

Title: Quantitative methods for Big Data: Neural Networks

Author: Marta Oliva Riera

Degree: Economia (en anglès)

Tutor: Michael Creel

Date: 08/06/2018

1

Table of Contents

1. INTRODUCTION ... 2

2. BIG DATA .. 3

2.1 Big data analysis ... 4

2.1.1 Causal inference ... 4

2.1.2 Predictive modelling .. 5

2.2 Opportunities and challenges of big data in economics ... 7

3. NEURAL NETWORKS ... 9

3.1 Basic structure ... 9

3.2 Activation function ... 13

3.3 The Learning process .. 14

3.3.1 Learning paradigms .. 15

3.3.2 Learning algorithms .. 16

3.4 neuralnet .. 21

3.4.1 Fitting a neural network ... 21

3.4.2 Additional features ... 24

3.5 Benefits and challenges of neural networks.. 25

4. EMPIRICAL EXERCISE ... 27

4.1 Introduction to the exercise and data .. 27

4.2 Results ... 27

5. CONCLUSIONS ... 31

6. ANNEX ... 32

7. BIBLIOGRAPHY ... 36

2

1. INTRODUCTION

As it has already been proven, the use of big data has become a successful tool in the field

of business. However, it has not yet become widely used in economics. The aim of this

thesis is to analyse the possible ways in which big data techniques could be implemented

in the field of economics. More specifically, I have focused on the use of neural networks,

which are a machine learning technique that can be used for regression and classification

with very large data sets.

The objectives I have for this project are the following:

- Explain what big data is

- Explore the main big data methods which may prove useful to economics

- Learn about how neural networks work

- Put some of these techniques into practice myself, specifically by training a neural

network and using it for prediction in an economic model

With these objectives in mind, this project will start by introducing big data and its

methods to perform predictive modelling, as well as the possibility of using them causal

inference, in section 2. In section 3 I will give an in-depth explanation on what neural

networks are and detail how they work. I will also present how to use the neuralnet

package for R to train a neural network. Finally, in section 4, I will use the knowledge on

neural networks to train one myself using the previously introduced methods.

An additional aim I hope to tackle with this project is to explain some of the quantitative

methods used in Big data in way that can be understood by undergraduate students. I think

it is important for economists to get acquainted with these methods but some of the

literature in the topic seems quite advanced if you do not have a background in computer

science.

3

2. BIG DATA

The term Big Data is defined as data sets that that are extremely large and sometimes too

complex to be analysed using traditional data management tools. Using new tools, they

can be analysed to reveal patterns, trends and associations especially relating to human

behaviour and interaction. Big data is created from many different sources at an incredibly

fast rate. Some of the sources of big data include computer-mediated transactions, e-

mails, media, the Internet, Internet of Things (IoT) devices, sensor data, cell phones,

among many others.

Economic data is now more abundant than ever, both from the private and public sectors.

As businesses and the government work more with computers, an increasing amount data

has been compiled on their activities at a whole new and previously unexpected degree.

But how is this data different from what was previously available? According to Einav

and Levin (2014) and Varian (2014a), the following are the main distinctive traits of big

data:

- Very large volume of data, which reduces problems with statistical power.

- Real-time availability of data, which has proven to be very useful in business but

not yet very exploited in economics.

- New types of variables are available that were not possible to know about before.

This increases the number of potential regressors for our analysis as well as the

complexity of the relations between variables.

- Data is less structured and has more dimensionality. This can be useful but

requires manipulation to organize and select the data before it can be used.

Developing new techniques to deal work in these new settings is a challenge for

economics research. Based on the previously mentioned characteristics, the new tools

used by economists should allow for more powerful manipulation, better variable

selection and more complex modelling of non-linear relations.

The tool often used to process Big data is a relational database, which works with

Structured Query Language (SQL) to flexibly store and manipulate medium size datasets.

To work with even larger data sets (including millions of observations) “NoSQL”

databases are used, which are more primitive but can work with larger amounts of data.

