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1. INTRODUCTION 

As it has already been proven, the use of big data has become a successful tool in the field 

of business. However, it has not yet become widely used in economics. The aim of this 

thesis is to analyse the possible ways in which big data techniques could be implemented 

in the field of economics. More specifically, I have focused on the use of neural networks, 

which are a machine learning technique that can be used for regression and classification 

with very large data sets. 

The objectives I have for this project are the following:  

- Explain what big data is 

- Explore the main big data methods which may prove useful to economics  

- Learn about how neural networks work 

- Put some of these techniques into practice myself, specifically by training a neural 

network and using it for prediction in an economic model 

With these objectives in mind, this project will start by introducing big data and its 

methods to perform predictive modelling, as well as the possibility of using them causal 

inference, in section 2. In section 3 I will give an in-depth explanation on what neural 

networks are and detail how they work. I will also present how to use the neuralnet 

package for R to train a neural network. Finally, in section 4, I will use the knowledge on 

neural networks to train one myself using the previously introduced methods. 

An additional aim I hope to tackle with this project is to explain some of the quantitative 

methods used in Big data in way that can be understood by undergraduate students. I think 

it is important for economists to get acquainted with these methods but some of the 

literature in the topic seems quite advanced if you do not have a background in computer 

science.  
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2. BIG DATA 

The term Big Data is defined as data sets that that are extremely large and sometimes too 

complex to be analysed using traditional data management tools. Using new tools, they 

can be analysed to reveal patterns, trends and associations especially relating to human 

behaviour and interaction. Big data is created from many different sources at an incredibly 

fast rate. Some of the sources of big data include computer-mediated transactions, e-

mails, media, the Internet, Internet of Things (IoT) devices, sensor data, cell phones, 

among many others.  

Economic data is now more abundant than ever, both from the private and public sectors. 

As businesses and the government work more with computers, an increasing amount data 

has been compiled on their activities at a whole new and previously unexpected degree.  

But how is this data different from what was previously available? According to Einav 

and Levin (2014) and Varian (2014a), the following are the main distinctive traits of big 

data: 

- Very large volume of data, which reduces problems with statistical power.  

- Real-time availability of data, which has proven to be very useful in business but 

not yet very exploited in economics. 

- New types of variables are available that were not possible to know about before. 

This increases the number of potential regressors for our analysis as well as the 

complexity of the relations between variables. 

- Data is less structured and has more dimensionality. This can be useful but 

requires manipulation to organize and select the data before it can be used.  

Developing new techniques to deal work in these new settings is a challenge for 

economics research. Based on the previously mentioned characteristics, the new tools 

used by economists should allow for more powerful manipulation, better variable 

selection and more complex modelling of non-linear relations.  

The tool often used to process Big data is a relational database, which works with 

Structured Query Language (SQL) to flexibly store and manipulate medium size datasets. 

To work with even larger data sets (including millions of observations) “NoSQL” 

databases are used, which are more primitive but can work with larger amounts of data. 
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Having processed it, the data set can be used for statistical analysis. If despite the 

manipulation the data set is still too large, a subsample for analysis can be selected 

through random sampling.  

2.1 Big data analysis 

Data science is the field that performs computer-assisted data analysis in order to extract 

useful information from big data. It uses several different techniques to perform 

prediction and summarization, as well as other tasks. Specifically, machine learning is 

the tool mostly used for prediction and data mining is used for summarization processes. 

Machine learning was first defined by Samuel (1959) as the field concerned with 

programming algorithms which give computers the ability to learn from the data available 

to them. Learning implies the progressive improvement of its performance in a specific 

task.  On the other hand, Data mining is the process of examining large data sets to 

discover patterns and generate new information from them. 

Regression analysis is the most frequently used tool in econometrics to find relationships 

between variables. However, borrowing some techniques from machine learning to 

perform predictive modelling could be better for economists when working with large 

datasets. As I previously defined it, machine learning uses an algorithm that can make the 

computer improve its predictive function based on input data that is provided to it. It is 

considered that the function gives good predictions when it is able to accurately forecast 

with out-of-sample data. Machine learning models are also able to update themselves 

when new data on the topic is provided to them, which could also be a useful feature.  

Nevertheless, according to Einav and Levin (2014), a type of Lucas critique arises when 

economists think of using machine learning to predict the effects of new policy 

implementation. The Lucas critique says that it is naïve to try to predict the effects of a 

change in economic policy based only on the relationships observed in historical data. 

That’s because people’s decisions depend on the policies that are in place at the time, and 

changing them would also change their decision. Therefore, the usefulness of machine 

learning methods might depend a lot on the context in which they are used.  

2.1.1 Causal inference 

As stated by Varian (2014a) the area where there is more potential for collaboration 

between econometrics and machine learning is causal inference. Machine learning 
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models so far have only focused on prediction, but their techniques have potential to 

include causality into their models. In fact, even if a predictive model cannot provide 

conclusions regarding causality, it is able to provide intuition into the causal impact of an 

action. Specifically, the model can predict what would have happened if that action had 

not been implemented, a sort of “control group prediction”. Then the estimated causal 

effect can be measured by subtracting the real outcome of the action and the results from 

control group prediction, plus some selection bias. This is done in economics using 

difference-in-differences estimators as well as Instrumental variables, among other 

experiments. There is potential for machine learning to use this kind of econometrics 

techniques and provide possibly more accurate control group predictions.    

2.1.2 Predictive modelling 

Many firms have been using big data to build predictive models that help improve their 

efficiency, introduce new services and help in their decision-making process. There are 

many examples of these kinds of business applications of machine learning techniques, 

including Amazon’s shopping recommendations based on past purchases. These methods 

that have become increasingly common in business are still relatively underused in the 

field of economics.  

The goal of predictive modelling is to achieve good out-of-sample predictions. The 

overfitting problem refers to having a model that performs in-sample predictions well 

but does poorly for out-of-sample inputs. Machine learning has several different tools to 

solve the overfitting problem and make sure that the estimated models will be able to 

generalize their results to an out-of-sample data set.  

First, there is the cross-validation method. It is a holdout method which consists of 

randomly dividing the data into “training” and “testing” subsets, which are arbitrarily 

sized. The training data set is used to for the estimation of the model. After that, the testing 

data set is used to evaluate how well the chosen model performs its prediction. It is also 

possible to increase the complexity of this method by using K-fold cross-validation 

instead. It works in a similar way, but it randomly divides the data set into k subsets 

instead of only two. K-1 subsets are used for training and the other one for testing. The 

process is repeated k times so that each of the subsets is used as the test set only once. 

The validation results are averaged once the cross-validation process is finished. 
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Repeating the cross-validation k times reduces the dependence of performance on the 

specific train-test division of data and reduces its variance.  

