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1. INTRODUCTION

As it has already been proven, the use of big data has become a successful tool in the field
of business. However, it has not yet become widely used in economics. The aim of this
thesis is to analyse the possible ways in which big data techniques could be implemented
in the field of economics. More specifically, | have focused on the use of neural networks,
which are a machine learning technique that can be used for regression and classification

with very large data sets.
The objectives | have for this project are the following:

- Explain what big data is

- Explore the main big data methods which may prove useful to economics

- Learn about how neural networks work

- Put some of these techniques into practice myself, specifically by training a neural

network and using it for prediction in an economic model

With these objectives in mind, this project will start by introducing big data and its
methods to perform predictive modelling, as well as the possibility of using them causal
inference, in section 2. In section 3 | will give an in-depth explanation on what neural
networks are and detail how they work. | will also present how to use the neuralnet
package for R to train a neural network. Finally, in section 4, I will use the knowledge on

neural networks to train one myself using the previously introduced methods.

An additional aim | hope to tackle with this project is to explain some of the quantitative
methods used in Big data in way that can be understood by undergraduate students. I think
it is important for economists to get acquainted with these methods but some of the
literature in the topic seems quite advanced if you do not have a background in computer

science.



2. BIG DATA

The term Big Data is defined as data sets that that are extremely large and sometimes too
complex to be analysed using traditional data management tools. Using new tools, they
can be analysed to reveal patterns, trends and associations especially relating to human
behaviour and interaction. Big data is created from many different sources at an incredibly
fast rate. Some of the sources of big data include computer-mediated transactions, e-
mails, media, the Internet, Internet of Things (IoT) devices, sensor data, cell phones,

among many others.

Economic data is now more abundant than ever, both from the private and public sectors.
As businesses and the government work more with computers, an increasing amount data
has been compiled on their activities at a whole new and previously unexpected degree.
But how is this data different from what was previously available? According to Einav
and Levin (2014) and Varian (2014a), the following are the main distinctive traits of big
data:

- Very large volume of data, which reduces problems with statistical power.

- Real-time availability of data, which has proven to be very useful in business but
not yet very exploited in economics.

- New types of variables are available that were not possible to know about before.
This increases the number of potential regressors for our analysis as well as the
complexity of the relations between variables.

- Data is less structured and has more dimensionality. This can be useful but

requires manipulation to organize and select the data before it can be used.

Developing new techniques to deal work in these new settings is a challenge for
economics research. Based on the previously mentioned characteristics, the new tools
used by economists should allow for more powerful manipulation, better variable

selection and more complex modelling of non-linear relations.

The tool often used to process Big data is a relational database, which works with
Structured Query Language (SQL) to flexibly store and manipulate medium size datasets.
To work with even larger data sets (including millions of observations) “NoSQL”

databases are used, which are more primitive but can work with larger amounts of data.



Having processed it, the data set can be used for statistical analysis. If despite the
manipulation the data set is still too large, a subsample for analysis can be selected

through random sampling.

2.1 Big data analysis

Data science is the field that performs computer-assisted data analysis in order to extract
useful information from big data. It uses several different techniques to perform
prediction and summarization, as well as other tasks. Specifically, machine learning is
the tool mostly used for prediction and data mining is used for summarization processes.
Machine learning was first defined by Samuel (1959) as the field concerned with
programming algorithms which give computers the ability to learn from the data available
to them. Learning implies the progressive improvement of its performance in a specific
task. On the other hand, Data mining is the process of examining large data sets to

discover patterns and generate new information from them.

Regression analysis is the most frequently used tool in econometrics to find relationships
between variables. However, borrowing some techniques from machine learning to
perform predictive modelling could be better for economists when working with large
datasets. As | previously defined it, machine learning uses an algorithm that can make the
computer improve its predictive function based on input data that is provided to it. It is
considered that the function gives good predictions when it is able to accurately forecast
with out-of-sample data. Machine learning models are also able to update themselves
when new data on the topic is provided to them, which could also be a useful feature.

Nevertheless, according to Einav and Levin (2014), a type of Lucas critique arises when
economists think of using machine learning to predict the effects of new policy
implementation. The Lucas critique says that it is naive to try to predict the effects of a
change in economic policy based only on the relationships observed in historical data.
That’s because people’s decisions depend on the policies that are in place at the time, and
changing them would also change their decision. Therefore, the usefulness of machine

learning methods might depend a lot on the context in which they are used.

2.1.1 Causal inference

As stated by Varian (2014a) the area where there is more potential for collaboration

between econometrics and machine learning is causal inference. Machine learning

4



models so far have only focused on prediction, but their techniques have potential to
include causality into their models. In fact, even if a predictive model cannot provide
conclusions regarding causality, it is able to provide intuition into the causal impact of an
action. Specifically, the model can predict what would have happened if that action had
not been implemented, a sort of “control group prediction”. Then the estimated causal
effect can be measured by subtracting the real outcome of the action and the results from
control group prediction, plus some selection bias. This is done in economics using
difference-in-differences estimators as well as Instrumental variables, among other
experiments. There is potential for machine learning to use this kind of econometrics

techniques and provide possibly more accurate control group predictions.

2.1.2 Predictive modelling

Many firms have been using big data to build predictive models that help improve their
efficiency, introduce new services and help in their decision-making process. There are
many examples of these kinds of business applications of machine learning techniques,
including Amazon’s shopping recommendations based on past purchases. These methods
that have become increasingly common in business are still relatively underused in the

field of economics.

The goal of predictive modelling is to achieve good out-of-sample predictions. The
overfitting problem refers to having a model that performs in-sample predictions well
but does poorly for out-of-sample inputs. Machine learning has several different tools to
solve the overfitting problem and make sure that the estimated models will be able to
generalize their results to an out-of-sample data set.

First, there is the cross-validation method. It is a holdout method which consists of
randomly dividing the data into “training” and “testing” subsets, which are arbitrarily
sized. The training data set is used to for the estimation of the model. After that, the testing
data set is used to evaluate how well the chosen model performs its prediction. It is also
possible to increase the complexity of this method by using K-fold cross-validation
instead. It works in a similar way, but it randomly divides the data set into k subsets
instead of only two. K-1 subsets are used for training and the other one for testing. The
process is repeated k times so that each of the subsets is used as the test set only once.

