineixen una sèrie de codis que es troben a la taula 4.1.2.
Capítol 4. Canonades, bombes, vàlvules i accessoris

Taula 4.1.2. Codis usats per als diferents fluids

<table>
<thead>
<tr>
<th>FLUID</th>
<th>CODI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anhídrid ftàlic</td>
<td>A</td>
</tr>
<tr>
<td>Anhídrid maleic</td>
<td>B</td>
</tr>
<tr>
<td>o-Tolualdehid</td>
<td>C</td>
</tr>
<tr>
<td>Ftalida</td>
<td>D</td>
</tr>
<tr>
<td>o-Xilè</td>
<td>E</td>
</tr>
<tr>
<td>Diòxid de carboni</td>
<td>F</td>
</tr>
<tr>
<td>Aigua</td>
<td>G</td>
</tr>
<tr>
<td>Nitrogen gas</td>
<td>H</td>
</tr>
<tr>
<td>Oxigen gas</td>
<td>I</td>
</tr>
<tr>
<td>Producte pesat</td>
<td>J</td>
</tr>
<tr>
<td>Oli</td>
<td>K</td>
</tr>
<tr>
<td>Sal fosa</td>
<td>L</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MESCLA</th>
<th>CODI</th>
</tr>
</thead>
<tbody>
<tr>
<td>H, I</td>
<td>M1</td>
</tr>
<tr>
<td>A, B, D, F, G, H, I, J</td>
<td>M2</td>
</tr>
<tr>
<td>A, B, F, G, H, I</td>
<td>M3</td>
</tr>
<tr>
<td>A, B, J</td>
<td>M4</td>
</tr>
<tr>
<td>A, B, C, F, G, H</td>
<td>M5</td>
</tr>
<tr>
<td>A, B, F, G, H, I</td>
<td>M6</td>
</tr>
<tr>
<td>A, B, C, G, H, J</td>
<td>M7</td>
</tr>
<tr>
<td>A, B, J</td>
<td>M8 i M11 (segons procedència)</td>
</tr>
<tr>
<td>B, C, G, H</td>
<td>M9</td>
</tr>
<tr>
<td>A, J</td>
<td>M10</td>
</tr>
<tr>
<td>A, B, C</td>
<td>M12</td>
</tr>
<tr>
<td>B, C, G, H</td>
<td>M13</td>
</tr>
</tbody>
</table>

- **D**: Aquest darrer dígit està composat per quatre,

\[D = D_1 \ D_2 \ D_3 \ D_4 \]

Els primers dos dígits, \(D_1 \) i \(D_2 \), tracten de situar la canonada a la planta. Per exemple, si es tracta de l’A-100, llavors \(D_1 = 0 \) i \(D_2 = 1 \). Si, per exemple, hi hagués l’àrea A-2300, \(D_1 = 2 \) i \(D_2 = 3 \).

Els darrers dos dígits, indiquen el corrent al que pertany la canonada. Per exemple, si es tracta del corren 1, llavors \(D_3 = 0 \) i \(D_4 = 1 \).

Per concloure la nomenclatura de les canonades, a continuació es mostra un exemple d’una línia concreta:

25-AISI316L-E-0103

Es tracta d’una canonada de 25 mm de diàmetre nominal, el material de construcció és acer inoxidable 316L, el fluid que hi circula per l’interior és o-Xilè , es troba en la zona 100 i pertany al corrent 03.
4.1.3. L’aïllament tèrmic

Tal i com especifica el RITE, totes les canonades, la temperatura de disseny de les quals superi els 40°C, es trobaran tèrmicament aïllades. En el procés d’obtenció de l’anhidrid ftàlic, la temperatura dels diferents fluids es pot classificar en dos grans grups:

- **Ambiental** (≈ 20°C), sobretot en les conduccions de productes emmagatzemats com són les matèries primeres i alguns serveis.

- **Superior als 80º**, en la gran majoria de corrents de procés. La temperatura màxima l’assoleix la sal fosa en el seu respectiu bescanvi de calor amb el fluid de procés, en el reactor, i és de 400°C.

Així, s’ha considerat necessari aïllar totes aquelles canonades que formin part del darrer grup. També, s’ha cregut convenient fer referència a totes aquelles canonades procedents de serveis que treballin en fred, doncs s’aïllaran amb un material com és l’ARMAFLEX.

Com a material d’aïllament de les canonades amb temperatures superiors als 40°C, s’escull la llana de roca mineral, degut a que presenta unes bones propietats aïllants a temperatures elevades. També, protegeix passivament contra el foc, doncs no és un material combustible i conserva les seves propietats mecàniques fins a temperatures de 1000°C. La llana de roca és químicament inert i, per tant, no pot causar o afavorir l’aparició de corrosió dels materials. És difícilment deformable amb el pas del temps i, a més, no afavoreix el desenvolupament bacterià.

Segons el diàmetre nominal i la temperatura d’operació, s’escollirà un gruix d’aïllament determinat per cada canonada, tal i com s’exposa a la taula 4.1.3. Val a dir que hi ha hagut certs gruixos d’aïllament que han estat aproximats, doncs el valor del diàmetre intern no es podia localitzar en la mateixa taula.
Capítol 4. Canonades, bombes, vàlvules i accessoris

Taula 4.1.3. Taula dels espessors d’aïllament per a la llana de roca

<table>
<thead>
<tr>
<th>Tubers</th>
<th>Espessor de aïllament (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Di (?)</td>
<td>D (mm)</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>1 1/2</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>2 1/2</td>
<td>72</td>
</tr>
<tr>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>168</td>
</tr>
<tr>
<td>8</td>
<td>228</td>
</tr>
<tr>
<td>10</td>
<td>273</td>
</tr>
<tr>
<td>12</td>
<td>324</td>
</tr>
<tr>
<td>14</td>
<td>376</td>
</tr>
<tr>
<td>16</td>
<td>427</td>
</tr>
<tr>
<td>18</td>
<td>478</td>
</tr>
<tr>
<td>20</td>
<td>530</td>
</tr>
<tr>
<td>22</td>
<td>592</td>
</tr>
<tr>
<td>24</td>
<td>664</td>
</tr>
</tbody>
</table>

4.1.4. Paràmetres del llistat de les canonades

Al llistat de les canonades és on es detallen les característiques de les mateixes. Aquestes característiques són:

- Diàmetre nominal en mil·límetres (DN).
- Tipus de material de la canonada.
- Tipus de fluid que transporta.
- Estat del fluid (L = líquid, G = gas).
- Tram de la canonada: indica el lloc d’origen de la línia i la destinació, mitjançant la nomenclatura d’equips, àrees i/o línies.
- Cabal del corrent en m³/h.
- Aïllament.
- Pressió i temperatura.
- Nomenclatura.

4.1.5. Llistat de les canonades

A continuació, es mostren les llistes de les diferents canonades per a cada àrea de la planta d’ANPHA S.A. amb les seves corresponents especificacions.
Taula 4.1.4. Llistat de canonades de l'A-100