4

Having processed it, the data set can be used for statistical analysis. If despite the

manipulation the data set is still too large, a subsample for analysis can be selected

through random sampling.

2.1 Big data analysis

Data science is the field that performs computer-assisted data analysis in order to extract

useful information from big data. It uses several different techniques to perform

prediction and summarization, as well as other tasks. Specifically, machine learning is

the tool mostly used for prediction and data mining is used for summarization processes.

Machine learning was first defined by Samuel (1959) as the field concerned with

programming algorithms which give computers the ability to learn from the data available

to them. Learning implies the progressive improvement of its performance in a specific

task. On the other hand, Data mining is the process of examining large data sets to

discover patterns and generate new information from them.

Regression analysis is the most frequently used tool in econometrics to find relationships

between variables. However, borrowing some techniques from machine learning to

perform predictive modelling could be better for economists when working with large

datasets. As I previously defined it, machine learning uses an algorithm that can make the

computer improve its predictive function based on input data that is provided to it. It is

considered that the function gives good predictions when it is able to accurately forecast

with out-of-sample data. Machine learning models are also able to update themselves

when new data on the topic is provided to them, which could also be a useful feature.

Nevertheless, according to Einav and Levin (2014), a type of Lucas critique arises when

economists think of using machine learning to predict the effects of new policy

implementation. The Lucas critique says that it is naïve to try to predict the effects of a

change in economic policy based only on the relationships observed in historical data.

That’s because people’s decisions depend on the policies that are in place at the time, and

changing them would also change their decision. Therefore, the usefulness of machine

learning methods might depend a lot on the context in which they are used.

2.1.1 Causal inference

As stated by Varian (2014a) the area where there is more potential for collaboration

between econometrics and machine learning is causal inference. Machine learning

5

models so far have only focused on prediction, but their techniques have potential to

include causality into their models. In fact, even if a predictive model cannot provide

conclusions regarding causality, it is able to provide intuition into the causal impact of an

action. Specifically, the model can predict what would have happened if that action had

not been implemented, a sort of “control group prediction”. Then the estimated causal

effect can be measured by subtracting the real outcome of the action and the results from

control group prediction, plus some selection bias. This is done in economics using

difference-in-differences estimators as well as Instrumental variables, among other

experiments. There is potential for machine learning to use this kind of econometrics

techniques and provide possibly more accurate control group predictions.

2.1.2 Predictive modelling

Many firms have been using big data to build predictive models that help improve their

efficiency, introduce new services and help in their decision-making process. There are

many examples of these kinds of business applications of machine learning techniques,

including Amazon’s shopping recommendations based on past purchases. These methods

that have become increasingly common in business are still relatively underused in the

field of economics.

The goal of predictive modelling is to achieve good out-of-sample predictions. The

overfitting problem refers to having a model that performs in-sample predictions well

but does poorly for out-of-sample inputs. Machine learning has several different tools to

solve the overfitting problem and make sure that the estimated models will be able to

generalize their results to an out-of-sample data set.

First, there is the cross-validation method. It is a holdout method which consists of

randomly dividing the data into “training” and “testing” subsets, which are arbitrarily

sized. The training data set is used to for the estimation of the model. After that, the testing

data set is used to evaluate how well the chosen model performs its prediction. It is also

possible to increase the complexity of this method by using K-fold cross-validation

instead. It works in a similar way, but it randomly divides the data set into k subsets

instead of only two. K-1 subsets are used for training and the other one for testing. The

process is repeated k times so that each of the subsets is used as the test set only once.

The validation results are averaged once the cross-validation process is finished.

6

Repeating the cross-validation k times reduces the dependence of performance on the

specific train-test division of data and reduces its variance.

Another method to combat overfitting is regularisation. It consists of penalizing models

that are excessively complex because simple models tend to be better at generalizing their

results. Lasso, Ridge, Lars and Elastic net regressions are all examples of regularization,

each having a different penalization term for complexity. They all work by adding a

penalty term to the estimation of the model’s coefficients. For example, the penalty term

for Lasso regression is 𝜆1Σ𝑗
𝑝|𝛽𝑗|, where 𝜆1 ≥ 0 is the penalty parameter. These also act

as useful tools for variable selection when dealing with large samples because the

penalties result in some of the variables’ coefficients being zero – meaning they should

not be included in the model.