The validation results are averaged once the cross-validation process is finished.



Repeating the cross-validation k times reduces the dependence of performance on the

specific train-test division of data and reduces its variance.

Another method to combat overfitting is regularisation. It consists of penalizing models
that are excessively complex because simple models tend to be better at generalizing their
results. Lasso, Ridge, Lars and Elastic net regressions are all examples of regularization,
each having a different penalization term for complexity. They all work by adding a
penalty term to the estimation of the model’s coefficients. For example, the penalty term

for Lasso regression is /112}”|ﬁj|, where A; = 0 is the penalty parameter. These also act

as useful tools for variable selection when dealing with large samples because the
penalties result in some of the variables’ coefficients being zero — meaning they should

not be included in the model.

Finally, another set of tools to improve predictive model performance are Bootstrapping,
Bagging, and Boosting. All of these introduce randomness to the data, which helps reduce
overfitting. Bootstrapping is based on the creation of random samples with replacement
out of the data set, to estimate the distribution of a statistic. Bagging is the averaging of
models estimated with different bootstrap samples, with the aim of improving the
performance of the estimators. Boosting consists of repeating estimations where the
misclassified observations are given increasing weights, and the final estimate is an

average of the repetitions’ results.

Lastly, I will quickly introduce a couple interesting predictive modelling techniques in
machine learning that could be useful in the field of economics. Classification and
Regression Trees (CART) are a machine learning tool used to create regression models
that can be used to solve classification problems. They can classify multiple outputs and
continuous dependent variables, the latter referring to Regression Trees. Their structure
is similar to economics’ decision trees, but in this case there is a classification choice at
each node. CARTS are created by separating the data into parts and fit simple regressions
in each node. They perform better when modelling non-linear relations, and can still be

used if there is some missing data.

Bayesian Structural Time Series is an estimation method in machine learning that uses
time series data. It is mostly applied for variable selection and prediction modelling. It

uses Kalman filtering to estimate a time series model with different components (trends,



random walks, seasonality, etc.) and the spike-and-slab variable selection method, after
which the draws of posterior distribution of variables and coefficients are used to
construct estimates and forecasts of the dependent variable. Choi and Varian (2012) used
these methods to estimate the predictive power that Google queries have on different

economic indicators.

There are many other methods of machine learning, one of which is artificial neural
networks. As | have decided to focus this project on them, an in-depth description of their

characteristics and use is given in section 3.

2.2 Opportunities and challenges of big data in economics

To conclude the theoretical framework on Big data, | will describe some of the
opportunities and challenges of its applications in economics. These are based on the
article by Einav and Levin (2014).

First and foremost, there are many opportunities in the application of big data both for
economic research and economic policy decisions. Regarding research, large data sets
with highly granular data can lead to studies that answer new questions which were
previously not possible due to lack of detailed data. It also provides more credibility to
any analysis, as there are more robustness measures. As | mentioned in the previous
section, some machine learning techniques like regularisation and k-fold cross-validation
would be valuable additions to an economist’s toolkit. Furthermore, the use of big data
has potential to incorporate heterogeneity into econometric models: taking advantage of
how detailed the data is, the models could capture the response of several subgroups

instead of just the average response.

With respect to economic policy, it will be interesting to use big data to create alternative
measures to track private sector activity, other than traditional surveys. These could help
estimate the inflation, employment, consumer spending, etc. faster than the surveys do,
by using data sets on prices and spending that are available online, or indirectly, by

looking into Google search data trends like Choi and Varian (2012) did.

On the other hand, there are also some challenges associated with using new techniques
that are able to work with such large quantities of data. Firstly, economists will need to

learn how to use new big data tools if they are to take advantage of the new data sets



available to them. These include data management programmes, like SQL databases, as
well as programming languages, like R, getting acquainted with different machine
learning algorithms and other techniques. Another challenge will be to get broader access
to more of these big data sets, as right now access to both public and private data is usually
restricted due to privacy concerns. Public data is a powerful resource which is
underutilised, and research could benefit from having greater access to it now that more
tools are available. Finally, with such large datasets, it becomes harder and more time-
consuming to summarize the data and to find possible meaningful relationships in its
variables. The results can provide interesting insight but will also require a more complex

analysis.



3. NEURAL NETWORKS

Artificial neural networks are computing systems that can be used to approximate any
complex functional relationship. They are information processing machines made up of
simple interconnected processing units, or neurons. Neurons work in a non-linear manner,
through parallel processing of the information. They are used to infer meaning and detect
patterns in complex data sets, without necessarily prespecifying the type of relationship
between the regressors and response variables like you would need to do in a generalized
regression model. Therefore, neural networks can be thought of as extensions to

generalized regression models.

The idea of neural networks as computing machines was first introduced in 1943 by
McCulloch and Pitts. Since that moment, neural networks have usually been compared to
the human brain, because they acquire knowledge from their environment through a
learning process and use connections between their neurons, or synaptic weights, to store
the knowledge they have acquired. Learning is an iterative process in which the neural
network learns from its environment (the data provided to it) in order to improve its

performance in a specific task.

I will work with the neuralnet package for R, which uses a very flexible function to train
neural networks. It can work with an arbitrarily large number of covariates and response
variables, but as we will see the increased complexity might complicate the training
process, causing it to stop it the maximum steps are reached before the algorithm
converges. There are some other R packages available to train neural networks, including
nnet, RSNNS and AMORE. However, neuralnet is specifically built to train neural

networks in the context of regression analyses, and its algorithm is fastest for this purpose.
3.1 Basic structure

The design of a neural network is fundamentally based around neurons. A neuron is an

information processing unit composed of the following:

- Summation: a neuron k takes all the input signals (x;) multiplied by their
respective synaptic weights (wy;) and sums them, resulting in the linear

combiner u,.