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI316L</td>
<td>25.00</td>
<td>-</td>
<td>25-AISI316L-E-01XX</td>
</tr>
<tr>
<td>E L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI316L</td>
<td>25.00</td>
<td>-</td>
<td>25-AISI316L-E-01XX</td>
</tr>
<tr>
<td>E L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI316L</td>
<td>25.00</td>
<td>-</td>
<td>25-AISI316L-E-01XX</td>
</tr>
<tr>
<td>E L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI316L</td>
<td>25.00</td>
<td>-</td>
<td>25-AISI316L-E-01XX</td>
</tr>
<tr>
<td>E L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI316L</td>
<td>25.00</td>
<td>-</td>
<td>25-AISI316L-E-01XX</td>
</tr>
<tr>
<td>E L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI316L</td>
<td>25.00</td>
<td>-</td>
<td>25-AISI316L-E-01XX</td>
</tr>
<tr>
<td>M1 G</td>
<td>210.00</td>
<td>231.00</td>
<td>110.00</td>
<td>125.00</td>
<td>AISI1045</td>
<td>750.00</td>
<td>150.00</td>
<td>750-AISI1045-M1-0101</td>
</tr>
<tr>
<td>M1 G</td>
<td>210.00</td>
<td>231.00</td>
<td>110.00</td>
<td>125.00</td>
<td>AISI1045</td>
<td>750.00</td>
<td>150.00</td>
<td>750-AISI1045-M1-0101</td>
</tr>
<tr>
<td>M1 G</td>
<td>210.00</td>
<td>231.00</td>
<td>110.00</td>
<td>125.00</td>
<td>AISI1045</td>
<td>750.00</td>
<td>150.00</td>
<td>750-AISI1045-M1-0101</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>E</td>
<td>G</td>
<td>200.00</td>
<td>220.00</td>
<td>205.00</td>
<td>220.00</td>
<td>891.20</td>
<td>8.31</td>
<td>AISI316L</td>
</tr>
<tr>
<td>E</td>
<td>G</td>
<td>200.00</td>
<td>220.00</td>
<td>205.00</td>
<td>220.00</td>
<td>891.20</td>
<td>13.89</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M1</td>
<td>G</td>
<td>200.00</td>
<td>220.00</td>
<td>205.00</td>
<td>220.00</td>
<td>6.56E+04</td>
<td>15.41</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M1</td>
<td>G</td>
<td>200.00</td>
<td>220.00</td>
<td>205.00</td>
<td>220.00</td>
<td>6.56E+04</td>
<td>0.84</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M2</td>
<td>G</td>
<td>130.00</td>
<td>143.00</td>
<td>400.00</td>
<td>415.00</td>
<td>1.45E+05</td>
<td>15.00</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M2</td>
<td>G</td>
<td>130.00</td>
<td>143.00</td>
<td>400.00</td>
<td>415.00</td>
<td>1.45E+05</td>
<td>5.29</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M2</td>
<td>G</td>
<td>130.00</td>
<td>143.00</td>
<td>400.00</td>
<td>415.00</td>
<td>1.45E+05</td>
<td>2.66</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M2</td>
<td>G</td>
<td>105.00</td>
<td>115.50</td>
<td>316.80</td>
<td>331.80</td>
<td>1.58E+05</td>
<td>33.11</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M2</td>
<td>G</td>
<td>105.00</td>
<td>115.50</td>
<td>316.80</td>
<td>331.80</td>
<td>1.58E+05</td>
<td>4.44</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M2</td>
<td>G</td>
<td>105.00</td>
<td>115.50</td>
<td>316.80</td>
<td>331.80</td>
<td>1.58E+05</td>
<td>9.00</td>
<td>AISI316L</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>101.30</td>
<td>111.43</td>
<td>400.00</td>
<td>415.00</td>
<td>92.85</td>
<td>3.62</td>
<td>AISI1045</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>1.57</td>
<td>AISI1045</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>1.57</td>
<td>AISI1045</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>55.59</td>
<td>61.15</td>
<td>246.90</td>
<td>261.90</td>
<td>1.30E+05</td>
<td>4.11</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>55.59</td>
<td>61.15</td>
<td>246.90</td>
<td>261.90</td>
<td>1.30E+05</td>
<td>4.11</td>
<td>AISI316L</td>
</tr>
</tbody>
</table>
Taula 4.1.6. Llistat de canonades de l’A-300 (1)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipus</td>
<td>Estat</td>
<td>Treball</td>
<td>Disseny</td>
<td>Treball</td>
<td>Disseny</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M3</td>
<td>G</td>
<td>70.00</td>
<td>77.00</td>
<td>160.00</td>
<td>175.00</td>
<td>1.53E+05</td>
<td>10.84</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M4</td>
<td>L</td>
<td>70.00</td>
<td>77.00</td>
<td>160.00</td>
<td>175.00</td>
<td>1.96</td>
<td>20.07</td>
<td>AISI316L</td>
<td>20.00</td>
</tr>
<tr>
<td>M4</td>
<td>L</td>
<td>70.00</td>
<td>77.00</td>
<td>160.00</td>
<td>175.00</td>
<td>1.96</td>
<td>4.44</td>
<td>AISI316L</td>
<td>20.00</td>
</tr>
<tr>
<td>M4</td>
<td>L</td>
<td>70.00</td>
<td>77.00</td>
<td>160.00</td>
<td>175.00</td>
<td>1.96</td>
<td>3.10</td>
<td>AISI316L</td>
<td>20.00</td>
</tr>
<tr>
<td>M5</td>
<td>L</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.53</td>
<td>7.19</td>
<td>AISI316L</td>
<td>15.00</td>
</tr>
<tr>
<td>M5</td>
<td>L</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.53</td>
<td>7.84</td>
<td>AISI316L</td>
<td>15.00</td>
</tr>
<tr>
<td>M5</td>
<td>L</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.53</td>
<td>7.84</td>
<td>AISI316L</td>
<td>15.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.45E+05</td>
<td>3.23</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.45E+05</td>
<td>2.65</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.45E+05</td>
<td>9.81</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>3.64E+04</td>
<td>9.81</td>
<td>AISI316L</td>
<td>600.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>3.64E+04</td>
<td>9.81</td>
<td>AISI316L</td>
<td>600.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>3.64E+04</td>
<td>9.81</td>
<td>AISI316L</td>
<td>600.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>3.64E+04</td>
<td>9.81</td>
<td>AISI316L</td>
<td>600.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.08E+05</td>
<td>4.00</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.08E+05</td>
<td>4.00</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.08E+05</td>
<td>4.00</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.08E+05</td>
<td>17.47</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.08E+05</td>
<td>17.47</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.08E+05</td>
<td>17.47</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>70.00</td>
<td>85.00</td>
<td>1.08E+05</td>
<td>17.47</td>
<td>AISI316L</td>
<td>1200.00</td>
</tr>
</tbody>
</table>
Taula 4.1.7. Llistat de canonades de l'A-300 (2)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>237.00</td>
<td>252.00</td>
<td>1.08E+05</td>
<td>5.28</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>237.00</td>
<td>252.00</td>
<td>1.08E+05</td>
<td>5.28</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>237.00</td>
<td>252.00</td>
<td>1.08E+05</td>
<td>4.45</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>237.00</td>
<td>252.00</td>
<td>1.08E+05</td>
<td>4.45</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>237.00</td>
<td>252.00</td>
<td>1.08E+05</td>
<td>4.45</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>237.00</td>
<td>252.00</td>
<td>1.08E+05</td>
<td>4.45</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>237.00</td>
<td>252.00</td>
<td>1.08E+05</td>
<td>4.45</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M6</td>
<td>G</td>
<td>65.59</td>
<td>72.15</td>
<td>237.00</td>
<td>252.00</td>
<td>1.08E+05</td>
<td>4.45</td>
<td>AISI316L</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>80.00</td>
<td>88.00</td>
<td>101.00</td>
<td>116.00</td>
<td>158.60</td>
<td>1.53</td>
<td>AISI1045</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>80.00</td>
<td>88.00</td>
<td>101.00</td>
<td>116.00</td>
<td>158.60</td>
<td>20.07</td>
<td>AISI1045</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>80.00</td>
<td>88.00</td>
<td>101.00</td>
<td>116.00</td>
<td>158.60</td>
<td>11.13</td>
<td>AISI1045</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>150.00</td>
<td>165.00</td>
<td>63.16</td>
<td>78.16</td>
<td>154.00</td>
<td>12.42</td>
<td>AISI1045</td>
</tr>
<tr>
<td>K</td>
<td>L</td>
<td>150.00</td>
<td>165.00</td>
<td>63.16</td>
<td>78.16</td>
<td>154.00</td>
<td>7.82</td>
<td>AISI1045</td>
</tr>
<tr>
<td>M7</td>
<td>L</td>
<td>65.59</td>
<td>72.15</td>
<td>118.20</td>
<td>133.20</td>
<td>3.29</td>
<td>7.38</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M7</td>
<td>L</td>
<td>100.00</td>
<td>110.00</td>
<td>118.30</td>
<td>133.30</td>
<td>3.29</td>
<td>7.38</td>
<td>AISI316L</td>
</tr>
<tr>
<td>M7</td>
<td>L</td>
<td>58.00</td>
<td>63.80</td>
<td>128.30</td>
<td>143.30</td>
<td>6.49</td>
<td>7.38</td>
<td>AISI316L</td>
</tr>
</tbody>
</table>
Taula 4.1.8. Llistat de canonades de l'A-400

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M8</td>
<td>40.00</td>
<td>44.00</td>
<td>257.00</td>
<td>272.00</td>
<td>4.03</td>
<td>2.13</td>
<td>AISI316L</td>
<td>25.00 100.00 LR 25-AISI316L-M8-0420</td>
</tr>
<tr>
<td>M8</td>
<td>40.00</td>
<td>44.00</td>
<td>257.00</td>
<td>272.00</td>
<td>4.03</td>
<td>2.13</td>
<td>AISI316L</td>
<td>25.00 100.00 LR 25-AISI316L-M8-0420</td>
</tr>
<tr>
<td>M9</td>
<td>30.00</td>
<td>33.00</td>
<td>118.70</td>
<td>133.70</td>
<td>91.50</td>
<td>4.46</td>
<td>AISI316L</td>
<td>25.00 30.00 LR 25-AISI316L-M9-0417</td>
</tr>
<tr>
<td>M10</td>
<td>13.00</td>
<td>14.30</td>
<td>300.10</td>
<td>315.10</td>
<td>8.03E-02</td>
<td>4.26</td>
<td>AISI316L</td>
<td>8.00 100.00 LR 8-AISI316L-M10-0421</td>
</tr>
<tr>
<td>M11</td>
<td>13.00</td>
<td>14.30</td>
<td>219.80</td>
<td>234.80</td>
<td>3.80</td>
<td>8.08</td>
<td>AISI316L</td>
<td>20.00 80.00 LR 20-AISI316L-M11-0422</td>
</tr>
<tr>
<td>M11</td>
<td>13.00</td>
<td>14.30</td>
<td>219.80</td>
<td>234.80</td>
<td>3.80</td>
<td>1.75</td>
<td>AISI316L</td>
<td>20.00 80.00 LR 20-AISI316L-M11-0422</td>
</tr>
<tr>
<td>M12</td>
<td>20.00</td>
<td>22.00</td>
<td>155.70</td>
<td>170.70</td>
<td>8.80E-03</td>
<td>0.80</td>
<td>AISI316L</td>
<td>6.00 40.00 LR 6-AISI316L-M12-0419</td>
</tr>
<tr>
<td>M12</td>
<td>20.00</td>
<td>22.00</td>
<td>155.70</td>
<td>170.70</td>
<td>8.80E-03</td>
<td>0.80</td>
<td>AISI316L</td>
<td>6.00 40.00 LR 6-AISI316L-M12-0419</td>
</tr>
<tr>
<td>M12</td>
<td>20.00</td>
<td>22.00</td>
<td>155.70</td>
<td>170.70</td>
<td>8.80E-03</td>
<td>0.80</td>
<td>AISI316L</td>
<td>6.00 40.00 LR 6-AISI316L-M12-0419</td>
</tr>
<tr>
<td>M12</td>
<td>20.00</td>
<td>22.00</td>
<td>155.70</td>
<td>170.70</td>
<td>8.80E-03</td>
<td>0.80</td>
<td>AISI316L</td>
<td>6.00 40.00 LR 6-AISI316L-M12-0419</td>
</tr>
</tbody>
</table>
Taula 4.1.9. Llistat de canonades de l’A-600 (1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>AISI1045</td>
<td>125.00</td>
<td>160.00 LR</td>
</tr>
<tr>
<td>L L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>AISI1045</td>
<td>125.00</td>
<td>160.00 LR</td>
</tr>
<tr>
<td>L L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>AISI1045</td>
<td>125.00</td>
<td>160.00 LR</td>
</tr>
<tr>
<td>L L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>AISI1045</td>
<td>125.00</td>
<td>160.00 LR</td>
</tr>
<tr>
<td>L L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>AISI1045</td>
<td>125.00</td>
<td>160.00 LR</td>
</tr>
<tr>
<td>L L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>AISI1045</td>
<td>125.00</td>
<td>160.00 LR</td>
</tr>
<tr>
<td>L L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>AISI1045</td>
<td>125.00</td>
<td>160.00 LR</td>
</tr>
<tr>
<td>L L</td>
<td>96.32</td>
<td>105.95</td>
<td>380.00</td>
<td>395.00</td>
<td>91.69</td>
<td>AISI1045</td>
<td>125.00</td>
<td>160.00 LR</td>
</tr>
<tr>
<td>K L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>148.90</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
</tr>
<tr>
<td>K L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>148.90</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
</tr>
<tr>
<td>K L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>148.90</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
</tr>
<tr>
<td>K L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>148.90</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
</tr>
<tr>
<td>K L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>148.90</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
</tr>
<tr>
<td>K L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>148.90</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
</tr>
<tr>
<td>K L</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>148.90</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
</tr>
</tbody>
</table>
Taula 4.1.10. Llistat de canonades de l’A-600 (2)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
<td></td>
<td>150-AISI1045-K-06XX</td>
</tr>
<tr>
<td>K</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
<td></td>
<td>150-AISI1045-K-06XX</td>
</tr>
<tr>
<td>K</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
<td></td>
<td>150-AISI1045-K-06XX</td>
</tr>
<tr>
<td>K</td>
<td>101.30</td>
<td>111.43</td>
<td>20.00</td>
<td>35.00</td>
<td>AISI1045</td>
<td>150.00</td>
<td>-</td>
<td></td>
<td>150-AISI1045-K-06XX</td>
</tr>
<tr>
<td>K</td>
<td>150.00</td>
<td>165.00</td>
<td>63.16</td>
<td>78.16</td>
<td>AISI1045</td>
<td>150.00</td>
<td>40.00 LR</td>
<td></td>
<td>150-AISI1045-K-06XX</td>
</tr>
<tr>
<td>K</td>
<td>150.00</td>
<td>165.00</td>
<td>63.16</td>
<td>78.16</td>
<td>AISI1045</td>
<td>150.00</td>
<td>40.00 LR</td>
<td></td>
<td>150-AISI1045-K-06XX</td>
</tr>
</tbody>
</table>
4.2. BOMBES