Finally, another set of tools to improve predictive model performance are Bootstrapping,

Bagging, and Boosting. All of these introduce randomness to the data, which helps reduce

overfitting. Bootstrapping is based on the creation of random samples with replacement

out of the data set, to estimate the distribution of a statistic. Bagging is the averaging of

models estimated with different bootstrap samples, with the aim of improving the

performance of the estimators. Boosting consists of repeating estimations where the

misclassified observations are given increasing weights, and the final estimate is an

average of the repetitions’ results.

Lastly, I will quickly introduce a couple interesting predictive modelling techniques in

machine learning that could be useful in the field of economics. Classification and

Regression Trees (CART) are a machine learning tool used to create regression models

that can be used to solve classification problems. They can classify multiple outputs and

continuous dependent variables, the latter referring to Regression Trees. Their structure

is similar to economics’ decision trees, but in this case there is a classification choice at

each node. CARTs are created by separating the data into parts and fit simple regressions

in each node. They perform better when modelling non-linear relations, and can still be

used if there is some missing data.

Bayesian Structural Time Series is an estimation method in machine learning that uses

time series data. It is mostly applied for variable selection and prediction modelling. It

uses Kalman filtering to estimate a time series model with different components (trends,

7

random walks, seasonality, etc.) and the spike-and-slab variable selection method, after

which the draws of posterior distribution of variables and coefficients are used to

construct estimates and forecasts of the dependent variable. Choi and Varian (2012) used

these methods to estimate the predictive power that Google queries have on different

economic indicators.

There are many other methods of machine learning, one of which is artificial neural

networks. As I have decided to focus this project on them, an in-depth description of their

characteristics and use is given in section 3.

2.2 Opportunities and challenges of big data in economics

To conclude the theoretical framework on Big data, I will describe some of the

opportunities and challenges of its applications in economics. These are based on the

article by Einav and Levin (2014).

First and foremost, there are many opportunities in the application of big data both for

economic research and economic policy decisions. Regarding research, large data sets

with highly granular data can lead to studies that answer new questions which were

previously not possible due to lack of detailed data. It also provides more credibility to

any analysis, as there are more robustness measures. As I mentioned in the previous

section, some machine learning techniques like regularisation and k-fold cross-validation

would be valuable additions to an economist’s toolkit. Furthermore, the use of big data

has potential to incorporate heterogeneity into econometric models: taking advantage of

how detailed the data is, the models could capture the response of several subgroups

instead of just the average response.

With respect to economic policy, it will be interesting to use big data to create alternative

measures to track private sector activity, other than traditional surveys. These could help

estimate the inflation, employment, consumer spending, etc. faster than the surveys do,

by using data sets on prices and spending that are available online, or indirectly, by

looking into Google search data trends like Choi and Varian (2012) did.

On the other hand, there are also some challenges associated with using new techniques

that are able to work with such large quantities of data. Firstly, economists will need to

learn how to use new big data tools if they are to take advantage of the new data sets

8

available to them. These include data management programmes, like SQL databases, as

well as programming languages, like R, getting acquainted with different machine

learning algorithms and other techniques. Another challenge will be to get broader access

to more of these big data sets, as right now access to both public and private data is usually

restricted due to privacy concerns. Public data is a powerful resource which is

underutilised, and research could benefit from having greater access to it now that more

tools are available. Finally, with such large datasets, it becomes harder and more time-

consuming to summarize the data and to find possible meaningful relationships in its

variables. The results can provide interesting insight but will also require a more complex

analysis.