- Synapses: they are connecting links between the neurons in each layer. They can
only connect one neuron to another one in the subsequent layer. Each of them is
characterized by a weight (wy;), which represents the effect of the previous
neuron on to the one it connects to. The weights are similar to the coefficients in
a regression model. The weights are usually started at random values which are
drawn from a normal distribution, and are later on adapted during the learning
process.

- Bias nodes (by): a bias is an externally applied effect to each of the hidden layers
in the neural network, which modifies the input of the activation function. They
act like intercepts in regression models (a constant learned outside of your input
data) and allow us to shift the learned model. The bias is added to the summation’s

result to create the input for the activation function.

All data passing through the neural network does so as signals. These signals are first
processed by the summation previously described and then by the activation function,
which limits the neuron’s output amplitude to some finite value. Activation functions are
also referred to as squashing functions. | will give a more detailed description of

activation functions in section 3.2.

Functions (1) and (2) and Figure 1 are the mathematical and graphical representations of
neuron Kk, where u; is the weighted summation of inputs to the neuron, vy, is the activation
potential and y,, is the output signal, the latter being the outcome of the activation function

(). Note that in all figures the signals flow from left to right.

U = T2, WijX; (1)

Vi = @u + by) = @(vy) (2)

Figure 1: Graphical representation of neuron k.
by
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There are three basic network architectures, or structures in which the neurons of a
network are organized. A perceptron, or single layer feedforward neural network; is the
most basic type of network: it only has an input layer and an output layer. It receives n
input nodes (independent variables) and processes them on the output layer neurons using
a weighted summation and an activation function, resulting in one or more output nodes
(dependent variables). It is used to classify patterns that are linearly separable. If the
network has a single neuron, it will only be able to classify its inputs into two categories.

Rosenblatt first introduced the concept of a perceptron in 1957.

An example of a perceptron is illustrated in Figure 2, where the black circles are input

nodes and the large circle is a neuron.

Figure 2: Perceptron with 4 input nodes and 1 output neuron

Input layer Output layer
xl
w2 ¥

3

o Bias b

Multi-layer feedforward neural networks consist of neurons organized in one or more
hidden layers, as well as the input and output layers, all connected through synapses. They
overcome the limitations of the perceptron and are used to model more complex
relationships between the variables, as they can extract higher-order statistics from the
inputs provided. Multilayer neural networks have a high degree of connectivity.

As it can be seen in Figure 3, each neuron in any layer is connected to all the neurons or
nodes in the previous layer. The input nodes are processed in the hidden layer neurons,
whose output is then passed on to the following layer (in this case the output layer) as
inputs. If there were more hidden layers, the process of feeding the data forward would
go until it reached the output layer, whose output represents the overall response of the

network to the initial inputs. Multi-layer perceptrons are the cornerstone of neuralnet.
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Figure 3: Multi-layer feedforward network with 10 input nodes,

one hidden layer and 2 output neurons
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In addition to those network architectures, we can also find Recurrent Neural Networks.
These are neural networks that include at least one feedback loop, through which the
output is fed back to the input nodes to update them through a unit-time delay element.
These may or may not include hidden layers. The presence of loops has a profound impact
on the learning capabilities of the neural network. In fact, the type of network architecture

chosen is always closely related to the learning algorithm used to train it.

Input layer: Hidden layers: Output layer:

take the input layers that are not directly A last layer of
unprocessed information observable from the input neurons that predicts
into the neural network. »| or output of the network. or classifies (numeric
Each regressor is They combine the input or factors) the value
represented as a variables across one or of the regressand
separate input node. more neurons using neurons

Figure 4: Layers of a neural network

Figure 4 shows how the layers of a neural network are ordered and what function each of
them performs. As | have previously mentioned, a perceptron does not have any hidden
layers. However, hidden layers can be included to increase a model’s flexibility. As
Hornik, Stinchcombe and White (1989) proved in their article about Multi-layer feed-
forward networks, that a neural network with just one hidden layer and a finite number

of neurons is enough to model any piecewise continuous function. This means that, under
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certain assumptions on the activation function, these networks have potential to be

universal approximators.

The structure of a neural network can be referred to as a formula describing the dependent
and independent variables used in the network (determining the nodes in the input layer
and neurons in the output layer) and a vector define the hidden layers, where the number
of elements in the vector determines the number of layers and each number sets the
neurons that layer has. These are used to set up a neural network in neuralnet, as | will
explain in section 3.5.1. As an example, a neural network with two hidden layers and 5
and 3 neurons in each hidden layer would be represented by the following vector:
hidden = (5, 3).

3.2 Activation function

The activation function defines the output of a neuron as a function of its activation
potential (v;). It determines whether neurons in the following hidden layer will be
activated or deactivated. Right now, neuralnet uses a single activation function for all

their neurons. Some common activation functions include the following:

- Threshold function: if the activation potential is positive or zero, it outputs 1. It
outputs zero otherwise. It is the simplest activation function, although it is not
used a lot in current implementations.

or =) 4228

- Sigmoid function: this is the most common type of activation function used in
the setting of neural networks. It is strictly increasing and S-shaped. In contrast to
the threshold function, it offers a continuous range of variables from 0 to 1 and is

also differentiable.

1
o) = Tre-@ (4)

Where a is the slope parameter.

If we were interested in getting an output ranging from -1 to 1 instead of 0 to 1 we could

redefine the previous functions in the following way:

- Signum function:

13



1 ifv>0

) =450 ifv=0 (5)
-1 ifv<O0

- Hyperbolic tangent function:
¢(v) = tanh(v) (6)

If we wanted to base our analysis on a stochastic neural model instead of a deterministic
one, we could add probability to the previous activation functions to determine if the

neuron is “fired” or not.
3.3 The Learning process

One of the main characteristics of neural networks is their ability to learn from their
environment to improve their performance. Haykin (1999) defined the learning process

of neural networks in the following way:

“Leaning is a process by which the free parameters of a neural network are
adapted through a process of stimulation by the environment in which the
network is embedded. The type of learning is determined by the manner in

which the parameter change takes place”.

So, in the process of learning, the environment stimulates the neural network, which
optimizes its weights based on a learning algorithm, and changes the way it interacts with
the environment. This process is iterated and the network tends to gradually improve its
performance. It ends when a pre-specified condition is fulfilled, such as minimizing the

error signal or reaching the maximum number of iteration steps.