Les bombes són elements imprescindibles en qualsevol planta de procés ja que s’encarreguen d’aportar l’energia necessària per a impulsar els fluids de procés i de serveis al llarg de la planta i, alhora, permeten que els fluids superin les pèrdues de càrrega produïdes a les instal·lacions.

Pràcticament totes les bombes de la planta es troben doblades, exceptuant les de descàrrega/càrrega entre el producte i la cisterna, ja que són essencials en el procés de producció i, en cas de que es produeixi una averia o s’hagi de parar una bomba per al seu manteniment i/o reparació, la planta pot seguir operant sense haver de parar el procés de producció.

En tots els casos, abans de cada bomba se situa un fíltre per a evitar l’entrada de possibles partícules de sòlids, d’aquesta manera s’eviten possibles obturacions. Així mateix, després de cada bomba s’instal·la una vàlvula de retenció, per tal d’evitar que els fluids impulsats retornin cap a la bomba.

4.2.1. Selecció de les bombes

Existeixen diferents tipus de bombes, segons les necessitats del procés. Aquestes es descriuen a continuació:

- **Bomba de desplaçament positiu o volumètrica.** Aquest tipus de bomba proporciona un cabal constant de líquid en una única direcció. L’augment de pressió es realitza per l’empenta de les parets de les càmeres, que varien el seu volum. El cicle de l’òrgan propulsor genera un volum donat o cilindrar, per la qual cosa també s’anomena bomba volumètrica.

Figura 4.2.1. Bomba de desplaçament positiu
La bomba de desplaçament positiu s’usa per impulsar fluids de qualsevol viscositat, proporcionant pressions de descàrrega elevades.

A continuació, es descriuen alguns tipus de bomba de desplaçament positiu:

1) **Bombes alternatives.** Les bombes alternatives poden ser d’èmbol (o pistó) i de diafragma. Les primeres són molt útils per a la impulsió de líquids molt viscosos però no es poden utilitzar per a bombejar líquids abrasius, degut als danys que ocasionen sobre la superfície polida de l’interior de la bomba.

Les segones difereixen de les primeres en la part mòbil, doncs està constituida per una membrana flexible de metall o plàstic, i són molt emprades per a impulsar líquids tòxics i perillosos.

2) **Bombes rotatòries.** Les bombes rotatòries desplacen el líquid per rotació d’una o més peces mòbils a l’interior de la carcassa. Aquestes estan indicades per a líquids viscosos i, a diferència de les bombes alternatives, no necessiten gàrguila de retenció. Les bombes rotatòries poden ser de rodes dentades, de lòbuls, de paletes, de cargol i peristàltiques.
- **Bomba cinètica.** La bomba cinètica és aquella en que s'aplica energia al fluid que es bombeja amb un impulsor que gira un eix. L'energia cinètica aplicada al fluid es transforma en energia de pressió quan el líquid surt de l'impulsor i avança al llarg de la carcassa. Aquest tipus de bomba és la més emprada, i dins d'aquesta hi destaca la bomba centrífuga.

![Bomba centrífuga](image1)

Figura 4.2.6. Bomba centrífuga

- **Bomba de turbina.** Així com la bomba cinètica, es tracta d'una bomba dinàmica. Aquestes bombes combinen les altes pressions de descàrrega de les bombes de desplaçament positiu amb el funcionament flexible de les bombes centrífugues. A més, l’índex de flux de les bombes de turbina no és extremadament variable respecte elevats canvis de pressió, com en la majoria de les bombes centrífugues. Són idònies en trams amb mesclles gas-líquid i presenten un disseny compacte.

![Bomba de turbina](image2)

Figura 4.2.7. Bomba de turbina

Tenint en compte les descripcions i característiques de les bombes explicades en aquest apartat, així com les condicions de treball de la planta, s’escull treballar amb **bombes centrífugues** i amb **bombes de turbina**.
4.2.2. Nomenclatura de les bombes

Per a la identificació de les bombes es genera una nomenclatura que permet la ubicació de la mateixa dins la planta. La nomenclatura que se segueix és:

A – B – C

On:

- **A**: Abreviació del tipus d’equip. En el cas de les bombes, la lletra assignada és la P.
- **B**: Número de tres dígits que resumeix l’àrea on està ubicada la bomba. El darrer dels dígits és la seva enumeració dins d’aquesta àrea.
- **C**: Indicarà si la bomba està doblada o no. En cas afirmatiu, aquesta posició es manifestarà com A i B, indicatiu de que existeixen dos equips idèntics.

Per concloure la nomenclatura de les bombes, a continuació es mostra un exemple d’una línia concreta:

P-103-A/B

Es tracta d’una bomba que es localitza a l’àrea 100, és la tercera que es troba a la respectiva àrea i, a més, està doblada. Per la qual cosa, en aquell tram existirien dues bombes que serien la P-103 i la P-104.

4.2.3. Paràmetres del llistat de les bombes

Al llistat de bombes és on es detallen les característiques d’aquestes. Tals característiques són:

- Nomenclatura.
- Duplicació.
- Tipus de bomba.
Capítol 4. Canonades, bombes, vàlvules i accessoris

- Tram on es troba.
- Increment de pressió.
- Increment d'alçada entre ambdós trams.
- Longitud del tram.
- Càrrega del sistema.
- Cabal volumètric.
- Rendiment de la bomba.
- Potència real.

S'ha destinat un rendiment mitjà i constant de les bombes d'un 75%, doncs va ser difícil trobar-ne un referent i més per a cada tipus de bomba. Aquest mateix rendiment és l'utilitzat en els respectius càlculs, que s'exposen a l'apartat 11.- MANUAL DE CÀLCUL.