9

3. NEURAL NETWORKS

Artificial neural networks are computing systems that can be used to approximate any

complex functional relationship. They are information processing machines made up of

simple interconnected processing units, or neurons. Neurons work in a non-linear manner,

through parallel processing of the information. They are used to infer meaning and detect

patterns in complex data sets, without necessarily prespecifying the type of relationship

between the regressors and response variables like you would need to do in a generalized

regression model. Therefore, neural networks can be thought of as extensions to

generalized regression models.

The idea of neural networks as computing machines was first introduced in 1943 by

McCulloch and Pitts. Since that moment, neural networks have usually been compared to

the human brain, because they acquire knowledge from their environment through a

learning process and use connections between their neurons, or synaptic weights, to store

the knowledge they have acquired. Learning is an iterative process in which the neural

network learns from its environment (the data provided to it) in order to improve its

performance in a specific task.

I will work with the neuralnet package for R, which uses a very flexible function to train

neural networks. It can work with an arbitrarily large number of covariates and response

variables, but as we will see the increased complexity might complicate the training

process, causing it to stop it the maximum steps are reached before the algorithm

converges. There are some other R packages available to train neural networks, including

nnet, RSNNS and AMORE. However, neuralnet is specifically built to train neural

networks in the context of regression analyses, and its algorithm is fastest for this purpose.

3.1 Basic structure

The design of a neural network is fundamentally based around neurons. A neuron is an

information processing unit composed of the following:

- Summation: a neuron k takes all the input signals (𝑥𝑗) multiplied by their

respective synaptic weights (𝑤𝑘𝑗) and sums them, resulting in the linear

combiner 𝑢𝑘.

10

- Synapses: they are connecting links between the neurons in each layer. They can

only connect one neuron to another one in the subsequent layer. Each of them is

characterized by a weight (𝑤𝑘𝑗), which represents the effect of the previous

neuron on to the one it connects to. The weights are similar to the coefficients in

a regression model. The weights are usually started at random values which are

drawn from a normal distribution, and are later on adapted during the learning

process.

- Bias nodes (𝑏𝑘): a bias is an externally applied effect to each of the hidden layers

in the neural network, which modifies the input of the activation function. They

act like intercepts in regression models (a constant learned outside of your input

data) and allow us to shift the learned model. The bias is added to the summation’s

result to create the input for the activation function.

All data passing through the neural network does so as signals. These signals are first

processed by the summation previously described and then by the activation function,

which limits the neuron’s output amplitude to some finite value. Activation functions are

also referred to as squashing functions. I will give a more detailed description of

activation functions in section 3.2.

Functions (1) and (2) and Figure 1 are the mathematical and graphical representations of

neuron k, where 𝑢𝑘 is the weighted summation of inputs to the neuron, 𝑣𝑘 is the activation

potential and 𝑦𝑘 is the output signal, the latter being the outcome of the activation function

(𝜑). Note that in all figures the signals flow from left to right.

𝑢𝑘 = Σ𝑗=1
m 𝑤𝑘𝑗𝑥𝑗 (1)

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘) = 𝜑(𝑣𝑘) (2)

Figure 1: Graphical representation of neuron k.

11

There are three basic network architectures, or structures in which the neurons of a

network are organized. A perceptron, or single layer feedforward neural network, is the

most basic type of network: it only has an input layer and an output layer. It receives n

input nodes (independent variables) and processes them on the output layer neurons using

a weighted summation and an activation function, resulting in one or more output nodes

(dependent variables). It is used to classify patterns that are linearly separable. If the

network has a single neuron, it will only be able to classify its inputs into two categories.

Rosenblatt first introduced the concept of a perceptron in 1957.

An example of a perceptron is illustrated in Figure 2, where the black circles are input

nodes and the large circle is a neuron.

Figure 2: Perceptron with 4 input nodes and 1 output neuron

Multi-layer feedforward neural networks consist of neurons organized in one or more

hidden layers, as well as the input and output layers, all connected through synapses. They

overcome the limitations of the perceptron and are used to model more complex

relationships between the variables, as they can extract higher-order statistics from the

inputs provided. Multilayer neural networks have a high degree of connectivity.