I will focus my analysis on a specific type of learning process: error correction learning.
The type of learning process you follow depends on the type of neural network you work
with. In my case, error correction learning is used for both single layer and multilayer

feedforward neural networks.

In this learning process, the error signal measures the difference between the desired

result and the actual output signal of the neural network:
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ex = dp(n) —y(n) (7)

Where the output neuron k in a feedforward neural network receives the input signal x(n)
from the previous hidden layers, y(n) is the neuron’s output and n represents the time
step of the training process. Error correcting learning will adjust the values of the
neuron’s synaptic weights, in an iterative manner, until the actual output is close to the
desired response. The adjustment will depend on the learning algorithm we have chosen
to use, but they all attempt to minimize the error. The learning rate will determine the
speed at which the desired outcome is achieved: a low learning rate will result in a slow
convergence; a high learning rate might result in missing the minimum error point.
Therefore, the choice of learning rate is crucial for the convergence of the process, but it
Is set by the user and there is no rule to know which learning rate will work best in each

specific context.

Other possible types of learning processes include memory-based learning, where all past
experiences are stored in a large memory of classified input-output examples; Hebbian
learning, which is based on associative learning and increases synaptic efficiency as a
function of the correlation between the neurons on either side of it; Competitive learning,
where output neurons compete to be activated; and Boltzmann learning, which uses a

stochastic learning algorithm and neurons that operate binarily — being on or off.
3.3.1 Learning paradigms

In addition to the type of learning process, there are three possible learning paradigms, or

environments in which a neural network can operate:

1. Supervised learning: or learning with a teacher, refers to the situation in which
the neural network has no knowledge of the environment. The teacher has
knowledge on the environment and provides the desired response that the network
should have to a training vector. The training process is used to transmit the
knowledge of the environment from the teacher to the network.

Specifically, within error-correcting learning, supervised learning starts with
synaptic weights that are random values drawn from a normal distribution, and
the network adapts them according to the learning algorithm chosen in order to

reach the desired response. When the error is minimized the process of training
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the network is completed, as it has achieved to emulate the teacher’s desired
outcome.

There are two main methods of supervised learning with multi-layer perceptrons.
In the on-line method, the adjustments to the synaptic weights are performed on
an example-by-example basis: a first random pair of input vector and desired
response are presented, the weights are adjusted and the process is repeated until
all training vectors have been used. This method is simple to implement and
effectively solves large-scale pattern classification problems. The other method of
supervised learning, the batch method, presents all the training sample example to
the network at the same time and then adjusts the weights. The process is repeated
and at each period the training samples are presented in a random order. This
method provides a more accurate estimation of the gradient vector and allows for
the parallelization of the learning process. It is useful to solve nonlinear regression
problems.

Reinforced learning: training is performed through continued interaction with
the environment, in order to minimize the performance index. This process is built
around a critic: it receives a temporal sequence of signals from the environment
and transforms them into heuristic reinforcement signals after a delay (delayed
reinforcement). Despite the additional difficulty it involves compared to
supervised learning, reinforced learning is interesting because it develops the
network’s ability to interact with its environment and learn to perform a task based
only on its own experience.

Unsupervised learning: there is no teacher or critic to supervise the network’s
training process. Instead, it uses a task-independent measure to evaluate the
quality of representation that the network should learn. Based on that measure it

optimizes the networks’ synaptic weights.

3.3.2 Learning algorithms

A learning algorithm is a set of well-defined rules that the neural network follows in

order to complete its learning process. There are many possible algorithms to use, they

all aim to optimize the synaptic weights but each adjusts them in a different way.

The neuralnet package allows us to switch between different algorithms:

backpropagation; resilient backpropagation without weight backtracking; and GRProp,
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the globally convergent version by Anastasiadis, Magoulas and Vrahatis (2005). The
latter was a modification to the resilient backpropagation algorithm, which aims at
improving the convergence speed and stability of the previous algorithms.

I will focus on error correcting algorithms for single layer and multi-layer neural networks

that are under supervised learning, based on the descriptions by Haykin (2009).

First, the Perceptron algorithm. Remember that for the perceptron to work properly, the
patterns it classifies must be linearly separable (in the case of two classes, they should be
easily separable with a straight line, the decision boundary). To make the previously
introduced notation more straightforward, 1 will treat the bias (b;,) as a fixed input whose
weight is equal to one. Therefore, the input (x(n)) and weight (w(n)) vectors have m+1
elements each instead of m, which is the number of inputs. The number of steps in the

training process is denoted by n.

Consider a perceptron whose inputs are classifiable into two categories (C; and C,). We
provide it with sets of training vectors H; and H,, corresponding to each of the classes
respectively. The training process will imply the adjustment of the weights vector w until
the two classes are linearly separable for all input vectors x. Equation (8) will hold for all
input vectors belonging to C;, while equation (9) will hold for all input vectors belonging

to C,.
wlix >0 (8)
wlix <0 9)

Therefore, if the training set x(n) is correctly classified by weight vector w(n) on the n
iteration of the process, the weight vector will not be adjusted (w(n + 1) = w(n)). Being
correctly classified implies that if we know the vector comes from the set Hj,
wT (n)x(n) > 0 will hold, so that the network is classifying the input vector into C;.
However, if x(n) is not correctly classified, the weight vector will be updated in the

following way:
wn+1) =wh) £ n(n)x(n) (10)

where n(n) is the learning rate, a parameter that adjusts the change in weight. If w”x >
0 but x(n) belonged to C,, the weight should be decreased; if w'x < 0 but x(n)
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belonged to C;, the weight should be increased. The process should be repeated until the

training input vectors are correctly classified.