4.2.4. Llistat de les bombes

A continuació, es mostren les llistes de les diferents bombes per a cada àrea de la planta d'ANPHA S.A., amb les seves corresponents especificacions.
Taula 4.2.1. Llistat de bombes de l’A-100

<table>
<thead>
<tr>
<th>Doblada</th>
<th>ITEM</th>
<th>Tipus</th>
<th>Tram</th>
<th>Característiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>P-100-A</td>
<td>De turbina</td>
<td>Cisterna T100-T130</td>
<td>∆P [N/m²²] 0.00, ∆z [m] 10.20, L [m] 21.14, Q [m³/h] 5.40, h_{SISTEMA} [m] 29.97, η [%] 75.00, Potència [kW] 0.52</td>
</tr>
<tr>
<td>Sí</td>
<td>P-101-A/B</td>
<td>De turbina</td>
<td>T100-T130 PFR-200</td>
<td>∆P [N/m²²] 141570, ∆z [m] 1.46, L [m] 66.65, Q [m³/h] 5.40, h_{SISTEMA} [m] 35.95, η [%] 75.00, Potència [kW] 0.81</td>
</tr>
</tbody>
</table>

Taula 4.2.2. Llistat de bombes de l’A-200

<table>
<thead>
<tr>
<th>Doblada</th>
<th>ITEM</th>
<th>Tipus</th>
<th>Tram</th>
<th>Característiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sí</td>
<td>P-201-A/B</td>
<td>Centrífuga</td>
<td>E-210 PFR-200</td>
<td>∆P [N/m²²] 0.00, ∆z [m] 1.34, L [m] 3.14, Q [m³/h] 91.69, h_{SISTEMA} [m] 12.40, η [%] 75.00, Potència [kW] 1.35</td>
</tr>
</tbody>
</table>
Taula 4.2.3. Llistat de bombes de l’A-300

<table>
<thead>
<tr>
<th>Doblada</th>
<th>ITEM</th>
<th>Tipus</th>
<th>Planta</th>
<th>Area</th>
<th>Projecte</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>P-301-A/B</td>
<td>De turbina</td>
<td>ANPHA S.A.</td>
<td>300</td>
<td>Núm. 1</td>
<td>26/01/2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tram</th>
<th>Característiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>De</td>
<td>Fins</td>
</tr>
<tr>
<td>T-300</td>
<td>C-400</td>
</tr>
</tbody>
</table>

Taula 4.2.4. Llistat de bombes de l’A-400

<table>
<thead>
<tr>
<th>Doblada</th>
<th>ITEM</th>
<th>Tipus</th>
<th>Planta</th>
<th>Area</th>
<th>Projecte</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sí</td>
<td>P-403-A/B</td>
<td>De turbina</td>
<td>ANPHA S.A.</td>
<td>400</td>
<td>Núm. 1</td>
<td>26/01/2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tram</th>
<th>Característiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>De</td>
<td>Fins</td>
</tr>
<tr>
<td>C-400</td>
<td>C-410</td>
</tr>
<tr>
<td>C-420</td>
<td>T-400</td>
</tr>
<tr>
<td>T-400</td>
<td>S-400</td>
</tr>
<tr>
<td>T-410</td>
<td>S-410</td>
</tr>
</tbody>
</table>
Taula 4.2.5. Llistat de bombes de l’A-600

<table>
<thead>
<tr>
<th>Doblada</th>
<th>ITEM</th>
<th>Tipus</th>
<th>Tram</th>
<th>Característiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No P-600-A</td>
<td>Centrífuga</td>
<td>Cisterna T600-T620</td>
<td>ΔP [N/m²]</td>
</tr>
<tr>
<td>Sí</td>
<td>P-601-A/B</td>
<td>Centrífuga</td>
<td>T600-T620 SC-300</td>
<td>0.00</td>
</tr>
<tr>
<td>Sí</td>
<td>P-603-A/B</td>
<td>Centrífuga</td>
<td>T-650 PFR-200</td>
<td>0.00</td>
</tr>
</tbody>
</table>
4.2.5. Fulls d’especificacions de les bombes

4.2.5.1. Fulls especificacions A-100

<table>
<thead>
<tr>
<th>FULL D’ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 de 2</td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba de turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar l’ó-xilè des de la cisterna fins a T100-T130</td>
</tr>
<tr>
<td>Fluid</td>
<td>O-Xilè</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>5.40</td>
</tr>
<tr>
<td>ΔP [N/m²]</td>
<td>0.00</td>
</tr>
<tr>
<td>Temperatura de treball [°C]</td>
<td>20.00</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>882.30</td>
</tr>
<tr>
<td>h$_{SISTEMA}$ [m]</td>
<td>29.97</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>PP / PVDF</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>1.1</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td></td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>HTT</td>
</tr>
</tbody>
</table>

Fabricant

![GemmeCotti European Pumps](image)
<table>
<thead>
<tr>
<th>FULL D'ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td>P-100-A</td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>2 de 2</td>
<td></td>
</tr>
</tbody>
</table>

Diagrama: Diagrama de una bomba con detalles técnicos y medidas.
Capítol 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>FULL D’ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td>P-101-A/B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empresa</th>
<th>ANPHA S.A.</th>
<th>Revisió</th>
<th>Núm. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba de turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar l’o-xilè des de T100-T130 fins a PFR-200</td>
</tr>
<tr>
<td>Fluid</td>
<td>O-Xilè</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>5.40</td>
</tr>
<tr>
<td>∆P [N/m²]</td>
<td>141570</td>
</tr>
<tr>
<td>Temperatura de treball [°C]</td>
<td>20.00</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>882.30</td>
</tr>
<tr>
<td>h₇>SISTEMA [m]</td>
<td>35.95</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>PP / PVDF</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>1.1</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td></td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>HTT</td>
</tr>
</tbody>
</table>

Fabricant

GemmeCotti European Pumps
Capítol 4. Canonades, bombes, vàlvules i accessoris

4.2.5.2. Fulls especificacions A-200

<table>
<thead>
<tr>
<th>FULL D'ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td>P-201-A/B</td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td>Revisió</td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td>Data</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 de 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DADES D'OPERACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equip</td>
</tr>
<tr>
<td>Funció</td>
</tr>
<tr>
<td>Fluid</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
</tr>
<tr>
<td>ΔP [N/m²]</td>
</tr>
<tr>
<td>Temperatura de treball [°C]</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
</tr>
<tr>
<td>h [m]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DADES EQUIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipus</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Potència [kW]</td>
</tr>
<tr>
<td>Rendiment [%]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DADES INSTAL·LACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posició</td>
</tr>
<tr>
<td>Model</td>
</tr>
</tbody>
</table>

Fabricant

GemmeCotti
EUROPEN PUMPS
Capítol 4. Canonades, bombes, vàlvules i accessoris

4.2.5.3. Fulls especificacions A-300

<table>
<thead>
<tr>
<th>FULL D’ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td></td>
<td>P-301-A/B</td>
</tr>
<tr>
<td>Empresa</td>
<td></td>
<td>ANPHA S.A.</td>
</tr>
<tr>
<td>Revisió</td>
<td></td>
<td>Núm. 1</td>
</tr>
<tr>
<td>Planta</td>
<td></td>
<td>Producció PA</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Localitat</td>
<td></td>
<td>Tarragona</td>
</tr>
<tr>
<td>Full</td>
<td></td>
<td>1 de 2</td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba de turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar el fluid de procés des de T-300 fins a C-400</td>
</tr>
<tr>
<td>Fluid</td>
<td>Anh. ftàlic / Anh. maleic / o-Tolualdehid / Aigua / Nitrogen / Pesat</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>3.30</td>
</tr>
<tr>
<td>ΔP [N/m²]</td>
<td>37851</td>
</tr>
<tr>
<td>Temperatura de treball [ºC]</td>
<td>118.20</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>1224</td>
</tr>
<tr>
<td>h [m]</td>
<td>11.27</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AISI 316</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>0.75</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td></td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>HTT-SP</td>
</tr>
</tbody>
</table>

Fabricant

![GemmeCotti European Pumps](image)
FULL D’ESPECIFICACIÓ BOMBA

<table>
<thead>
<tr>
<th>Ítem</th>
<th>Ítem</th>
<th>Àrea</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td>Revisió</td>
<td>Núm. 1</td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td>Full</td>
<td>1 de 2</td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba de turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar el fluid de procés des de C-400 fins a C-410</td>
</tr>
<tr>
<td>Fluid</td>
<td>Anhidrid itàlic / Anhidrid maleic / Producte pesat</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>4.03</td>
</tr>
<tr>
<td>∆P [N/m²]</td>
<td>0.00</td>
</tr>
<tr>
<td>Temperatura de treball [ºC]</td>
<td>257.00</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>993.7</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AISI 316</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>0.75</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td></td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>HTT-SP</td>
</tr>
</tbody>
</table>

Fabricant: GemmeCotti
Capítol 4. Canonades, bombes, vàlvules i accessoris

FULL D'ESPECIFICACIÓ
BOMBA

<table>
<thead>
<tr>
<th>Empresa</th>
<th>ANPHA S.A.</th>
<th>Revisió</th>
<th>Núm. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td>Full</td>
<td>2 de 2</td>
</tr>
</tbody>
</table>

Àrea | 400
Item | P-403-A/B
Capítol 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>FULL D’ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td>P-423-A/B</td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 de 2</td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba de turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar el fluid de procés des de C-420 fins a T-400</td>
</tr>
<tr>
<td>Fluid</td>
<td>Anhídrid ftàlic / Anhídrid maleic / o-Tolualdehid</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>0.01</td>
</tr>
<tr>
<td>∆P [N/m²]</td>
<td>0.00</td>
</tr>
<tr>
<td>Temperatura de treball [ºC]</td>
<td>155.70</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>1283</td>
</tr>
<tr>
<td>h_SISTEMA [m]</td>
<td>9.28</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AISI 316</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>0.37</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td></td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>HTT</td>
</tr>
</tbody>
</table>

Fabricant

[Image of Gemme Cotti European Pumps]
Capítulo 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>FULL D’ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>P-423-A/B</td>
<td></td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>2 de 2</td>
<td></td>
</tr>
</tbody>
</table>

![Diagrama de bombe](image)

Página 35 de 71
Capítol 4. Canonades, bombes, vàlvules i accessoris

FULL D’ESPECIFICACIÓ BOMBA

<table>
<thead>
<tr>
<th>Àrea</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td>P-430-A/B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empresa</th>
<th>ANPHA S.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta</td>
<td>Producció PA</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
</tr>
<tr>
<td>Full</td>
<td>1 de 2</td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba de turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar el fluid de procés des de T-400 fins a S-400</td>
</tr>
<tr>
<td>Fluid</td>
<td>Anhídrid ftàlic / Anhídrid maleic / o-Tolualdehid</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>0.01</td>
</tr>
<tr>
<td>∆P [N/m²]</td>
<td>0.00</td>
</tr>
<tr>
<td>Temperatura de treball [ºC]</td>
<td>155.7</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>1283</td>
</tr>
<tr>
<td>hₜ SISTEMA [m]</td>
<td>13.82</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AISI 316</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>0.75</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td>0.75</td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>HTT-SP</td>
</tr>
</tbody>
</table>