As it can be seen in Figure 3, each neuron in any layer is connected to all the neurons or

nodes in the previous layer. The input nodes are processed in the hidden layer neurons,

whose output is then passed on to the following layer (in this case the output layer) as

inputs. If there were more hidden layers, the process of feeding the data forward would

go until it reached the output layer, whose output represents the overall response of the

network to the initial inputs. Multi-layer perceptrons are the cornerstone of neuralnet.

12

Figure 3: Multi-layer feedforward network with 10 input nodes,

one hidden layer and 2 output neurons

In addition to those network architectures, we can also find Recurrent Neural Networks.

These are neural networks that include at least one feedback loop, through which the

output is fed back to the input nodes to update them through a unit-time delay element.

These may or may not include hidden layers. The presence of loops has a profound impact

on the learning capabilities of the neural network. In fact, the type of network architecture

chosen is always closely related to the learning algorithm used to train it.

Figure 4 shows how the layers of a neural network are ordered and what function each of

them performs. As I have previously mentioned, a perceptron does not have any hidden

layers. However, hidden layers can be included to increase a model’s flexibility. As

Hornik, Stinchcombe and White (1989) proved in their article about Multi-layer feed-

forward networks, that a neural network with just one hidden layer and a finite number

of neurons is enough to model any piecewise continuous function. This means that, under

Input layer:

take the input

unprocessed information

into the neural network.

Each regressor is

represented as a

separate input node.

Hidden layers:

layers that are not directly

observable from the input

or output of the network.

They combine the input

variables across one or

more neurons

Output layer:

A last layer of

neurons that predicts

or classifies (numeric

or factors) the value

of the regressand

using neurons

Figure 4: Layers of a neural network

13

certain assumptions on the activation function, these networks have potential to be

universal approximators.

The structure of a neural network can be referred to as a formula describing the dependent

and independent variables used in the network (determining the nodes in the input layer

and neurons in the output layer) and a vector define the hidden layers, where the number

of elements in the vector determines the number of layers and each number sets the

neurons that layer has. These are used to set up a neural network in neuralnet, as I will

explain in section 3.5.1. As an example, a neural network with two hidden layers and 5

and 3 neurons in each hidden layer would be represented by the following vector:

ℎ𝑖𝑑𝑑𝑒𝑛 = (5, 3).

3.2 Activation function

The activation function defines the output of a neuron as a function of its activation

potential (𝑣𝑘). It determines whether neurons in the following hidden layer will be

activated or deactivated. Right now, neuralnet uses a single activation function for all

their neurons. Some common activation functions include the following:

- Threshold function: if the activation potential is positive or zero, it outputs 1. It

outputs zero otherwise. It is the simplest activation function, although it is not

used a lot in current implementations.

𝜑(𝑣) = {
1 𝑖𝑓 𝑣 ≥ 0
0 𝑖𝑓 𝑣 < 0

(3)

- Sigmoid function: this is the most common type of activation function used in

the setting of neural networks. It is strictly increasing and S-shaped. In contrast to

the threshold function, it offers a continuous range of variables from 0 to 1 and is

also differentiable.

𝜑(𝑣) =
1

1 + 𝑒−𝑎𝑣
 (4)

Where a is the slope parameter.

If we were interested in getting an output ranging from -1 to 1 instead of 0 to 1 we could

redefine the previous functions in the following way:

- Signum function:

14

𝜑(𝑣) = {

1 𝑖𝑓 𝑣 > 0
0 𝑖𝑓 𝑣 = 0
−1 𝑖𝑓 𝑣 < 0

 (5)

- Hyperbolic tangent function:

𝜑(𝑣) = tanh(𝑣) (6)

If we wanted to base our analysis on a stochastic neural model instead of a deterministic

one, we could add probability to the previous activation functions to determine if the

neuron is “fired” or not.

3.3 The Learning process

One of the main characteristics of neural networks is their ability to learn from their

environment to improve their performance. Haykin (1999) defined the learning process

of neural networks in the following way:

“Leaning is a process by which the free parameters of a neural network are

adapted through a process of stimulation by the environment in which the

network is embedded. The type of learning is determined by the manner in

which the parameter change takes place”.