The learning rate can take any positive value, but if it is fixed to a constant value then the
Fixed-increment adaptation algorithm for the perceptron is used, as | have just
explained. If the learning rate is variable then the Perceptron convergence algorithm
(Lippman, 1987) should be considered. For the example of the latter algorithm, assume
that the initial weights are set at zero. The learning rate can be changed but should be
taking values between zero and one. Then activate the perceptron by providing it with the
training input vectors x(n) and a desired response d(n). In this case, the activation
function is the signum function, so the actual output and the desired response will be

described by the following functions:

y(n) = sng[w’ (W)x(n)] (11)
_ (1 if x(n) belongs to C
d(n) = {—1 if x(n)belongs to 82 (12)

Then the weights will be adjusted by the rule in equation (13). The process will be
repeated until the desired response is achieved, which will be the point where d(n) —

y(n) =0sothat w(n + 1) = w(n).

wn+1) =w) £n[d(n) —ym]x(n) (13)

Secondly, | will introduce the Least Mean Square (LMS) algorithm. This algorithm
works on neural networks called adaptive filters, which are characterized by arbitrary
initial weights, continuous adjustments to the weights are made based on the network’s
behaviour with respect to the desired response, and the computation of adjustments being
completed in a single period. These neural networks create a feedback loop around their
neurons, as their output is used to compute the error signal and that is in turn used to
adjust the initial weights, resulting in a new output and error signal. The LMS algorithm
was developed by Widrow and Hoff in 1960 and it can be used for prediction problems.
This algorithm is computationally efficient, simple to code and robust to external

disturbances.

The LMS algorithm is set to minimize the instantaneous value of the cost function defined

in equation (14). In this case, we also assume that the initial synaptic weights are set to
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zero. LMS uses the Method of Steepest Descent for its optimization, meaning that the
adjustments to the weights are in the direction of steepest descent, opposite to the
direction of the gradient vector Ve(n). This method converges to the optimal weights
slowly and learning rate has a large influence on its convergence behaviour. An
instantaneous estimate of the gradient vector is written in equation (15), considering that

the error signal is defined as e(n) = d(n) — xT (n)w(n).

e(n) = %ez(n) (14)
Se(W 5
% = e(n) gf;) — —x(n)e(n) (15)

Using the gradient vector in equation (15) for the method of steepest descent, the weights
will be adjusted according to the Widrow-Hoff rule or Delta rule, described in equation
(16). The Delta rule states that the synaptic weight adjustment of a neuron is proportional
to the product of the error signal and the input at time n.

wn+1) =wh) +nx(n)e(n) (16)

This process of weight adjustment will be repeated until the cost function (a function of
the error signal) is minimized. Basing the learning process on this algorithm implies the
assumption that the error signals are directly measurable and that the desired response is
externally provided, like in a supervised training setting. Assigning credit for overall

outcomes becomes difficult when there are hidden neurons involved.

Finally, I will present the Backpropagation training algorithm. It is commonly used in
the learning process of multi-layer perceptrons. This algorithm solves the credit-
assignment problem that arises when training a multi-layer perceptron with error-
correcting learning, due to the fact that the output of the hidden neurons is not observed.
It does so by computing the gradients differently depending on whether the neuron is at

a hidden layer or at the output layer.

Based on the on-line method of supervised learning, the backpropagation algorithm works
in the following way. The synaptic weights are initially set to values of a uniform
distribution whose mean is zero and variance makes the standard deviation of the neuron’s

activation potentials lie between the linear and standard parts of the sigmoid activation
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function. The cost function is the total instantaneous error energy, defined by equation
(14). Then present a set of training examples to the network, formed by an input vector
x(n) and a desired response vector d(n). In the forward computation phase, the input
vector is applied to the input layer and the desired response to the output layer, so that the
error signal can be computed. The error signal for neuron j in the output layer L is

computed in equation (17), where d;(n) is the jth element of the desired response vector,

or desired response for neuron j, and o;(n) = ij is neuron j’s output signal.
ej(n) = d;j(n) —o;(n) (17)

Once we have the error signals, the Backwards computation phase can be started, where
the local gradients of the network are computed in the following manner, depending on

whether neuron j is in a hidden layer I or in the output layer L:

ej(L) ()’ (vj(L) (n)) for neuron j in output layer L

5 = (18)

(p’j (vj(l) (n)) de,gl“) (n)w,g-“) (n) for neuron jin hidden layer |

where the activation potential is defined as v}(n) = Z;w/;(n)y{ " (n), with i being a
neuron in the previous layer; and <p'j is the activation function’s differentiation with

respect to the argument.

Finally, the synaptic weights in layer | are adjusted according to the generalized delta
rule, described as Aw;;(n) in equation (19), where a is the momentum constant and 7 is
the learning rate. The Widrow-Hoff rule presented for the perceptron is a specific case of
the generalized delta rule, where a was set to zero. The addition of a momentum provides

stability to the algorithm, as it controls the feedback loop around the weight modification.
w(n+1) =w @) + afawP (- D]+ 18P )y () (19)

The Forward and Backwards computation phases should be iterated while presenting new
training data sets so that the synaptic weights will be adjusted until one of the chosen
stopping criteria is met. These stopping criteria must be set because the backpropagation
algorithm cannot be shown to converge on its own. The most reasonable stopping
criterion is reaching a minimum in the error surface, which happens when the gradient

vector of the error surface with respect to the weights is sufficiently small or when the
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rate of change of the cost function &4, (w) is sufficiently small. Another possible reason
for the learning process to stop is if it reaches a maximum number of iterations before

having completed any of the previously defined convergence criteria.

A variation of the Backpropagation algorithm that can be used in the neuralnet package
is the Resilient Backpropagation algorithm. It differs from traditional backpropagation
in that it uses a different learning rate for each weight. This rate can also be changed
during the process. This solves the problem of setting a learning rate that is appropriate
for the overall learning process, which can be hard for complex networks. Moreover,
resilient backpropagation only uses the sign of the gradient to modify the weights, not
their magnitude. That ensures that the learning rate will have equal influence over the
whole network. The learning rate will be increased if the sign of the gradient stays the
same, and decreased if the sign changes (as that would imply that the minimum point was

missed), in order to speed up the convergence to the local minimum.
3.4 neuralnet

As described in its documentation (Fritsch, Guenther, Suling, and Mueller, 2016),
neuralnet is a package that can be used to train neural networks using different algorithms
and in a flexible manner, as it allows us to choose the error and activation functions we

prefer.