Fabricant: GemmeCotti European Pumps
<table>
<thead>
<tr>
<th>FULL D’ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td></td>
<td>P-430-A/B</td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>2 de 2</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of a pump or hydraulic device](image)
Capítol 4. Canonades, bombes, vàlvules i accessoris

FULL D'ESPECIFICACIÓ BOMBA

<table>
<thead>
<tr>
<th>Àrea</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>P-432-A/B</td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
</tr>
<tr>
<td>Full</td>
<td>1 de 2</td>
</tr>
</tbody>
</table>

DADES D'OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba de turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar el fluid de procés des de T-410 fins a S-410</td>
</tr>
<tr>
<td>Fluid</td>
<td>Anhidrid òtic / Anhidrid maleic / Producte pesat</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>3.80</td>
</tr>
<tr>
<td>ΔP [N/m²]</td>
<td>0.00</td>
</tr>
<tr>
<td>Temperatura de treball [ºC]</td>
<td>-</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>1038</td>
</tr>
<tr>
<td>h_Sistema [m]</td>
<td>32.60</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De turbina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AISI 316</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>1.1</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td>-</td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>HTT</td>
</tr>
</tbody>
</table>

Fabricant: GemmeCotti

Página 38 de 71
4.2.5.5. Fulls especificacions A-600

<table>
<thead>
<tr>
<th>FULL D'ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td>P-600-A</td>
<td></td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>1 de 1</td>
<td></td>
</tr>
</tbody>
</table>

DADES D'OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba centrífuga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar l'oli des de la cisterna fins a T600-T620</td>
</tr>
<tr>
<td>Fluid</td>
<td>Oli</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>148.90</td>
</tr>
<tr>
<td>∆P [N/m²]</td>
<td>0.00</td>
</tr>
<tr>
<td>Temperatura de treball [ºC]</td>
<td>20.00</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>868.8</td>
</tr>
<tr>
<td>hSISTEMA [m]</td>
<td>25.45</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>Centrífuga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AISI 316</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>18.50</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td></td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>CMX-80/160A</td>
</tr>
</tbody>
</table>

Fabricant

Página 40 de 71
Capítol 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>FULL D’ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>P-601-A/B</td>
<td></td>
</tr>
</tbody>
</table>

Empresa	ANPHA S.A.
Planta	Producció PA
Localitat	Tarragona
Revisió	Núm. 1
Data	26/01/2018
Full	1 de 1

<table>
<thead>
<tr>
<th>DADES D’OPERACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equip</td>
</tr>
<tr>
<td>Funció</td>
</tr>
<tr>
<td>Fluid</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
</tr>
<tr>
<td>ΔP [N/m²]</td>
</tr>
<tr>
<td>Temperatura de treball [ºC]</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
</tr>
<tr>
<td>h_{SISTEMA} [m]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DADES EQUIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipus</td>
</tr>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Potència [kW]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DADES INSTAL·LACIÓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posició</td>
</tr>
<tr>
<td>Model</td>
</tr>
</tbody>
</table>
Capítol 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>FULL D’ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
</tr>
<tr>
<td>Item</td>
<td>P-603-A/B</td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Data</td>
<td>1 de 2</td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Bomba centrífuga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Impulsar la sal fosa des de T-650 fins a PFR-200</td>
</tr>
<tr>
<td>Fluid</td>
<td>Sal</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>91.69</td>
</tr>
<tr>
<td>ΔP [N/m²]</td>
<td>0.00</td>
</tr>
<tr>
<td>Temperatura de treball [ºC]</td>
<td>380.00</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>324.7</td>
</tr>
<tr>
<td>h_{SISTEMA} [m]</td>
<td>14.72</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>Centrífuga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>AISI 316</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>7.5</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td></td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>HCM</td>
</tr>
</tbody>
</table>

Fabricant

![Fabricant](image)
Capítol 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>FULL D'ESPECIFICACIÓ BOMBA</th>
<th>Àrea</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>P-603-A/B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empresa</th>
<th>ANPHA S.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
</tr>
<tr>
<td>Full</td>
<td>2 de 2</td>
</tr>
</tbody>
</table>
4.3. VÀLVULES

Les válvules són elements que permeten, impedeixen o regulen la circulació del fluid per una canonada. La selecció de les vàlvules inclou molts factors a tenir en consideració com són el tipus de vàlvula, el material de construcció, la pressió, la temperatura i el cost de la mateixa.

4.3.1. Classificació de les vàlvules

En aquest apartat es defineixen les diferents vàlvules emprades per a regular, estrangular o impedir el flux invers en la circulació de fluids per les línies de la planta.

Les vàlvules es classifiquen en dos grans grups:

- **Vàlvules tot-res.** Aquest tipus de vàlvula permet o impedeix el pas del fluid a l’interior de la canonada i, per tant, no poden regular el cabal que passa a través de la línia. Són dispositius que obstrueixen completament la secció del tub quan es troben tancats però, un cop s’obren, ofereixen la mínima resistència al pas del fluid i, conseqüentment, les pèrdues de càrrega són mínimes.

 A la indústria química, les vàlvules tot-res més comunes són la de bola i la de papallona.

- **Vàlvula de regulació.** Aquest tipus de vàlvula proporciona una regulació del cabal del fluid que circula per la línia, augmentant o disminuint el grau d’obertura. El corrent de l’obturador ha de ser prou lent com per a permetre diversos cabals, provocant pèrdues de càrrega majors que en el cas de les vàlvules tot-res.

 Aquests tipus de vàlvules són les que s’utilitzen en els diferents sistemes de control de les plantes químiques, on la més emprada és la vàlvula de seient.
4.3.2. Selecció de les vàlvules

Prèviament a la descripció de les vàlvules seleccionades, cal esmentar que en aquest capítol únicament es fa referència a les vàlvules de procés i no pas a les vàlvules de control. Així, les vàlvules com a variable modificada de control es troben i s’expliquen al capítol 3.0.- CONTROL I INSTRUMENTACIÓ del present projecte.

A continuació, es descriuen les diferents característiques de les vàlvules escollides per a la producció d’anhídrid ftàlic.

- **Vàlvula de bola.** La vàlvula de bola consta d’un element esfèric, el qual es troba perforat, de manera que permet la circulació del fluid tot depenent de la posició en què es trobi.

![Figura 4.3.1. Vàlvula de bola](image)

Aquest tipus de vàlvula s’utilitza en diferents situacions i, pràcticament, es troba en tots els trams de procés:

1) Entrades i sortides dels equips de procés amb un diàmetre de canonada inferior a les 3 polzades, per tal d’aïllar el mateix equip o un tram de canonada.

2) Per aïllar els equips de procés per qüestions de manteniment i neteja.

3) En el control de procés com a sistema d’obertura o tancament total.
- **Vàlvula de papallona.** Aquest tipus de vàlvula és un dispositiu per a impedir o regular el flux del fluid en la canonada, augmentant o disminuint la secció de pas tot mitjançant una placa anomenada “papallona”, que gira sobre l’eix. Al disminuir l’àrea de pas, augmenta la pèrdua de càrrega.

La vàlvula de papallona cobreix totalment la secció de la canonada quan es troba perpendicular al fluid i, per contra, deixa lliure tota la secció quan es troba paral·lela al corrent.

Figura 4.3.2. Vàlvula de papallona

Aquest tipus de vàlvula s’utilitza en les mateixes situacions que la vàlvula de bola però es disposa en canonades on el diàmetre nominal es pot començar a considerar gran (125 – 150 mm). El motiu és el següent: una vàlvula de papallona per a una canonada de diàmetre gran resulta molt més petita que la seva vàlvula de bola equivalent i, sobretot, val a dir que les vàlvules de papallona són menys cares i, generalment, més lleugeres.

- **Vàlvula de retenció.** La principal funció de les vàlvules de retenció és impedir el canvi de sentit del flux que circula per la canonada, doncs únicament permeten el pas del fluid en una única direcció.

Figura 4.3.3. Vàlvula de retenció
Les vàlvules de retenció se situen a la sortida de les bombes, per tal d'evitar que el fluid retorni quan aquestes deixen de funcionar.

- **Vàlvula de venteig.** El quart i darrer tipus de vàlvula que s’ha considerat és la vàlvula de venteig. És possible que, més aviat, formi part de la família de vàlvules de control, doncs la seva intervenció es relaciona directament amb la prevenció i la seguretat dels tancs d’emmagatzematge a condicions atmosfèriques. Tot i així, se’n ha volgut fer ressò en el present capítol.

Les vàlvules de venteig s’usen en els tancs de serveis que es troben emmagatzemats a condicions atmosfèriques, degut a la manca de requeriment d’inertització.

![Figura 4.3.4. Vàlvula de venteig](image)

Aquesta vàlvula es disposa a la part superior dels tancs de serveis com són l’oli i la sal.

Seguidament, s’exposarà una llista amb un nombre de vàlvules que es considera representatiu. Resulta complex estimar el nombre total de vàlvules que pot formar part d’un procés industrial però si que se’n ha volgut fer un estudi el més ajustat possible a la realitat. Aquest estudi inclou les explicacions anteriors i, sobretot, el fet de considerar els diferents tipus de vàlvules. És clar que vàlvules com la de bola, per exemple, es troben pràcticament a cada tram i, també, tot i no aparèixer explícit a la llista, es requerirà d’alguna vàlvula de tres vies perquè en un tram del procés la canonada principal es divideix.
4.3.3. Nomenclatura de les vàlvules

Per tal de facilitar la identificació de les diferents vàlvules de les que es disposa a la planta, s’ha realitzat una nomenclatura per a aquestes, de la mateixa manera que per a les canonades i les bombes. Consta d’un grup de quatre lletres,

\[A – B – C – D \]

El significat d’aquestes lletres és el següent:

- **A**: Diàmetre nominal de la vàlvula en mm, el qual correspon al mateix diàmetre nominal de la canonada a la que es troba connectada.