Another method to combat overfitting is regularisation. It consists of penalizing models 

that are excessively complex because simple models tend to be better at generalizing their 

results. Lasso, Ridge, Lars and Elastic net regressions are all examples of regularization, 

each having a different penalization term for complexity. They all work by adding a 

penalty term to the estimation of the model’s coefficients. For example, the penalty term 

for Lasso regression is 𝜆1Σ𝑗
𝑝|𝛽𝑗|, where 𝜆1 ≥ 0 is the penalty parameter. These also act 

as useful tools for variable selection when dealing with large samples because the 

penalties result in some of the variables’ coefficients being zero – meaning they should 

not be included in the model. 

Finally, another set of tools to improve predictive model performance are Bootstrapping, 

Bagging, and Boosting. All of these introduce randomness to the data, which helps reduce 

overfitting. Bootstrapping is based on the creation of random samples with replacement 

out of the data set, to estimate the distribution of a statistic. Bagging is the averaging of 

models estimated with different bootstrap samples, with the aim of improving the 

performance of the estimators. Boosting consists of repeating estimations where the 

misclassified observations are given increasing weights, and the final estimate is an 

average of the repetitions’ results.   

Lastly, I will quickly introduce a couple interesting predictive modelling techniques in 

machine learning that could be useful in the field of economics.  Classification and 

Regression Trees (CART) are a machine learning tool used to create regression models 

that can be used to solve classification problems. They can classify multiple outputs and 

continuous dependent variables, the latter referring to Regression Trees. Their structure 

is similar to economics’ decision trees, but in this case there is a classification choice at 

each node. CARTs are created by separating the data into parts and fit simple regressions 

in each node. They perform better when modelling non-linear relations, and can still be 

used if there is some missing data.   

Bayesian Structural Time Series is an estimation method in machine learning that uses 

time series data. It is mostly applied for variable selection and prediction modelling. It 

uses Kalman filtering to estimate a time series model with different components (trends, 
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random walks, seasonality, etc.) and the spike-and-slab variable selection method, after 

which the draws of posterior distribution of variables and coefficients are used to 

construct estimates and forecasts of the dependent variable.  Choi and Varian (2012) used 

these methods to estimate the predictive power that Google queries have on different 

economic indicators. 

There are many other methods of machine learning, one of which is artificial neural 

networks. As I have decided to focus this project on them, an in-depth description of their 

characteristics and use is given in section 3.  

2.2 Opportunities and challenges of big data in economics 

To conclude the theoretical framework on Big data, I will describe some of the 

opportunities and challenges of its applications in economics. These are based on the 

article by Einav and Levin (2014). 

First and foremost, there are many opportunities in the application of big data both for 

economic research and economic policy decisions. Regarding research, large data sets 

with highly granular data can lead to studies that answer new questions which were 

previously not possible due to lack of detailed data. It also provides more credibility to 

any analysis, as there are more robustness measures. As I mentioned in the previous 

section, some machine learning techniques like regularisation and k-fold cross-validation 

would be valuable additions to an economist’s toolkit. Furthermore, the use of big data 

has potential to incorporate heterogeneity into econometric models: taking advantage of 

how detailed the data is, the models could capture the response of several subgroups 

instead of just the average response.   

With respect to economic policy, it will be interesting to use big data to create alternative 

measures to track private sector activity, other than traditional surveys. These could help 

estimate the inflation, employment, consumer spending, etc. faster than the surveys do, 

by using data sets on prices and spending that are available online, or indirectly, by 

looking into Google search data trends like Choi and Varian (2012) did.  

On the other hand, there are also some challenges associated with using new techniques 

that are able to work with such large quantities of data. Firstly, economists will need to 

learn how to use new big data tools if they are to take advantage of the new data sets 
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available to them. These include data management programmes, like SQL databases, as 

well as programming languages, like R, getting acquainted with different machine 

learning algorithms and other techniques. Another challenge will be to get broader access 

to more of these big data sets, as right now access to both public and private data is usually 

restricted due to privacy concerns. Public data is a powerful resource which is 

underutilised, and research could benefit from having greater access to it now that more 

tools are available. Finally, with such large datasets, it becomes harder and more time-

consuming to summarize the data and to find possible meaningful relationships in its 

variables. The results can provide interesting insight but will also require a more complex 

analysis.   
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3. NEURAL NETWORKS 

Artificial neural networks are computing systems that can be used to approximate any 

complex functional relationship. They are information processing machines made up of 

simple interconnected processing units, or neurons. Neurons work in a non-linear manner, 

through parallel processing of the information. They are used to infer meaning and detect 

patterns in complex data sets, without necessarily prespecifying the type of relationship 

between the regressors and response variables like you would need to do in a generalized 

regression model. Therefore, neural networks can be thought of as extensions to 

generalized regression models.  

The idea of neural networks as computing machines was first introduced in 1943 by 

McCulloch and Pitts. Since that moment, neural networks have usually been compared to 

the human brain, because they acquire knowledge from their environment through a 

learning process and use connections between their neurons, or synaptic weights, to store 

the knowledge they have acquired. Learning is an iterative process in which the neural 

network learns from its environment (the data provided to it) in order to improve its 

performance in a specific task.   

I will work with the neuralnet package for R, which uses a very flexible function to train 

neural networks. It can work with an arbitrarily large number of covariates and response 

variables, but as we will see the increased complexity might complicate the training 

process, causing it to stop it the maximum steps are reached before the algorithm 

converges. There are some other R packages available to train neural networks, including 

nnet, RSNNS and AMORE. However, neuralnet is specifically built to train neural 

networks in the context of regression analyses, and its algorithm is fastest for this purpose.  

3.1 Basic structure 

The design of a neural network is fundamentally based around neurons. A neuron is an 

information processing unit composed of the following: 

- Summation: a neuron k takes all the input signals (𝑥𝑗) multiplied by their 

respective synaptic weights (𝑤𝑘𝑗) and sums them, resulting in the linear 

combiner 𝑢𝑘.   
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- Synapses: they are connecting links between the neurons in each layer. They can 

only connect one neuron to another one in the subsequent layer. Each of them is 

characterized by a weight (𝑤𝑘𝑗), which represents the effect of the previous 

neuron on to the one it connects to. The weights are similar to the coefficients in 

a regression model. The weights are usually started at random values which are 

drawn from a normal distribution, and are later on adapted during the learning 

process.  

- Bias nodes (𝑏𝑘): a bias is an externally applied effect to each of the hidden layers 

in the neural network, which modifies the input of the activation function. They 

act like intercepts in regression models (a constant learned outside of your input 

data) and allow us to shift the learned model. The bias is added to the summation’s 

result to create the input for the activation function.  