3.4.1 Fitting a neural network

The following are some basic steps on how to fit a neural network with neuralnet. | have
written in italics some of the basic functions required to use this package, as well as

examples of how to code the different steps.

0. Set Working Directory and read the data: setwd(direction) to the direction where your
data files are saved, then set read.csv(“file ’) to open the data file itself. Or work with

one of R’s datasets, in which case you just need to load the package it is related to.

1. Decide which dependent and independent variables out of your data set you will

use in your neural network.

2. Check that there are no observations missing. If there are, fix the data set to either fill

them or remove them.
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3. Data preprocessing: normalise the data so that our results are not misled by the scale
of the some of the variables, and the accuracy of our prediction is higher. You can do
so by min-max normalisation, Z-score normalisation, median and MAD, and tan-h
estimators. The scale() function in R could also be used. I use min-max normalisation,
which transforms the data into a common range while maintaining the original
distribution. It can be used by creating the normalise function below, where df is a

data frame with the variables to normalize:
normalise <- function(x) {

return ((x - min(x)) / (max(x) - min(x)))

dfnormalised <- as.data.frame(lapply(df, normalize))

Additionally, if we have factor or character variables, we should convert them to
numerical variables (dummy variables). This is done using the model.matrix()

function.

4. Divide the data into training and test sets to perform the learning process. These
should be assigned using random sampling, with the function sample(). Remember to
use set.seed() every time you use random sampling or the results will not be

reproducible.

a. Create an index with the function sample(). In the following example the

training sample would contain 75% of the observations in our data:
index <- sample(1:nrow(data), round(0.75*nrow(data)))

b. Specify the variables trainNN and testNN by using the index in square brackets
on the normalized data:

trainNN <- dfnomalized[index, ]

testNN <- dfnormalized[-inde, ]
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You can also fit a linear regression model and test it on the test set, using the Mean
squared error to see how far our predictions are from the real data and use it to later
compare with the MSE resulting from testing the neural network.

5. Fit the neural network using the scaled data:
a. Install the package neuralnet: install. packages(“‘neuralnet”)
b. Load the package: library(neuralnet)

c. Decide how many layers and neurons there will be in the network. One hidden
layer is usually enough. However, there is no rule of thumb to decide which
setting will fit your model best, so the only option is to experiment with

different configurations.
d. Fitthe neural network, using the function neuralnet().

Its basic arguments are the formula describing the function to be fitted (f, which
should be previously defined as.formula(y~x1+x2+...+xn)), where the function’s
data comes from the train subset (data=trainNN) , and the hidden layers and
neurons (hidden=(, )). If hidden is equal to a scalar there is only one hidden layer
with however many neurons the scalar indicates; if it is a vector each number in

it determines how many neurons there are in each subsequent hidden layer.

Another possibility is to change the algorithm used (algorithm=). Different
algorithms may require additional arguments in order to work. Some other
relevant arguments include threshold, stepmax, startweights, learningrate, act.fct,
and rep. The package’s documentation (Fritsch et al., 2016) can be checked for
more details on all the possible arguments, which allow for a lot of customization.
The only compulsory arguments to specify are the formula and the source of the
data, so the documentation also details what the default values of the optional
arguments are. For example, the default number of hidden layers is one, with a
single neuron, the default algorithm is resilient backpropagation with weight
backtracking and the default activation function is the logistic function.

NN <- neuralnet(f, data, hidden, ...)
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After using the function neuralnet(), all information about the training process
and the trained neural network is stored in NN (or any name you have given to the
trained neural network). The information about the network can be explored by
printing the elements in NN, which include: NN$net.result, NN$result.matrix,
NN$weights, NN$generalized.weights, NN$startweights. net.result is a list of the
neural network’s output, equivalent to fitted values. result.matrix is a matrix
containing a summary of the main result of the network, including the error,
reached threshold, number of needed steps, information criteria and the weights.

The other elements are lists of the final, generalized and starting weights.

6. Prediction: once the network has been trained, it can be used to predict values of the
dependent variable. This is done in this package using the compute() function, which
calculates and summarizes the output of all neurons in the network. If it is provided
with a vector of new covariate combinations (NNtest) that were not in the train set of

the neural network, the compute function can be used to calculate the new outputs.
newoutput <- compute(NN, NNtest ,...)
newoutput$Net.result

Net.result is a list of the predicted outputs. The results will be scaled due to the
previous normalization, so they must be transformed before we can compare them to

the real values. These comparisons can easily be done through visualization.

We can also evaluate it using just the Mean Squared Error, and compare it to the
previous results using the linear regression model, if we estimated that beforehand. If
the MSE of the neural network is smaller than the MSE of the linear model then the
network is doing a better job at predicting the dependent variable. However, keep in

mind that these results depend on the train-test set split that has been performed above.

3.4.2 Additional features

Some additional features available when using neuralnet to fit a neural network include
the ability to visualize the results in different ways as well as the computation of

confidence intervals for the weights that the network has estimated.
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There are three possible ways to visualize the results of the learning process of a neural
network. The first one is simply using the plot() function on our neural network NN. It
results in a graph showing the structure of the trained neural network: all covariates and
result variables, layers, neurons, and synapses, along with their corresponding weight. It
also includes the resulting error and the number of steps involved in the training process.
It is a good option to visualize the structure of the neural network, but it can look very
cluttered and not convey much information if the neural network is very complex. To
make larger neural networks’ plot clearer, we can customize it using the parameters

dimension and plot to edit the size of the plot and that of each neuron.

Another possibility is to plot the generalized weights using gwplot. It plots the generalized
weights with respect to each covariate, so it gives us multiple plots. It allows visualizing

the possible linear relations within the data in a clearer way.

The final possibility regarding visualization is to plot the output results of the neural
network (yj for all output layer neurons). This should provide a visual approximation to
the performance of the trained neural network. This can be plotted alongside the results
of the equivalent linear model, to visually compare them. Less dispersion in the output

implies better predictions from the model.