- **B**: Material de construcció de la vàlvula. Aquest també ha de coincidir amb el material de construcció de la canonada.

 Taula 4.3.1. Nomenclatura dels materials de les vàlvules

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>CODI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acer inoxidable 316L</td>
<td>AI16</td>
</tr>
<tr>
<td>Acer al carboni 1045</td>
<td>AC45</td>
</tr>
</tbody>
</table>

- **C**: Tipus de vàlvula.

 Taula 4.3.2. Nomenclatura dels tipus de vàlvula presents al procés

<table>
<thead>
<tr>
<th>VÀLVULA</th>
<th>CODI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bola</td>
<td>B</td>
</tr>
<tr>
<td>Retenció</td>
<td>R</td>
</tr>
<tr>
<td>Venteig</td>
<td>V</td>
</tr>
<tr>
<td>Papallona</td>
<td>P</td>
</tr>
</tbody>
</table>

- **D**: Àrea i enumeració de la vàlvula dins l’àrea.

Página 48 de 71
Capítol 4. Canonades, bombes, vàlvules i accessoris

Per concloure la nomenclatura de les vàlvules, a continuació es mostra un exemple:

25-AI16-B-101

Es tracta d'una vàlvula amb un diàmetre nominal de 25 mm, feta d'acer inoxidable 316L, de tipus bola i que és la número 1 dins l'àrea 100.

4.3.4. Paràmetres del llistat de les vàlvules

Al llistat de vàlvules és on es detallen les seves característiques. Aquestes són:

- Diàmetre nominal (DN) en mm.
- Tipus de material.
- Tipus de vàlvula.
- Tram/equip en el que pertany.
- Corrent a on es localitza.
- Nomenclatura.

4.3.5. Llistat de les vàlvules

A continuació, es mostren les llistes de les vàlvules més representatives per a cada àrea de la planta d’ANPHA S.A., amb les seves corresponents especificacions.
Taula 4.3.3. Llistat de vàlvules de l’A-100

<table>
<thead>
<tr>
<th>Nº</th>
<th>DN [mm]</th>
<th>Tipus de vàlvula</th>
<th>Material</th>
<th>Tram o equip</th>
<th>Nº de corrent</th>
<th>Nomenclatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>25</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>Cisterna / T100-T130</td>
<td>-</td>
<td>25-AI16-B-101</td>
</tr>
<tr>
<td>102</td>
<td>25</td>
<td>Retenció</td>
<td>Acer inoxidable</td>
<td>P-100-A</td>
<td>-</td>
<td>25-AI16-R-102</td>
</tr>
<tr>
<td>103</td>
<td>25</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>T100-T130 / H-200</td>
<td>3</td>
<td>25-AI16-B-103</td>
</tr>
<tr>
<td>104</td>
<td>25</td>
<td>Retenció</td>
<td>Acer inoxidable</td>
<td>P-101-A/B</td>
<td>4</td>
<td>25-AI16-R-104</td>
</tr>
</tbody>
</table>

Taula 4.3.4. Llistat de vàlvules de l’A-200

<table>
<thead>
<tr>
<th>Nº</th>
<th>DN [mm]</th>
<th>Tipus de vàlvula</th>
<th>Material</th>
<th>Tram o equip</th>
<th>Nº de corrent</th>
<th>Nomenclatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>90</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>H-200 / PFR-200</td>
<td>5</td>
<td>90-AI16-B-201</td>
</tr>
<tr>
<td>202</td>
<td>125</td>
<td>Papallona</td>
<td>Acer al carboni</td>
<td>PFR-200 / E-210</td>
<td>-</td>
<td>125-AC45-P-202</td>
</tr>
<tr>
<td>203</td>
<td>125</td>
<td>Papallona</td>
<td>Acer al carboni</td>
<td>E-210 / PFR-200</td>
<td>-</td>
<td>125-AC45-P-203</td>
</tr>
<tr>
<td>204</td>
<td>125</td>
<td>Retenció</td>
<td>Acer al carboni</td>
<td>P-201-A/B</td>
<td>-</td>
<td>125-AC45-R-204</td>
</tr>
</tbody>
</table>
Taula 4.3.5. Llistat de vàlvules de l’A-300

<table>
<thead>
<tr>
<th>Nº</th>
<th>DN [mm]</th>
<th>Tipus de vàlvula</th>
<th>Material</th>
<th>Tram o equip</th>
<th>Nº de corrent</th>
<th>Nomenclatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>301</td>
<td>150</td>
<td>Papallona</td>
<td>Acer al carboni</td>
<td>H-310 / SC-300</td>
<td>-</td>
<td>150-AC45-P-301</td>
</tr>
<tr>
<td>302</td>
<td>150</td>
<td>Papallona</td>
<td>Acer al carboni</td>
<td>SC-300 / CH-300</td>
<td>-</td>
<td>150-AC45-P-302</td>
</tr>
<tr>
<td>303</td>
<td>150</td>
<td>Papallona</td>
<td>Acer al carboni</td>
<td>CH-300 / SC-300</td>
<td>-</td>
<td>150-AC45-P-303</td>
</tr>
<tr>
<td>304</td>
<td>20</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>AC-300 / T-300</td>
<td>8</td>
<td>20-Al16-B-304</td>
</tr>
<tr>
<td>305</td>
<td>15</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>SC-300 / T-300</td>
<td>10</td>
<td>15-Al16-B-305</td>
</tr>
<tr>
<td>308</td>
<td>32</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>H-300 / C-400</td>
<td>16</td>
<td>32-Al16-B-308</td>
</tr>
</tbody>
</table>

Taula 4.3.6. Llistat de vàlvules de l’A-400 (1)

<table>
<thead>
<tr>
<th>Nº</th>
<th>DN [mm]</th>
<th>Tipus de vàlvula</th>
<th>Material</th>
<th>Tram o equip</th>
<th>Nº de corrent</th>
<th>Nomenclatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>401</td>
<td>25</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>C-400 / C-410</td>
<td>20</td>
<td>25-Al16-B-401</td>
</tr>
<tr>
<td>402</td>
<td>25</td>
<td>Retenció</td>
<td>Acer inoxidable</td>
<td>P-403-A/B</td>
<td>20</td>
<td>25-Al16-R-402</td>
</tr>
</tbody>
</table>
Taula 4.3.7. Llistat de vàlvules de l’A-400 (2)

<table>
<thead>
<tr>
<th>Nº</th>
<th>DN [mm]</th>
<th>Tipus de vàlvula</th>
<th>Material</th>
<th>Tram o equip</th>
<th>Nº de corrent</th>
<th>Nomenclatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>403</td>
<td>6</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>C-420 / T-400</td>
<td>19</td>
<td>6-AI16-B-403</td>
</tr>
<tr>
<td>404</td>
<td>6</td>
<td>Retenció</td>
<td>Acer inoxidable</td>
<td>P-423-A/B</td>
<td>19</td>
<td>6-AI16-R-404</td>
</tr>
<tr>
<td>405</td>
<td>6</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>T-400 / S-400</td>
<td>-</td>
<td>6-AI16-B-405</td>
</tr>
<tr>
<td>406</td>
<td>6</td>
<td>Retenció</td>
<td>Acer inoxidable</td>
<td>P-430-A/B</td>
<td>-</td>
<td>6-AI16-R-406</td>
</tr>
<tr>
<td>407</td>
<td>20</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>C-410 / T-410</td>
<td>21</td>
<td>20-AI16-B-407</td>
</tr>
<tr>
<td>408</td>
<td>20</td>
<td>Bola</td>
<td>Acer inoxidable</td>
<td>T-410 / S-410</td>
<td>-</td>
<td>20-AI16-B-408</td>
</tr>
<tr>
<td>409</td>
<td>20</td>
<td>Retenció</td>
<td>Acer inoxidable</td>
<td>P-432-A/B</td>
<td>-</td>
<td>20-AI16-R-409</td>
</tr>
</tbody>
</table>

Taula 4.3.8. Llistat de vàlvules de l’A-600 (1)

<table>
<thead>
<tr>
<th>Nº</th>
<th>DN [mm]</th>
<th>Tipus de vàlvula</th>
<th>Material</th>
<th>Tram o equip</th>
<th>Nº de corrent</th>
<th>Nomenclatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>150</td>
<td>Papallona</td>
<td>Acer al carboni</td>
<td>Cisterna / T600-T620</td>
<td>-</td>
<td>150-AC45-P-601</td>
</tr>
<tr>
<td>602</td>
<td>150</td>
<td>Retenció</td>
<td>Acer al carboni</td>
<td>P-600-A</td>
<td>-</td>
<td>150-AC45-R-602</td>
</tr>
<tr>
<td>603</td>
<td>150</td>
<td>Venteig</td>
<td>Acer inoxidable</td>
<td>T600-T620</td>
<td>-</td>
<td>150-AI16-V-603</td>
</tr>
</tbody>
</table>
Taula 4.3.9. Llistat de vàlvules de l’A-600 (2)

<table>
<thead>
<tr>
<th>Nº</th>
<th>DN [mm]</th>
<th>Tipus de vàlvula</th>
<th>Material</th>
<th>Tram o equip</th>
<th>Nº de corrent</th>
<th>Nomenclatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>604</td>
<td>150</td>
<td>Papallona</td>
<td>Acer al carboni</td>
<td>T600-T620 / H310</td>
<td>-</td>
<td>150-AC45-P-604</td>
</tr>
<tr>
<td>605</td>
<td>150</td>
<td>Retenció</td>
<td>Acer al carboni</td>
<td>P-601-A/B</td>
<td>-</td>
<td>150-AC45-R-605</td>
</tr>
<tr>
<td>606</td>
<td>125</td>
<td>Papallona</td>
<td>Acer al carboni</td>
<td>T-650 / PFR-200</td>
<td>-</td>
<td>125-AC45-P-606</td>
</tr>
<tr>
<td>607</td>
<td>125</td>
<td>Retenció</td>
<td>Acer al carboni</td>
<td>P-603-A/B</td>
<td>-</td>
<td>125-AC45-R-607</td>
</tr>
<tr>
<td>608</td>
<td>125</td>
<td>Venteig</td>
<td>Acer inoxidable</td>
<td>T-630 i T-640</td>
<td>-</td>
<td>125-AI16-V-608</td>
</tr>
</tbody>
</table>
4.3.6. Fulls d’especificacions de les vàlvules

A continuació, es mostra un full d’especificació representatiu de cada tipus de vàlvula.