All data passing through the neural network does so as signals. These signals are first 

processed by the summation previously described and then by the activation function, 

which limits the neuron’s output amplitude to some finite value. Activation functions are 

also referred to as squashing functions. I will give a more detailed description of 

activation functions in section 3.2. 

Functions (1) and (2) and Figure 1 are the mathematical and graphical representations of 

neuron k, where 𝑢𝑘 is the weighted summation of inputs to the neuron, 𝑣𝑘 is the activation 

potential and 𝑦𝑘 is the output signal, the latter being the outcome of the activation function 

(𝜑). Note that in all figures the signals flow from left to right. 

𝑢𝑘 = Σ𝑗=1
m 𝑤𝑘𝑗𝑥𝑗 (1) 

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘) = 𝜑(𝑣𝑘) (2) 

Figure 1: Graphical representation of neuron k. 
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There are three basic network architectures, or structures in which the neurons of a 

network are organized. A perceptron, or single layer feedforward neural network, is the 

most basic type of network: it only has an input layer and an output layer. It receives n 

input nodes (independent variables) and processes them on the output layer neurons using 

a weighted summation and an activation function, resulting in one or more output nodes 

(dependent variables). It is used to classify patterns that are linearly separable. If the 

network has a single neuron, it will only be able to classify its inputs into two categories. 

Rosenblatt first introduced the concept of a perceptron in 1957.  

An example of a perceptron is illustrated in Figure 2, where the black circles are input 

nodes and the large circle is a neuron.  

Figure 2: Perceptron with 4 input nodes and 1 output neuron 

 

Multi-layer feedforward neural networks consist of neurons organized in one or more 

hidden layers, as well as the input and output layers, all connected through synapses. They 

overcome the limitations of the perceptron and are used to model more complex 

relationships between the variables, as they can extract higher-order statistics from the 

inputs provided. Multilayer neural networks have a high degree of connectivity.  

As it can be seen in Figure 3, each neuron in any layer is connected to all the neurons or 

nodes in the previous layer. The input nodes are processed in the hidden layer neurons, 

whose output is then passed on to the following layer (in this case the output layer) as 

inputs. If there were more hidden layers, the process of feeding the data forward would 

go until it reached the output layer, whose output represents the overall response of the 

network to the initial inputs. Multi-layer perceptrons are the cornerstone of neuralnet. 
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Figure 3: Multi-layer feedforward network with 10 input nodes,  

one hidden layer and 2 output neurons 

 

In addition to those network architectures, we can also find Recurrent Neural Networks. 

These are neural networks that include at least one feedback loop, through which the 

output is fed back to the input nodes to update them through a unit-time delay element. 

These may or may not include hidden layers. The presence of loops has a profound impact 

on the learning capabilities of the neural network. In fact, the type of network architecture 

chosen is always closely related to the learning algorithm used to train it.  

  

 

 

 

 

Figure 4 shows how the layers of a neural network are ordered and what function each of 

them performs. As I have previously mentioned, a perceptron does not have any hidden 

layers. However, hidden layers can be included to increase a model’s flexibility. As 

Hornik, Stinchcombe and White (1989) proved in their article about Multi-layer feed-

forward networks, that a neural network with just one hidden layer and a finite number 

of neurons is enough to model any piecewise continuous function. This means that, under 

Input layer:  

take the input 

unprocessed information 

into the neural network. 

Each regressor is 

represented as a 

separate input node. 

Hidden layers:  

layers that are not  directly 

observable from the input 

or output of the network. 

They combine the input 

variables across one or 

more neurons 

Output layer:  

A last layer of 

neurons that predicts 

or classifies (numeric 

or factors)  the value 

of the regressand 

using neurons 

Figure 4: Layers of a neural network 
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certain assumptions on the activation function, these networks have potential to be 

universal approximators.  

The structure of a neural network can be referred to as a formula describing the dependent 

and independent variables used in the network (determining the nodes in the input layer 

and neurons in the output layer) and a vector define the hidden layers, where the number 

of elements in the vector determines the number of layers and each number sets the 

neurons that layer has. These are used to set up a neural network in neuralnet, as I will 

explain in section 3.5.1. As an example, a neural network with two hidden layers and 5 

and 3 neurons in each hidden layer would be represented by the following vector: 

ℎ𝑖𝑑𝑑𝑒𝑛 = (5, 3). 

3.2 Activation function 

The activation function defines the output of a neuron as a function of its activation 

potential (𝑣𝑘). It determines whether neurons in the following hidden layer will be 

activated or deactivated. Right now, neuralnet uses a single activation function for all 

their neurons. Some common activation functions include the following:  

- Threshold function: if the activation potential is positive or zero, it outputs 1. It 

outputs zero otherwise. It is the simplest activation function, although it is not 

used a lot in current implementations. 

𝜑(𝑣) = {
1   𝑖𝑓 𝑣 ≥ 0 
0   𝑖𝑓 𝑣 < 0

(3) 

- Sigmoid function: this is the most common type of activation function used in 

the setting of neural networks. It is strictly increasing and S-shaped. In contrast to 

the threshold function, it offers a continuous range of variables from 0 to 1 and is 

also differentiable.  

𝜑(𝑣) =
1

1 + 𝑒−𝑎𝑣
 (4) 

Where a is the slope parameter.  

If we were interested in getting an output ranging from -1 to 1 instead of 0 to 1 we could 

redefine the previous functions in the following way:  

- Signum function: 
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𝜑(𝑣) = {

1      𝑖𝑓 𝑣 > 0
0      𝑖𝑓 𝑣 = 0
−1   𝑖𝑓 𝑣 < 0

 (5) 

- Hyperbolic tangent function:  

𝜑(𝑣) = tanh(𝑣) (6) 

If we wanted to base our analysis on a stochastic neural model instead of a deterministic 

one, we could add probability to the previous activation functions to determine if the 

neuron is “fired” or not.  

3.3 The Learning process 

One of the main characteristics of neural networks is their ability to learn from their 

environment to improve their performance. Haykin (1999) defined the learning process 

of neural networks in the following way:  

“Leaning is a process by which the free parameters of a neural network are 

adapted through a process of stimulation by the environment in which the 

network is embedded. The type of learning is determined by the manner in 

which the parameter change takes place”. 

So, in the process of learning, the environment stimulates the neural network, which 

optimizes its weights based on a learning algorithm, and changes the way it interacts with 

the environment. This process is iterated and the network tends to gradually improve its 

performance. It ends when a pre-specified condition is fulfilled, such as minimizing the 

error signal or reaching the maximum number of iteration steps.  

I will focus my analysis on a specific type of learning process: error correction learning. 

The type of learning process you follow depends on the type of neural network you work 

with. In my case, error correction learning is used for both single layer and multilayer 

feedforward neural networks.  