On the other hand, the confidence.interval() function in the neuralnet package allows us
to compute the confidence intervals for each of the weighs in the trained neural network.
That is possible as long as the weights of the neural network follow a normal distribution,
which is the case when the network is identified (it does not include neurons that have no
effect or ones that are a linear combination of other neurons in the input or hidden layers);
and the error function equals the negative log-likelihood. The confidence.interval()
function does not control for these conditions being satisfied, so the user should be careful
when interpreting the results, as they will not be meaningful unless the assumptions are

satisfied.
3.5 Benefits and challenges of neural networks

As a point of closure to my theoretical analysis of neural networks, I will discuss some of
the benefits and challenges related to this machine learning method, mostly based on
Haykin (2009).
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First, I will mention some of the beneficial characteristics of neural networks. They are
non-linear in their processing of information and have a parallel distributed structure. As
| have described in detail in section 3.3, one of the network’s most characteristic features
is their ability to learn from the training set of inputs and afterwards generalize, so that
they can predict reasonable outputs for inputs that are out of the training sample. These
characteristics make neural networks able to find good solutions to complex problems. In
addition to that, neural networks do not require making any prior assumptions on a
statistical model for the input data, in a similar manner to nonparametric statistical
inference in statistics: the networks learn from the training set they are provided with and
construct an input-output mapping for the specific problem they are working with.
Networks are also very adaptable to changes in their environment, so they can be retrained
when they are presented with new conditions, and they will adjust the synaptic weights
accordingly. Another benefit arising from the network’s distributed information structure
is their fault tolerance: if a neuron or synapsis is damaged, the network should be able to
mostly keep up their performance, degrading slowly rather than having a catastrophic
failure. Finally, their analysis and design are uniform, using the same notation and

structure for all of its different applications.

On the other hand, there are also some challenges involved with the use of neural
networks. Their hidden layers and neurons of multi-layer perceptrons act like black boxes,
which, along with their nonlinearity and full connectivity, makes their analysis difficult
to tackle. On a related subject, the neural network training process can be computationally
expensive and sometimes that additional cost might not yield better results than simpler
methods would. Regarding the algorithm chosen for the learning process, as it works
toward the minimum in the error surface it might get caught in a local minimum and miss
the global minimum. Some algorithms address this by including random jumps to
different sections of the error surface. To conclude, a difficulty that I have mentioned
several times: there is no set rule to optimally set the learning rate and number of hidden
neurons and layers, the only way to find what is optimal for each setting is

experimentation.
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4. EMPIRICAL EXERCISE

4.1 Introduction to the exercise and data

As an empirical exercise to complement my analysis of big data methods applied to
economics, | have decided to train a multi-layer feedforward neural network in R, using

the neuralnet package which | have previously introduced.

To train the model, | have used a dataset that is preloaded into an R package. Specifically,
the Wages data set from the Ecdat package. My data set includes panel data on individual
wages as well as other characteristics of the individuals, like their experience, years of
education and marital status. It has data on 595 United States’ individuals in the period
from 1976 to 1982, a total of 4165 observations. The Ecdat package includes many
econometrics data sets ready to use in R, which are all from published books or articles
that used them in their models. My dataset was originally used in an article by Cornell
and Rupert (1988) published in the Journal of Applied Econometrics, and more recently

it was published with the book Econometric Analysis of Panel data by Baltagi (2003).

A dataset with only slightly over 4000 observations cannot be considered Big Data.
However, | have limited computing power available so | am restricted to using smaller
data sets. In addition to that, | want this exercise to be focused on my ability to use new
tools, specifically neural networks and R, to solve a problem similar to those | have seen
during the Bachelor’s degree. That is why I have decided to use a data set from R rather
than collect my own data set from a statistical service, which would have been difficult
to summarize and manage if | wanted a dataset with as many observations as the one |
have used. My focus has been placed on being able to successfully apply these new
techniques and solve the problems that arise when using new methods, rather than in
getting an economically relevant interpretation out of my results. However, | am still
interested in using economics’ data during my training with neural networks, which is

why I have chosen this dataset.

4.2 Results

In this section | will introduce the results of my analysis. The script | used to achieve

these results can be found in the Annex, along with a short description of the variable
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names. During my analysis | followed the steps | detailed on section 3.4 that explain how

to work with the package neuralnet to train an artificial neural network.

To begin with the analysis, | opened the data and checked if it had any missing values,
which was not the case. Then | proceeded to normalize my data set so that the magnitudes
of the variables did not affect the learning process of the neural network and it would
converge. This was not as straightforward as | expected because the factor variables had
to be excluded from the normalization and later turned into dummy variables so they
could be included in the neural network. The creation of dummy variables implied the
renaming of all the factor variables. For example, bluecol became bluecolyes, which

means that the dummy is equal to one for the individuals that are blue collar workers.

After the pre-processing of the data set was completed, | created the training and testing
sets. Having done that, | usedthe neuralnet() function to create my first artificial neural
network. | decided that |1 wanted the network to have only one hidden layer with six
hidden neurons. This initial decision is quite arbitrary, as there is no optimal rule to set
the number of hidden neurons. The decision to only include one hidden layer to start with
was based on the study by Hornik et al. (1989) that proved that a neural network have
potential to be universal approximators — a network with only one hidden layer and a
finite number of neurons is able to model any piece-wise function. The dependent variable
is the logarithm of wages and the independent variables are all of the others in the data
set: experience, work hours, years of education, being a blue-collar worker, employed in
manufacturing, black, living in the south, living in a metropolitan area, marital status,
gender and union membership. I used the default values for the rest of arguments in the
neuralnet() function, so my neural network was trained using the resilient
backpropagation algorithm with weight backtracking, and the activation function was the

logistic function. The error was computed as the Sum squared of the residuals.