4.3.6.1. Full especificacions vàlvula de bola

<table>
<thead>
<tr>
<th>ESPECIFICACIÓ VÀLVULA</th>
<th>Àrea</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td>25-A16-B-101</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empresa</th>
<th>ANPHA S.A.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Revisió</th>
<th>Núm. 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Planta</th>
<th>Producció PA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Localitat</th>
<th>Tarragona</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>26/01/2018</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Full</th>
<th>1 de 2</th>
</tr>
</thead>
</table>

DADES D’OPERACIÓ

- **Equip**: Vàlvula de bola
- **Funció**: Permetre / prohibir el pas del fluid
- **Fluid**: Orto-Xilè
- **Cabal [m³/h]**: 5.40
- **Temperatura [ºC]**: 20.00
- **Pressió [kPa]**: 101.30

DADES EQUIP

- **Tipus**: De bola automàtica
- **Material**: Acer inoxidable
- **Diàmetre nominal [mm]**: 25
- **Llargada / Alçada [mm]**: 160 / 143
- **Voltatge [V]**: 24

DADES INSTAL·LACIÓ

- **Posició**: Horitzontal
- **Model**: IB25

Fabricant

![Logo de la companyia ANPHA S.A.]

![Logo de la companyia CEASA]
Capítol 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>ESPECIFICACIÓ VÀLVULA</th>
<th>Àrea</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td></td>
<td>25-AI16-B-101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empresa</th>
<th>ANPHA S.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Full</td>
<td>2 de 2</td>
</tr>
</tbody>
</table>

![Diagrama de vàlvula]

Página 55 de 71
4.3.6.2. Full especificacions vàlvula de papallona

<table>
<thead>
<tr>
<th>ESPECIFICACIÓ VÀLVULA</th>
<th>Àrea</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td></td>
<td>125-AC45-P-202</td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>1 de 2</td>
<td></td>
</tr>
</tbody>
</table>

DADES D'OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Vàlvula de papallona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Regular el pas del fluid</td>
</tr>
<tr>
<td>Fluid</td>
<td>Sal</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>91.69</td>
</tr>
<tr>
<td>Temperatura [ºC]</td>
<td>400.00</td>
</tr>
<tr>
<td>Pressió [kPa]</td>
<td>101.30</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De papallona tipus WAFER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Acer al carboni</td>
</tr>
<tr>
<td>Diàmetre nominal [mm]</td>
<td>125</td>
</tr>
<tr>
<td>Amplada / Alçada / Llargada [mm]</td>
<td>56 / 395 / 202</td>
</tr>
<tr>
<td>Pes [kg]</td>
<td>6.88</td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2101 13</td>
</tr>
</tbody>
</table>

Fabricant

![GENEBRE]

be water, be Genebre
Capítol 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>ESPECIFICACIÓ VÀLVULA</th>
<th>Àrea</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td>125-AC45-P-202</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empresa</th>
<th>ANPHA S.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planta</th>
<th>Producció PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>26/01/2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localitat</th>
<th>Tarragona</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full</td>
<td>2 de 2</td>
</tr>
</tbody>
</table>

Página 57 de 71
4.3.6.3. Full especificacions vàlvula de retenció

<table>
<thead>
<tr>
<th>ESPECIFICACIÓ VÀLVULA</th>
<th>Àrea</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td>25-A116-R-102</td>
<td></td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>1 de 2</td>
<td></td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Equip</th>
<th>Vàlvula de retenció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funció</td>
<td>Evitar contra-pressió després d’una bomba</td>
</tr>
<tr>
<td>Fluid</td>
<td>Orto-Xilè</td>
</tr>
<tr>
<td>Cabal [m³/h]</td>
<td>5.40</td>
</tr>
<tr>
<td>Temperatura [ºC]</td>
<td>20.00</td>
</tr>
<tr>
<td>Pressió [kPa]</td>
<td>101.30</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Tipus</th>
<th>De retenció amb accionament hidràulic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Acer inoxidable</td>
</tr>
<tr>
<td>Diàmetre nominal [mm]</td>
<td>25</td>
</tr>
<tr>
<td>Alçada [mm] / Rosca</td>
<td>56 / M 30 x 1.5</td>
</tr>
<tr>
<td>SW1</td>
<td>SW 12</td>
</tr>
<tr>
<td>Pes [g]</td>
<td>140</td>
</tr>
</tbody>
</table>

DADES INSTAL·LACIÓ

<table>
<thead>
<tr>
<th>Posició</th>
<th>Horitzontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>RHC 4</td>
</tr>
</tbody>
</table>

Fabricant
Capítol 4. Canonades, bombes, vàlvules i accessoris

<table>
<thead>
<tr>
<th>ESPECIFICACIÓ VÀLVULA</th>
<th>Àrea</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td></td>
<td>25-AI16-R-102</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empresa</th>
<th>ANPHA S.A.</th>
<th>Revisió</th>
<th>Núm. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td>Data</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td>Full</td>
<td>2 de 2</td>
</tr>
</tbody>
</table>

![Diagrama de vàlvula]

Página 59 de 71
Capítol 4. Canonades, bombes, vàlvules i accessoris

4.3.6.4. Full especificacions vàlvula de venteig

<table>
<thead>
<tr>
<th>ESPECIFICACIÓ VÀLVULA</th>
<th>Àrea</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td>150-AI16-V-603</td>
<td></td>
</tr>
</tbody>
</table>

Empresa | ANPHA S.A.
Planta | Producció PA
Localitat | Tarragona
Revisió | Núm. 1
Data | 26/01/2018
Full | 1 de 2

Dades d'Operació

| Equip | Vàlvula de venteig
| Funció | Control de les emissions a l’atmosfera
| Fluid | Oli
| Equip | T600-T620
| Temperatura [°C] | 20.00
| Pressió [kPa] | 101.30

Dades Equip

| Tipus | De venteig
| Material | Acer inoxidable
| Diàmetre nominal [mm] | 150
| Alçada / Llargada [mm] | 326.20 / 630.3
| Diàmetre de barrinades [polzades] | 7/8
| Número de barrinades | 8

Dades Instal·lació

| Posició | Horitzontal, a sobre del tanc
| Model | SERIE 1000

Fabricant

![Franko](image-url)
<table>
<thead>
<tr>
<th>ESPECIFICACIÓ VÀLVULA</th>
<th>Àrea</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td>Item</td>
<td>150-AI16-V-603</td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td>Revisió</td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td>Núm. 1</td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td>Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26/01/2018</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 de 2</td>
</tr>
</tbody>
</table>
4.4. COMPRESSORS

Els compressors són dispositius dissenyats per augmentar la pressió. La principal diferència entre aquests i les bombes és que els primers augmenten la pressió dels fluids *compressibles*, com ara vapors i gasos.

El funcionament dels compressors consisteix en augmentar la pressió del fluid i la seva energia cinètica, fet que en disminueix el volum específic a mesura que passa per l'equip i n'augmenta considerablement la temperatura. Els compressors incorporen un filtre per evitar l'entrada de possibles sòlids en suspensió.

4.4.1. Selecció dels compressors

Existeixen diferents tipus de compressors que es poden classificar en dos grups:

- De *desplaçament positiu*, on s'hi troben els *alternatius* i els *rotatius*.
- De *desplaçament dinàmic*, on s'hi troben els *axials* i els *centrífugs*.

Els compressors de *desplaçament positiu* són, en general, els més utilitzats en la gran majoria de les plantes d'indústria química, degut a la seva flexibilitat per treballar a diferents nivells de cabal d'operació i en una àmplia gamma de pressions.

El seu mecanisme es basa en una reducció mecànica de l'espai del gas d'entrada, mitjançant un espai determinat i causant un augment instantani de pressió en el fluid. Aquest tipus de compressors distingeix els *alternatius* i els *rotatius*.

Els compressors de *desplaçament dinàmic* són equips de flux continu on el seu funcionament es basa en transformar l'energia cinètica en pressió. Els més utilitzats en la indústria són els *centrífugs*.

Els *compressors centrífugs* utilitzen un sistema d'impulsió del fluid que consisteix en un àlep (aquesta peça forma part del motor d’impulsió). Aquest tipus d’equips permeten tenir velocitats d’alta rotació, així com treballar en un ampli rang de cabals.
Les velocitats de rotació tenen un rang que va des de 3000 fins a 80000 rpm, amb uns cabals que oscil·len entre els 850 i els 50000 m³/h. A més, presenten una alt fiabilitat sense reparacions durant un temps de treball de fins a 18000 hores (750 dies).