In this learning process, the error signal measures the difference between the desired 

result and the actual output signal of the neural network:  
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𝑒𝑘 = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛) (7) 

Where the output neuron 𝑘 in a feedforward neural network receives the input signal 𝑥(𝑛) 

from the previous hidden layers, 𝑦(𝑛) is the neuron’s output and 𝑛 represents the time 

step of the training process. Error correcting learning will adjust the values of the 

neuron’s synaptic weights, in an iterative manner, until the actual output is close to the 

desired response. The adjustment will depend on the learning algorithm we have chosen 

to use, but they all attempt to minimize the error. The learning rate will determine the 

speed at which the desired outcome is achieved: a low learning rate will result in a slow 

convergence; a high learning rate might result in missing the minimum error point. 

Therefore, the choice of learning rate is crucial for the convergence of the process, but it 

is set by the user and there is no rule to know which learning rate will work best in each 

specific context.  

Other possible types of learning processes include memory-based learning, where all past 

experiences are stored in a large memory of classified input-output examples; Hebbian 

learning, which is based on associative learning and increases synaptic efficiency as a 

function of the correlation between the neurons on either side of it; Competitive learning, 

where output neurons compete to be activated; and Boltzmann learning, which uses a 

stochastic learning algorithm and neurons that operate binarily – being on or off.  

3.3.1 Learning paradigms 

In addition to the type of learning process, there are three possible learning paradigms, or 

environments in which a neural network can operate: 

1. Supervised learning: or learning with a teacher, refers to the situation in which 

the neural network has no knowledge of the environment. The teacher has 

knowledge on the environment and provides the desired response that the network 

should have to a training vector. The training process is used to transmit the 

knowledge of the environment from the teacher to the network. 

Specifically, within error-correcting learning, supervised learning starts with 

synaptic weights that are random values drawn from a normal distribution, and 

the network adapts them according to the learning algorithm chosen in order to 

reach the desired response. When the error is minimized the process of training 
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the network is completed, as it has achieved to emulate the teacher’s desired 

outcome. 

There are two main methods of supervised learning with multi-layer perceptrons. 

In the on-line method, the adjustments to the synaptic weights are performed on 

an example-by-example basis: a first random pair of input vector and desired 

response are presented, the weights are adjusted and the process is repeated until 

all training vectors have been used. This method is simple to implement and 

effectively solves large-scale pattern classification problems. The other method of 

supervised learning, the batch method, presents all the training sample example to 

the network at the same time and then adjusts the weights. The process is repeated 

and at each period the training samples are presented in a random order. This 

method provides a more accurate estimation of the gradient vector and allows for 

the parallelization of the learning process. It is useful to solve nonlinear regression 

problems. 

2. Reinforced learning: training is performed through continued interaction with 

the environment, in order to minimize the performance index. This process is built 

around a critic: it receives a temporal sequence of signals from the environment 

and transforms them into heuristic reinforcement signals after a delay (delayed 

reinforcement). Despite the additional difficulty it involves compared to 

supervised learning, reinforced learning is interesting because it develops the 

network’s ability to interact with its environment and learn to perform a task based 

only on its own experience.  

3. Unsupervised learning: there is no teacher or critic to supervise the network’s 

training process. Instead, it uses a task-independent measure to evaluate the 

quality of representation that the network should learn. Based on that measure it 

optimizes the networks’ synaptic weights.  

3.3.2 Learning algorithms 

A learning algorithm is a set of well-defined rules that the neural network follows in 

order to complete its learning process.  There are many possible algorithms to use, they 

all aim to optimize the synaptic weights but each adjusts them in a different way. 

The neuralnet package allows us to switch between different algorithms: 

backpropagation; resilient backpropagation without weight backtracking; and GRProp, 
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the globally convergent version by Anastasiadis, Magoulas and Vrahatis (2005). The 

latter was a modification to the resilient backpropagation algorithm, which aims at 

improving the convergence speed and stability of the previous algorithms.  

I will focus on error correcting algorithms for single layer and multi-layer neural networks 

that are under supervised learning, based on the descriptions by Haykin (2009). 

First, the Perceptron algorithm. Remember that for the perceptron to work properly, the 

patterns it classifies must be linearly separable (in the case of two classes, they should be 

easily separable with a straight line, the decision boundary). To make the previously 

introduced notation more straightforward, I will treat the bias (𝑏𝑘) as a fixed input whose 

weight is equal to one. Therefore, the input (𝑥(𝑛)) and weight (𝑤(𝑛)) vectors have m+1 

elements each instead of m, which is the number of inputs. The number of steps in the 

training process is denoted by n.  

Consider a perceptron whose inputs are classifiable into two categories (𝐶1 and 𝐶2). We 

provide it with sets of training vectors 𝐻1 and 𝐻2, corresponding to each of the classes 

respectively. The training process will imply the adjustment of the weights vector 𝑤 until 

the two classes are linearly separable for all input vectors 𝑥. Equation (8) will hold for all 

input vectors belonging to 𝐶1, while equation (9) will hold for all input vectors belonging 

to 𝐶2. 

𝑤𝑇𝑥 > 0 (8) 

𝑤𝑇𝑥 ≤ 0 (9) 

Therefore, if the training set 𝑥(𝑛) is correctly classified by weight vector 𝑤(𝑛) on the nth 

iteration of the process, the weight vector will not be adjusted (𝑤(𝑛 + 1) = 𝑤(𝑛)). Being 

correctly classified implies that if we know the vector comes from the set 𝐻1, 

𝑤𝑇(𝑛)𝑥(𝑛) > 0 will hold, so that the network is classifying the input vector into 𝐶1. 

However, if  𝑥(𝑛) is not correctly classified, the weight vector will be updated in the 

following way:  

𝑤(𝑛 + 1) = 𝑤(𝑛) ± 𝜂(𝑛)𝑥(𝑛) (10) 

where 𝜂(𝑛) is the learning rate, a parameter that adjusts the change in weight. If  𝑤𝑇𝑥 >

0 but 𝑥(𝑛) belonged to 𝐶2, the weight should be decreased; if  𝑤𝑇𝑥 ≤ 0 but 𝑥(𝑛) 
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belonged to 𝐶1, the weight should be increased. The process should be repeated until the 

training input vectors are correctly classified.  