The trained neural network, with all of its adjusted synaptic weights can be seen in Figure
5. The large number of independent variables makes the first layer of weights impossible
to distinguish. The bias nodes are represented in blue. More detailed results are given by
the NN6$netresults table which, in addition to all the synaptic weights seen in the figure,
contains interesting details on the learning process of the neural network. The network

needed 91988 steps to reach the minimum in the error surface, which is 10.7.
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Figure 6 First neural network, with 6 hidden layers Figure 5 Predicted and real values of the test set (NN6)
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Having completed the training process, | used the network to predict the values of the
train set by using the compute() function. After reversing the normalization process that
| used to train the network on the results, I illustrated them against the real values in the
training set in Figure 6. If the points were all on the straight line, it would mean that the
predictions were exactly equal to the real values of observations in the train set. That did
not happen, but the points are quite clustered around the line which suggests the prediction

is not bad.

As a last part of my exercise, | decided to train the network again by changing its
architecture. This second version had two hidden layers, with eight and three hidden

neurons respectively. | repeated the whole process in the same way, and the results are

Figure 8 Second network, with two hidden layers Figure 7Predicted and real values of the test set (NN83)

06

Predicted rating (NNB83)
04

0.2
|

real rating
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illustrated in figures 7 and 8. In terms of the comparison between predicted results and
actual values of the test set, there does not seem to be a lot of difference between the two

specifications of the networks.

As a final measure in the analysis of these networks, | computed the Mean squared error
of both, to compare the results. The first one’s is 0.0965 and the second’s is 0.0925 — also
very similar. | initially intended to use the same data in a linear regression model to
compare the results, but I do not think it would make sense considering that the data used

is panel data and would require another type of model.
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5. CONCLUSIONS

This project has taught me a lot about big data and machine learning, and how truly large
the opportunities for its application in economics are.

I have learnt about big data and some of the tools that could become useful to economists,
like cross-validation and regularization, as well as new predictive models like CART and
neural networks. | have also read about a lot of interesting research that relates the large
amount of data now available to economic topics, and how big data has allowed for new

questions to be considered that were previously not possible due to data limitations.

Neural networks have turned out to be a method with a lot more complexity than | was
expecting, but which is still approachable with some effort. It has taught me about
machine learning, from which economists could borrow many methods. My empirical
exercise using neural networks consisted of using two neural networks to predict the
values of wages for individuals. The predictions were not perfect, but the example helped
me put to practice some of the concepts which | had previously described, which was
very interesting. | am sure that using more complex datasets and taking more advantage

of neuralnet’s customization options could result in very interesting results.
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6. ANNEX

Meaning of the variable names in the dataset Wages:
e exp: years of full-time work experience
e wks: weeks worked
e Dbluecol: blue collar worker (yes/no)
e ind: works in a manufacturing industry (yes/no)
e south: resides in the south (yes/no)
e smsa: resides in a standard metropolitan statistical area (yes/no)
e married: the individual is married (yes/no)
e sex: the gender of the individual (male/female)
e union: whether the individual’s wage set by a union contract (yes/no)
e ed: years of education
e Dblack: whether the individual is African-American (yes/no)

e lwage: logarithm of wage

This is the R script detailing everything I used in the empirical exercise (section 4).

#Remove everything that was in the previous workspace and install packages needed:
Ecdat and neuralnet

rm(list=Is())

install.packages(c("Ecdat", "neuralnet™))

#Load Ecdat and neuralnet and open the data set of interest, Wages
library(Ecdat)

data(Wages)

#Check the srtucture of the data set and if it contains any missing values
str(Wages)

sum(is.na(Wages))

#Normalise the data frame, now called wagesn, and check the results with str(). Include

model.matrix function at the end to turn all the factor variables to dummy variables. After
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the dummies have been included, I turn the data set back to a data frame instead of a
matrix
normalise <- function(x){

if(is.numeric(x)) {

return((x-min(x))/(max(x)-min(x)))

}else{

X

}

}

wagesn <- as.data.frame(lapply(Wages, normalise))

wages.matrix <-
model.matrix(~exp+wks+bluecol+ind+south+smsa+married+sex-+union+ed+black+I
wage, data=wagesn)

wages <- as.data.frame(wages.matrix)

#Check the results of the normalisation. Comparing wages and wagesn, | can see that the
variables that were factor have been renamed, and a 1 indicates the option that has been
added to its name

head(wages)

head(wagesn)

#Create the test and train subsets

set.seed(42)

index <- sample(1:nrow(wages), round(0.75*nrow(wages)))
trainNN <- wages[index, ]

testNN <- wages[-index, ]

#Fit the neural network with the training subset

library(neuralnet)

set.seed(24601)

f<-
as.formula(lwage~exp+wks+bluecolyes+ind+southyes+smsayes+marriedyes+sexmale
+unionyes+ed+blackyes)

NN6 <- neuralnet(f, data=trainNN, hidden=6)
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#Plot and see the results of the trained network
plot(NN6)

NN6$result.matrix

#Predict using the test set

predwages <- compute(NN6, testNN[ ,2:12])

predwages$net.result

#Reverse the normalization process on the predicted output

predwages2 <- (predwages$net.result*(max(Wages$lwage)-
min(Wages$lwage)))+min(Wages$lwage)

#Plot the prediction against the real values of the test sample

plot(testNN$Iwage, predwages$net.result, ylab = "Predicted rating (NN6)", xlab =
"real rating")

abline(0,1)

#Retrain the neural network with a different architecture: 8 and 3 hidden nodes, and
repeat all previous steps done with NN6

set.seed(24601)

NN83 <- neuralnet(f, data=trainNN, hidden=c(8,3))

plot(NN83)

NN83$result.matrix

predwages83 <- compute(NN83, testNN[ ,2:12])

predwages83$net.result

predwages832 <- (predwages83$net.result*(max(Wages$lwage)-

min(Wages$lwage)))+min(Wages$lwage)

#Plot the new network

plot(testNN$Iwage, predwages83$net.result, ylab = "Predicted rating (NN83)", xlab =
"real rating")

abline(0,1)

#MSE of both neural network specifications, which requires having the test samples

without normalisation
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set.seed(42)

index2 <- sample(1:nrow(Wages), round(0.75*nrow(Wages)))
train2 <- Wages[index2, ]

test2 <- Wages[-index2, ]

MSE.NN <- sum((predwages2 - test2$lwage)"2)/nrow(test2)
MSE.NN83 <- sum((predwages832 - test2$lwage)”2)/nrow(test2)
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