El disseny d'aquest compressor es determina mitjançant la norma API617, per temes de seguretat.

Figura 4.4.1. Compressor centrífug

A l'hora d'escollir el compressor adequat per la planta ANPHA S.A. s'han de tenir en compte diversos paràmetres com les propietats del fluid, la compressibilitat del gas i el cabal d’operació.

Figura 4.4.2. Relació entre cabal i pressió d’operació per a la selecció del compressor
Per a la selecció del compressor, un altre punt clau és el manteniment que comporten aquests. Els compressors centrífugs requereixen un manteniment menys explícit, en comparació amb altres tipus de compressors.

A la planta es necessiten tres compressors en paral·lel per a comprimir una de les matèries primeres (aire), així com un tercer i un quart que aportaran aire comprimit de servei als dos cristallitzadors de l’àrea 400 (S-400 i S-410) i d’accionament de les vàlvules de control. Els tres primers compressors es disposen en paral·lel, sobretot, per prevenció, doncs en el cas de fallida d’un d’ells el seu respectiu treball es distribuirà automàticament entre els altres dos.

Així, tenint en compte els paràmetres esmentats amb anterioritat, el tipus de compressor escollit és el **compressor centrífug**.

4.4.2. Nomenclatura dels compressors

En aquest cas, la nomenclatura dels compressors és ben senzilla i es forma per dues lletres:

\[
\text{A – B}
\]

On:

- **A**: Abreviació del tipus d’equip. En el cas dels compressors, la lletra assignada és la \(\text{K} \).

- **B**: Indica l’àrea a on es troba.

Per concloure la nomenclatura dels compressors, a continuació es mostra un exemple:

\[
\text{K-100}
\]

Es tracta d’un compressor que es localitza a l’àrea 100.
4.4.3. Paràmetres del llistat dels compressors

Al llistat de compressors és on es detallen les característiques d’aquests. Tals característiques són:

- Nomenclatura.
- Duplicació.
- Tipus de compressor.
- Tram en que comprimeix el fluid (des d’on i fins a on).
- Increment de pressió.
- Increment d’alçada entre ambdós trams.
- Cabal volumètric.
- Potència real.

Com en el cas de les bombes, ha resultat complicat cercar el rendiment dels respectius compressor.

4.4.4. Llistat dels compressors

A continuació, es mostra la llista dels compressors que pertanyen a l’àrea 100, amb les corresponents especificacions.
Taula 4.4.1. Llistat de compressors

<table>
<thead>
<tr>
<th>Doblada</th>
<th>ITEM</th>
<th>Tipus</th>
<th>Planta</th>
<th>Localitat</th>
<th>Projecte</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>K-100</td>
<td>Centrífug</td>
<td>ANPHA S.A.</td>
<td>Tarragona</td>
<td>Núm. 1</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>No</td>
<td>K-110</td>
<td>Centrífug</td>
<td>ANPHA S.A.</td>
<td>Tarragona</td>
<td>Núm. 1</td>
<td>26/01/2018</td>
</tr>
<tr>
<td>No</td>
<td>K-120</td>
<td>Centrífug</td>
<td>ANPHA S.A.</td>
<td>Tarragona</td>
<td>Núm. 1</td>
<td>26/01/2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tram</th>
<th>Característiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>De</td>
<td>Fins</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>No</td>
<td>K-100</td>
</tr>
<tr>
<td>No</td>
<td>K-110</td>
</tr>
<tr>
<td>No</td>
<td>K-120</td>
</tr>
</tbody>
</table>
4.4.5. Fulls d’especificacions dels compressors

Tant per K-100, com per K-110 i K-120 s’usa el mateix tipus de compressor i, per tant, el següent full d’especificacions és representatiu per a tots tres.

<table>
<thead>
<tr>
<th>ESPECIFICACIÓ COMPRESSOR</th>
<th>Àrea</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ítem</td>
<td>K-100</td>
<td></td>
</tr>
<tr>
<td>Empresa</td>
<td>ANPHA S.A.</td>
<td></td>
</tr>
<tr>
<td>Revisió</td>
<td>Núm. 1</td>
<td></td>
</tr>
<tr>
<td>Planta</td>
<td>Producció PA</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>26/01/2018</td>
<td></td>
</tr>
<tr>
<td>Localitat</td>
<td>Tarragona</td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>1 de 1</td>
<td></td>
</tr>
</tbody>
</table>

DADES D’OPERACIÓ

<table>
<thead>
<tr>
<th>Item</th>
<th>Compressor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equip</td>
<td>Comprimir aire</td>
</tr>
<tr>
<td>Pressió d’aspiració [kPa]</td>
<td>101.30</td>
</tr>
<tr>
<td>Pressió d’impulsió [kPa]</td>
<td>210.00</td>
</tr>
<tr>
<td>Temperatura d’entrada [ºC]</td>
<td>20.00</td>
</tr>
<tr>
<td>Temperatura de sortida [ºC]</td>
<td>110.00</td>
</tr>
<tr>
<td>Cabal volumètric [m³/h]</td>
<td>26480</td>
</tr>
<tr>
<td>Densitat del fluid [kg/m³]</td>
<td>1.225</td>
</tr>
</tbody>
</table>

DADES EQUIP

<table>
<thead>
<tr>
<th>Item</th>
<th>Ingersoll Rand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca comercial</td>
<td>5CII</td>
</tr>
<tr>
<td>Tipus</td>
<td>Centrífuga</td>
</tr>
<tr>
<td>Potència [kW]</td>
<td>1153.00</td>
</tr>
<tr>
<td>Etapes</td>
<td>1</td>
</tr>
<tr>
<td>Rendiment [%]</td>
<td></td>
</tr>
<tr>
<td>Observacions:</td>
<td></td>
</tr>
</tbody>
</table>
4.5. ACCESSORIS

Els fluids que circulen per la planta de producció d’anhídrid ftàlic han de canviar de direcció, patir estrenyiments, ramificacions, etc. Per fer-ho, existeixen els accessoris de les conduccions. Els accessoris són el conjunt de peces modelades o mecanitzades que, unides als tubs mitjançant un procediment determinat, formen les línies estructurals de les canonades d’una planta de procés.

Els accessoris no s’especificaran a continuació, donat que no es coneix amb detall la implementació de les xarxes de conduccions de la planta. Tot i així, en el següent apartat, es descriuen aquells accessoris que es consideren necessaris pel bon funcionament de la planta d’ANPHA S.A. com són els purgadors, les mirilles i els discs de ruptura.

4.5.1. Tipus d’accessoris

- **Discs de ruptura**

Qualsevol equip que treballa a pressió, ja sigui un reactor, un tanc, una sitja, etc. Pot danyar-se degut a la variació incontrolada de la pressió. Per a protegir els equips és necessari usar elements de seguretat que permetin eliminar l’excés de pressió, proporcionant-li una sortida d’escapament al fluid. Tot i que les vàlvules de seguretat són els dispositius d’alleujament de pressió més emprats, en determinades circumstàncies no poden protegir l’equip i és quan s’instal·la l’anomenat disc de ruptura.

Els discs de ruptura són dispositius d’alleujament de pressió, accionats per la diferència de pressió entre l’interior de l’equip i l’exterior. Les condicions que determinen la instal·lació d’un disc de ruptura en lloc de vàlvules de seguretat són:

1) Un augment ràpid de la pressió.
2) L’existència de fluids tòxics, on la seva alliberació a través de la vàlvula de seguretat està prohibida.
Capítol 4. Canonades, bombes, vàlvules i accessoris

3) Fluids corrosius que poden causar la degradació progressiva de les vàlvules de seguretat.

4) Fluids que poden depositar sòlids que interfereixin amb el bon funcionament de la vàlvula de seguretat.

Els principals avantatges des discs de ruptura són l’absoluta capacitat d’aïllament del fluid i com d’econòmics i fàcils de mantenir resulten. Per contra, els principals desavantatges són que no es poden tornar a tancar a tancar un cop s’han accionat i, a més, en cas de ruptura s’ha d’aturar el procés per a substituir el dispositiu.

![Disc de ruptura](image)

Figura 4.5.1. Disc de ruptura

A la majoria d’equips s’instal·la la combinació de disc de ruptura i vàlvula de seguretat en sèrie. Aquesta combinació té com a objectiu protegir la vàlvula de seguretat de condicions corrosives, evitar fuites, evitar la pèrdua total del contingut de l’esclat d’un disc de ruptura i evitar que es formin incrustacions a la vàlvula de seguretat.

- **Purgadors**

En la planta de producció d’anhídrid ftàlic es disposa de purgadors a les línies on es poden formar condensats, com per exemple les línies de vapor.

Un purgador és un tipus de vàlvula que descarrega el condensat produït en els processos que consumeixen vapor i en els conductes de vapor, sense permetre la descàrrega del vapor.
Capítol 4. Canonades, bombes, vàlvules i accessoris

Figura 4.5.2. Purgador termostàtica

Existeixen diferents tipus de purgadors, com són els termostàtics (identifiquen el vapor i el condensat mitjançant la diferència de temperatura), els mecànics (operen mecànicament per diferència de densitats entre el vapor i el condensat) i els termodinàmics (treballen per diferència de velocitat entre el vapor i el condensat).

- Mirilles

Les mirilles són dispositius que permeten inspeccionar visualment, de manera senzilla i ràpida per tot el sistema. Les mirilles s’utilitzen per a:

1) Avaluar ell correcte sentit del flux.
2) Detectar l’obstrucció del flux.
3) Identificar fuites de vapor.
4) Inspeccionar el color del producte al llarg de tot el procés.

Figura 4.5.3. Mirilla

Pàgina 70 de 71
4.6. BIBLIOGRAFÍA