The learning rate can take any positive value, but if it is fixed to a constant value then the 

Fixed-increment adaptation algorithm for the perceptron is used, as I have just 

explained. If the learning rate is variable then the Perceptron convergence algorithm 

(Lippman, 1987) should be considered. For the example of the latter algorithm, assume 

that the initial weights are set at zero. The learning rate can be changed but should be 

taking values between zero and one. Then activate the perceptron by providing it with the 

training input vectors 𝑥(𝑛) and a desired response 𝑑(𝑛). In this case, the activation 

function is the signum function, so the actual output and the desired response will be 

described by the following functions:  

𝑦(𝑛) = 𝑠𝑛𝑔[𝑤𝑇(𝑛)𝑥(𝑛)] (11) 

𝑑(𝑛) = {
1   𝑖𝑓 𝑥(𝑛) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐶1

−1   𝑖𝑓 𝑥(𝑛)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐶2
(12) 

Then the weights will be adjusted by the rule in equation (13). The process will be 

repeated until the desired response is achieved, which will be the point where 𝑑(𝑛) −

𝑦(𝑛) = 0 so that 𝑤(𝑛 + 1) = 𝑤(𝑛). 

𝑤(𝑛 + 1) = 𝑤(𝑛) ± 𝜂[𝑑(𝑛) − 𝑦(𝑛)]𝑥(𝑛) (13) 

Secondly, I will introduce the Least Mean Square (LMS) algorithm. This algorithm 

works on neural networks called adaptive filters, which are characterized by arbitrary 

initial weights, continuous adjustments to the weights are made based on the network’s 

behaviour with respect to the desired response, and the computation of adjustments being 

completed in a single period. These neural networks create a feedback loop around their 

neurons, as their output is used to compute the error signal and that is in turn used to 

adjust the initial weights, resulting in a new output and error signal. The LMS algorithm 

was developed by Widrow and Hoff in 1960 and it can be used for prediction problems. 

This algorithm is computationally efficient, simple to code and robust to external 

disturbances.  

The LMS algorithm is set to minimize the instantaneous value of the cost function defined 

in equation (14). In this case, we also assume that the initial synaptic weights are set to 
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zero. LMS uses the Method of Steepest Descent for its optimization, meaning that the 

adjustments to the weights are in the direction of steepest descent, opposite to the 

direction of the gradient vector ∇𝜀(𝑛). This method converges to the optimal weights 

slowly and learning rate has a large influence on its convergence behaviour. An 

instantaneous estimate of the gradient vector is written in equation (15), considering that 

the error signal is defined as 𝑒(𝑛) = 𝑑(𝑛) − 𝑥𝑇(𝑛)𝑤̂(𝑛). 

𝜀(𝑛) =  
1

2
𝑒2(𝑛) (14) 

𝛿𝜀(𝑤̂)

𝛿𝑤̂(𝑛)
= 𝑒(𝑛)

𝛿𝑒(𝑛)

𝛿𝑤̂
= −𝑥(𝑛)𝑒(𝑛) (15) 

Using the gradient vector in equation (15) for the method of steepest descent, the weights 

will be adjusted according to the Widrow-Hoff rule or Delta rule, described in equation 

(16). The Delta rule states that the synaptic weight adjustment of a neuron is proportional 

to the product of the error signal and the input at time n.   

𝑤̂(𝑛 + 1) = 𝑤̂(𝑛) + 𝜂𝑥(𝑛)𝑒(𝑛) (16) 

This process of weight adjustment will be repeated until the cost function (a function of 

the error signal) is minimized. Basing the learning process on this algorithm implies the 

assumption that the error signals are directly measurable and that the desired response is 

externally provided, like in a supervised training setting. Assigning credit for overall 

outcomes becomes difficult when there are hidden neurons involved.  

Finally, I will present the Backpropagation training algorithm. It is commonly used in 

the learning process of multi-layer perceptrons. This algorithm solves the credit-

assignment problem that arises when training a multi-layer perceptron with error-

correcting learning, due to the fact that the output of the hidden neurons is not observed. 

It does so by computing the gradients differently depending on whether the neuron is at 

a hidden layer or at the output layer.  

Based on the on-line method of supervised learning, the backpropagation algorithm works 

in the following way. The synaptic weights are initially set to values of a uniform 

distribution whose mean is zero and variance makes the standard deviation of the neuron’s 

activation potentials lie between the linear and standard parts of the sigmoid activation 
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function. The cost function is the total instantaneous error energy, defined by equation 

(14). Then present a set of training examples to the network, formed by an input vector 

𝑥(𝑛) and a desired response vector 𝑑(𝑛). In the forward computation phase, the input 

vector is applied to the input layer and the desired response to the output layer, so that the 

error signal can be computed. The error signal for neuron j in the output layer L is 

computed in equation (17), where 𝑑𝑗(𝑛) is the jth element of the desired response vector, 

or desired response for neuron j, and 𝑜𝑗(𝑛) = 𝑦𝑗
𝐿 is neuron j’s output signal.  

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑜𝑗(𝑛) (17) 

Once we have the error signals, the Backwards computation phase can be started, where 

the local gradients of the network are computed in the following manner, depending on 

whether neuron j is in a hidden layer l or in the output layer L:  

𝛿𝑗
(𝑙)(𝑛) = {

𝑒𝑗
(𝐿)(𝑛)𝜑′

𝑗
(𝑣𝑗

(𝐿)(𝑛))    𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝐿

𝜑′
𝑗

(𝑣𝑗
(𝑙)(𝑛)) Σ𝑘𝛿𝑘

(𝑙+1)(𝑛)𝑤𝑘𝑗
(𝑙+1)(𝑛)   𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑛 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑙

(18) 

where the activation potential is defined as 𝑣𝑗
𝑙(𝑛) = Σ𝑖𝑤𝑗𝑖

𝑙 (𝑛)𝑦𝑖
𝑙−1(𝑛), with 𝑖 being a 

neuron in the previous layer; and 𝜑′
𝑗
 is the activation function’s differentiation with 

respect to the argument.  

Finally, the synaptic weights in layer l are adjusted according to the generalized delta 

rule, described as Δ𝑤𝑗𝑖(𝑛) in equation (19), where 𝛼 is the momentum constant and 𝜂 is 

the learning rate. The Widrow-Hoff rule presented for the perceptron is a specific case of 

the generalized delta rule, where 𝛼 was set to zero. The addition of a momentum provides 

stability to the algorithm, as it controls the feedback loop around the weight modification. 

𝑤𝑗𝑖
(𝑙)(𝑛 + 1) = 𝑤𝑗𝑖

(𝑙)(𝑛) + 𝛼[Δ𝑤𝑗𝑖
(𝑙)(𝑛 − 1)] + 𝜂𝛿𝑗

(𝑙)(𝑛)𝑦𝑖
(𝑙−1)(𝑛) (19) 

The Forward and Backwards computation phases should be iterated while presenting new 

training data sets so that the synaptic weights will be adjusted until one of the chosen 

stopping criteria is met. These stopping criteria must be set because the backpropagation 

algorithm cannot be shown to converge on its own. The most reasonable stopping 

criterion is reaching a minimum in the error surface, which happens when the gradient 

vector of the error surface with respect to the weights is sufficiently small or when the 
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rate of change of the cost function 𝜀𝑎𝑣(𝑤) is sufficiently small. Another possible reason 

for the learning process to stop is if it reaches a maximum number of iterations before 

having completed any of the previously defined convergence criteria.  

A variation of the Backpropagation algorithm that can be used in the neuralnet package 

is the Resilient Backpropagation algorithm. It differs from traditional backpropagation 

in that it uses a different learning rate for each weight. This rate can also be changed 

during the process. This solves the problem of setting a learning rate that is appropriate 

for the overall learning process, which can be hard for complex networks. Moreover, 

resilient backpropagation only uses the sign of the gradient to modify the weights, not 

their magnitude. That ensures that the learning rate will have equal influence over the 

whole network. The learning rate will be increased if the sign of the gradient stays the 

same, and decreased if the sign changes (as that would imply that the minimum point was 

missed), in order to speed up the convergence to the local minimum.  

3.4 neuralnet 

As described in its documentation (Fritsch, Guenther, Suling, and Mueller, 2016), 

neuralnet is a package that can be used to train neural networks using different algorithms 

and in a flexible manner, as it allows us to choose the error and activation functions we 

prefer. 

3.4.1 Fitting a neural network 

The following are some basic steps on how to fit a neural network with neuralnet. I have 

written in italics some of the basic functions required to use this package, as well as 

examples of how to code the different steps.  

0. Set Working Directory and read the data: setwd(direction) to the direction where your 

data files are saved, then set read.csv(“file”) to open the data file itself. Or work with 

one of R’s datasets, in which case you just need to load the package it is related to.  

1. Decide which dependent and independent variables out of your data set you will 

use in your neural network. 

2. Check that there are no observations missing. If there are, fix the data set to either fill 

them or remove them. 
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3. Data preprocessing: normalise the data so that our results are not misled by the scale 

of the some of the variables, and the accuracy of our prediction is higher. You can do 

so by min-max normalisation, Z-score normalisation, median and MAD, and tan-h 

estimators. The scale() function in R could also be used. I use min-max normalisation, 

which transforms the data into a common range while maintaining the original 

distribution. It can be used by creating the normalise function below, where df is a 

data frame with the variables to normalize: 

normalise <- function(x) { 

    return ((x - min(x)) / (max(x) - min(x))) 

  } 

  dfnormalised <- as.data.frame(lapply(df, normalize)) 

Additionally, if we have factor or character variables, we should convert them to 

numerical variables (dummy variables). This is done using the model.matrix() 

function.  

4. Divide the data into training and test sets to perform the learning process. These 

should be assigned using random sampling, with the function sample(). Remember to 

use set.seed() every time you use random sampling or the results will not be 

reproducible. 

a. Create an index with the function sample(). In the following example the 

training sample would contain 75% of the observations in our data:  

index <- sample(1:nrow(data), round(0.75*nrow(data))) 

b. Specify the variables trainNN and testNN by using the index in square brackets 

on the normalized data: 

trainNN <- dfnomalized[index, ] 

testNN <- dfnormalized[-index, ] 
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You can also fit a linear regression model and test it on the test set, using the Mean 

squared error to see how far our predictions are from the real data and use it to later 

compare with the MSE resulting from testing the neural network.  

5. Fit the neural network using the scaled data: 

a. Install the package neuralnet: install.packages(“neuralnet”) 

b. Load the package: library(neuralnet) 

c. Decide how many layers and neurons there will be in the network. One hidden 

layer is usually enough. However, there is no rule of thumb to decide which 

setting will fit your model best, so the only option is to experiment with 

different configurations.  

d. Fit the neural network, using the function neuralnet().  

Its basic arguments are the formula describing the function to be fitted (f, which 

should be previously defined as.formula(y~x1+x2+...+xn)), where the function’s 

data comes from the train subset (data=trainNN) , and the hidden layers and 

neurons (hidden=( , )). If hidden is equal to a scalar there is only one hidden layer 

with however many neurons the scalar indicates; if it is a vector each number in 

it determines how many neurons there are in each subsequent hidden layer.  

Another possibility is to change the algorithm used (algorithm=). Different 

algorithms may require additional arguments in order to work. Some other 

relevant arguments include threshold, stepmax, startweights, learningrate, act.fct, 

and rep. The package’s documentation (Fritsch et al., 2016) can be checked for 

more details on all the possible arguments, which allow for a lot of customization. 

The only compulsory arguments to specify are the formula and the source of the 

data, so the documentation also details what the default values of the optional 

arguments are. For example, the default number of hidden layers is one, with a 

single neuron, the default algorithm is resilient backpropagation with weight 

backtracking and the default activation function is the logistic function. 

NN <- neuralnet(f, data, hidden, ...) 
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After using the function neuralnet(), all information about the training process 

and the trained neural network is stored in NN (or any name you have given to the 

trained neural network). The information about the network can be explored by 

printing the elements in NN, which include: NN$net.result, NN$result.matrix, 

NN$weights, NN$generalized.weights, NN$startweights. net.result  is a list of the 

neural network’s output, equivalent to fitted values. result.matrix is a matrix 

containing a summary of the main result of the network, including the error, 

reached threshold, number of needed steps, information criteria and the weights.   

The other elements are lists of the final, generalized and starting weights.  

6. Prediction: once the network has been trained, it can be used to predict values of the 

dependent variable. This is done in this package using the compute() function, which 

calculates and summarizes the output of all neurons in the network. If it is provided 

with a vector of new covariate combinations (NNtest) that were not in the train set of 

the neural network, the compute function can be used to calculate the new outputs.  

newoutput <- compute(NN, NNtest ,...) 

newoutput$Net.result 

Net.result is a list of the predicted outputs. The results will be scaled due to the 

previous normalization, so they must be transformed before we can compare them to 

the real values. These comparisons can easily be done through visualization.  

We can also evaluate it using just the Mean Squared Error, and compare it to the 

previous results using the linear regression model, if we estimated that beforehand. If 

the MSE of the neural network is smaller than the MSE of the linear model then the 

network is doing a better job at predicting the dependent variable. However, keep in 

mind that these results depend on the train-test set split that has been performed above.  

3.4.2 Additional features 

Some additional features available when using neuralnet to fit a neural network include 

the ability to visualize the results in different ways as well as the computation of 

confidence intervals for the weights that the network has estimated.  
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There are three possible ways to visualize the results of the learning process of a neural 

network. The first one is simply using the plot() function on our neural network NN. It 

results in a graph showing the structure of the trained neural network: all covariates and 

result variables, layers, neurons, and synapses, along with their corresponding weight. It 

also includes the resulting error and the number of steps involved in the training process. 

It is a good option to visualize the structure of the neural network, but it can look very 

cluttered and not convey much information if the neural network is very complex. To 

make larger neural networks’ plot clearer, we can customize it using the parameters 

dimension and plot to edit the size of the plot and that of each neuron.  

Another possibility is to plot the generalized weights using gwplot. It plots the generalized 

weights with respect to each covariate, so it gives us multiple plots. It allows visualizing 

the possible linear relations within the data in a clearer way. 

The final possibility regarding visualization is to plot the output results of the neural 

network (𝑦𝑘 for all output layer neurons). This should provide a visual approximation to 

the performance of the trained neural network. This can be plotted alongside the results 

of the equivalent linear model, to visually compare them. Less dispersion in the output 

implies better predictions from the model. 

On the other hand, the confidence.interval() function in the neuralnet package allows us 

to compute the confidence intervals for each of the weighs in the trained neural network. 

That is possible as long as the weights of the neural network follow a normal distribution, 

which is the case when the network is identified (it does not include neurons that have no 

effect or ones that are a linear combination of other neurons in the input or hidden layers); 

and the error function equals the negative log-likelihood. The confidence.interval() 

function does not control for these conditions being satisfied, so the user should be careful 

when interpreting the results, as they will not be meaningful unless the assumptions are 

satisfied. 

3.5 Benefits and challenges of neural networks 

As a point of closure to my theoretical analysis of neural networks, I will discuss some of 

the benefits and challenges related to this machine learning method, mostly based on 

Haykin (2009). 
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First, I will mention some of the beneficial characteristics of neural networks.  They are 

non-linear in their processing of information and have a parallel distributed structure. As 

I have described in detail in section 3.3, one of the network’s most characteristic features 

is their ability to learn from the training set of inputs and afterwards generalize, so that 

they can predict reasonable outputs for inputs that are out of the training sample. These 

characteristics make neural networks able to find good solutions to complex problems. In 

addition to that, neural networks do not require making any prior assumptions on a 

statistical model for the input data, in a similar manner to nonparametric statistical 

inference in statistics: the networks learn from the training set they are provided with and 

construct an input-output mapping for the specific problem they are working with. 

Networks are also very adaptable to changes in their environment, so they can be retrained 

when they are presented with new conditions, and they will adjust the synaptic weights 

accordingly. Another benefit arising from the network’s distributed information structure 

is their fault tolerance: if a neuron or synapsis is damaged, the network should be able to 

mostly keep up their performance, degrading slowly rather than having a catastrophic 

failure. Finally, their analysis and design are uniform, using the same notation and 

structure for all of its different applications.  

On the other hand, there are also some challenges involved with the use of neural 

networks. Their hidden layers and neurons of multi-layer perceptrons act like black boxes, 

which, along with their nonlinearity and full connectivity, makes their analysis difficult 

to tackle. On a related subject, the neural network training process can be computationally 

expensive and sometimes that additional cost might not yield better results than simpler 

methods would. Regarding the algorithm chosen for the learning process, as it works 

toward the minimum in the error surface it might get caught in a local minimum and miss 

the global minimum. Some algorithms address this by including random jumps to 

different sections of the error surface. To conclude, a difficulty that I have mentioned 

several times: there is no set rule to optimally set the learning rate and number of hidden 

neurons and layers, the only way to find what is optimal for each setting is 

experimentation.  
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4. EMPIRICAL EXERCISE 

4.1 Introduction to the exercise and data 

As an empirical exercise to complement my analysis of big data methods applied to 

economics, I have decided to train a multi-layer feedforward neural network in R, using 

the neuralnet package which I have previously introduced. 

 To train the model, I have used a dataset that is preloaded into an R package. Specifically, 

the Wages data set from the Ecdat package. My data set includes panel data on individual 

wages as well as other characteristics of the individuals, like their experience, years of 

education and marital status. It has data on 595 United States’ individuals in the period 

from 1976 to 1982, a total of 4165 observations. The Ecdat package includes many 

econometrics data sets ready to use in R, which are all from published books or articles 

that used them in their models. My dataset was originally used in an article by Cornell 

and Rupert (1988) published in the Journal of Applied Econometrics, and more recently 

it was published with the book Econometric Analysis of Panel data by Baltagi (2003).  

A dataset with only slightly over 4000 observations cannot be considered Big Data. 

However, I have limited computing power available so I am restricted to using smaller 

data sets. In addition to that, I want this exercise to be focused on my ability to use new 

tools, specifically neural networks and R, to solve a problem similar to those I have seen 

during the Bachelor’s degree. That is why I have decided to use a data set from R rather 

than collect my own data set from a statistical service, which would have been difficult 

to summarize and manage if I wanted a dataset with as many observations as the one I 

have used. My focus has been placed on being able to successfully apply these new 

techniques and solve the problems that arise when using new methods, rather than in 

getting an economically relevant interpretation out of my results. However, I am still 

interested in using economics’ data during my training with neural networks, which is 

why I have chosen this dataset. 

4.2 Results  

In this section I will introduce the results of my analysis. The script I used to achieve 

these results can be found in the Annex, along with a short description of the variable 
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names. During my analysis I followed the steps I detailed on section 3.4 that explain how 

to work with the package neuralnet to train an artificial neural network. 

To begin with the analysis, I opened the data and checked if it had any missing values, 

which was not the case. Then I proceeded to normalize my data set so that the magnitudes 

of the variables did not affect the learning process of the neural network and it would 

converge. This was not as straightforward as I expected because the factor variables had 

to be excluded from the normalization and later turned into dummy variables so they 

could be included in the neural network. The creation of dummy variables implied the 

renaming of all the factor variables. For example, bluecol became bluecolyes, which 

means that the dummy is equal to one for the individuals that are blue collar workers.  

After the pre-processing of the data set was completed, I created the training and testing 

sets. Having done that, I usedthe neuralnet() function to create my first artificial neural 

network. I decided that I wanted the network to have only one hidden layer with six 

hidden neurons. This initial decision is quite arbitrary, as there is no optimal rule to set 

the number of hidden neurons. The decision to only include one hidden layer to start with 

was based on the study by Hornik et al. (1989) that proved that a neural network have 

potential to be universal approximators – a network with only one hidden layer and a 

finite number of neurons is able to model any piece-wise function. The dependent variable 

is the logarithm of wages and the independent variables are all of the others in the data 

set: experience, work hours, years of education, being a blue-collar worker, employed in 

manufacturing, black, living in the south, living in a metropolitan area, marital status, 

gender and union membership. I used the default values for the rest of arguments in the 

neuralnet() function, so my neural network was trained using the resilient 

backpropagation algorithm with weight backtracking, and the activation function was the 

logistic function. The error was computed as the Sum squared of the residuals.   

The trained neural network, with all of its adjusted synaptic weights can be seen in Figure 

5. The large number of independent variables makes the first layer of weights impossible 

to distinguish. The bias nodes are represented in blue. More detailed results are given by 

the NN6$netresults table which, in addition to all the synaptic weights seen in the figure, 

contains interesting details on the learning process of the neural network. The network 

needed 91988 steps to reach the minimum in the error surface, which is 10.7. 
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Having completed the training process, I used the network to predict the values of the 

train set by using the compute() function. After reversing the normalization process that 

I used to train the network on the results, I illustrated them against the real values in the 

training set in Figure 6. If the points were all on the straight line, it would mean that the 

predictions were exactly equal to the real values of observations in the train set. That did 

not happen, but the points are quite clustered around the line which suggests the prediction 

is not bad.  

As a last part of my exercise, I decided to train the network again by changing its 

architecture. This second version had two hidden layers, with eight and three hidden 

neurons respectively. I repeated the whole process in the same way, and the results are 

Figure 6 First neural network, with 6 hidden layers Figure 5 Predicted and real values of the test set (NN6) 

Figure 8 Second network, with two hidden layers Figure 7Predicted and real values of the test set (NN83) 
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illustrated in figures 7 and 8. In terms of the comparison between predicted results and 

actual values of the test set, there does not seem to be a lot of difference between the two 

specifications of the networks. 

As a final measure in the analysis of these networks, I computed the Mean squared error 

of both, to compare the results. The first one’s is 0.0965 and the second’s is 0.0925 – also 

very similar. I initially intended to use the same data in a linear regression model to 

compare the results, but I do not think it would make sense considering that the data used 

is panel data and would require another type of model.  
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5. CONCLUSIONS 

This project has taught me a lot about big data and machine learning, and how truly large 

the opportunities for its application in economics are.  

I have learnt about big data and some of the tools that could become useful to economists, 

like cross-validation and regularization, as well as new predictive models like CART and 

neural networks. I have also read about a lot of interesting research that relates the large 

amount of data now available to economic topics, and how big data has allowed for new 

questions to be considered that were previously not possible due to data limitations. 

Neural networks have turned out to be a method with a lot more complexity than I was 

expecting, but which is still approachable with some effort. It has taught me about 

machine learning, from which economists could borrow many methods. My empirical 

exercise using neural networks consisted of using two neural networks to predict the 

values of wages for individuals. The predictions were not perfect, but the example helped 

me put to practice some of the concepts which I had previously described, which was 

very interesting. I am sure that using more complex datasets and taking more advantage 

of neuralnet’s customization options could result in very interesting results.  
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6. ANNEX 

Meaning of the variable names in the dataset Wages: 

• exp: years of full-time work experience  

• wks: weeks worked  

• bluecol: blue collar worker (yes/no)  

• ind: works in a manufacturing industry (yes/no) 

• south: resides in the south (yes/no)   

• smsa: resides in a standard metropolitan statistical area (yes/no) 

• married: the individual is married (yes/no) 

• sex: the gender of the individual (male/female)  

• union:  whether the individual’s wage set by a union contract (yes/no) 

• ed: years of education  

• black: whether the individual is African-American (yes/no) 

• lwage: logarithm of wage 

 

This is the R script detailing everything I used in the empirical exercise (section 4). 

#Remove everything that was in the previous workspace and install packages needed: 

Ecdat and neuralnet 

rm(list=ls()) 

install.packages(c("Ecdat", "neuralnet")) 

 

#Load Ecdat and neuralnet and open the data set of interest, Wages 

library(Ecdat) 

data(Wages) 

#Check the srtucture of the data set and if it contains any missing values 

str(Wages) 

sum(is.na(Wages)) 

 

#Normalise the data frame, now called wagesn, and check the results with str(). Include 

model.matrix function at the end to turn all the factor variables to dummy variables. After 
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the dummies have been included, I turn the data set back to a data frame instead of a 

matrix 

normalise <- function(x){ 

    if(is.numeric(x)) { 

    return((x-min(x))/(max(x)-min(x))) 

    } else { 

    x 

    } 

    } 

wagesn <- as.data.frame(lapply(Wages, normalise)) 

wages.matrix <- 

model.matrix(~exp+wks+bluecol+ind+south+smsa+married+sex+union+ed+black+l

wage, data=wagesn) 

wages <- as.data.frame(wages.matrix) 

 

#Check the results of the normalisation. Comparing wages and wagesn, I can see that the 

variables that were factor have been renamed, and a 1 indicates the option that has been 

added to its name 

head(wages) 

head(wagesn) 

 

#Create the test and train subsets 

set.seed(42) 

index <- sample(1:nrow(wages), round(0.75*nrow(wages))) 

trainNN <- wages[index, ] 

testNN <- wages[-index, ] 

 

#Fit the neural network with the training subset 

library(neuralnet) 

set.seed(24601) 

f <- 

as.formula(lwage~exp+wks+bluecolyes+ind+southyes+smsayes+marriedyes+sexmale

+unionyes+ed+blackyes) 

NN6 <- neuralnet(f, data=trainNN, hidden=6) 
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#Plot and see the results of the trained network 

plot(NN6) 

NN6$result.matrix 

#Predict using the test set 

predwages <- compute(NN6, testNN[ ,2:12]) 

predwages$net.result 

 

#Reverse the normalization process on the predicted output 

predwages2 <- (predwages$net.result*(max(Wages$lwage)-

min(Wages$lwage)))+min(Wages$lwage) 

#Plot the prediction against the real values of the test sample 

plot(testNN$lwage, predwages$net.result, ylab = "Predicted rating (NN6)", xlab = 

"real rating") 

abline(0,1)  

 

#Retrain the neural network with a different architecture: 8 and 3 hidden nodes, and 

repeat all previous steps done with NN6 

set.seed(24601) 

NN83 <- neuralnet(f, data=trainNN, hidden=c(8,3)) 

plot(NN83) 

NN83$result.matrix 

predwages83 <- compute(NN83, testNN[ ,2:12]) 

predwages83$net.result 

predwages832 <- (predwages83$net.result*(max(Wages$lwage)-

min(Wages$lwage)))+min(Wages$lwage) 

 

#Plot the new network 

plot(testNN$lwage, predwages83$net.result, ylab = "Predicted rating (NN83)", xlab = 

"real rating") 

abline(0,1)  

 

#MSE of both neural network specifications, which requires having the test samples 

without normalisation 
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set.seed(42) 

index2 <- sample(1:nrow(Wages), round(0.75*nrow(Wages))) 

train2 <- Wages[index2, ] 

test2 <- Wages[-index2, ] 

 

MSE.NN <- sum((predwages2 - test2$lwage)^2)/nrow(test2) 

MSE.NN83 <- sum((predwages832 - test2$lwage)^2)/nrow(test2) 
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