So, in the process of learning, the environment stimulates the neural network, which

optimizes its weights based on a learning algorithm, and changes the way it interacts with

the environment. This process is iterated and the network tends to gradually improve its

performance. It ends when a pre-specified condition is fulfilled, such as minimizing the

error signal or reaching the maximum number of iteration steps.

I will focus my analysis on a specific type of learning process: error correction learning.

The type of learning process you follow depends on the type of neural network you work

with. In my case, error correction learning is used for both single layer and multilayer

feedforward neural networks.

In this learning process, the error signal measures the difference between the desired

result and the actual output signal of the neural network:

15

𝑒𝑘 = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛) (7)

Where the output neuron 𝑘 in a feedforward neural network receives the input signal 𝑥(𝑛)

from the previous hidden layers, 𝑦(𝑛) is the neuron’s output and 𝑛 represents the time

step of the training process. Error correcting learning will adjust the values of the

neuron’s synaptic weights, in an iterative manner, until the actual output is close to the

desired response. The adjustment will depend on the learning algorithm we have chosen

to use, but they all attempt to minimize the error. The learning rate will determine the

speed at which the desired outcome is achieved: a low learning rate will result in a slow

convergence; a high learning rate might result in missing the minimum error point.

Therefore, the choice of learning rate is crucial for the convergence of the process, but it

is set by the user and there is no rule to know which learning rate will work best in each

specific context.

Other possible types of learning processes include memory-based learning, where all past

experiences are stored in a large memory of classified input-output examples; Hebbian

learning, which is based on associative learning and increases synaptic efficiency as a

function of the correlation between the neurons on either side of it; Competitive learning,

where output neurons compete to be activated; and Boltzmann learning, which uses a

stochastic learning algorithm and neurons that operate binarily – being on or off.

3.3.1 Learning paradigms

In addition to the type of learning process, there are three possible learning paradigms, or

environments in which a neural network can operate:

1. Supervised learning: or learning with a teacher, refers to the situation in which

the neural network has no knowledge of the environment. The teacher has

knowledge on the environment and provides the desired response that the network

should have to a training vector. The training process is used to transmit the

knowledge of the environment from the teacher to the network.

Specifically, within error-correcting learning, supervised learning starts with

synaptic weights that are random values drawn from a normal distribution, and

the network adapts them according to the learning algorithm chosen in order to

reach the desired response. When the error is minimized the process of training

16

the network is completed, as it has achieved to emulate the teacher’s desired

outcome.

There are two main methods of supervised learning with multi-layer perceptrons.

In the on-line method, the adjustments to the synaptic weights are performed on

an example-by-example basis: a first random pair of input vector and desired

response are presented, the weights are adjusted and the process is repeated until

all training vectors have been used. This method is simple to implement and

effectively solves large-scale pattern classification problems. The other method of

supervised learning, the batch method, presents all the training sample example to

the network at the same time and then adjusts the weights. The process is repeated

and at each period the training samples are presented in a random order. This

method provides a more accurate estimation of the gradient vector and allows for

the parallelization of the learning process. It is useful to solve nonlinear regression

problems.

2. Reinforced learning: training is performed through continued interaction with

the environment, in order to minimize the performance index. This process is built

around a critic: it receives a temporal sequence of signals from the environment

and transforms them into heuristic reinforcement signals after a delay (delayed

reinforcement). Despite the additional difficulty it involves compared to

supervised learning, reinforced learning is interesting because it develops the

network’s ability to interact with its environment and learn to perform a task based

only on its own experience.

3. Unsupervised learning: there is no teacher or critic to supervise the network’s

training process. Instead, it uses a task-independent measure to evaluate the

quality of representation that the network should learn. Based on that measure it

optimizes the networks’ synaptic weights.

3.3.2 Learning algorithms

A learning algorithm is a set of well-defined rules that the neural network follows in

order to complete its learning process. There are many possible algorithms to use, they

all aim to optimize the synaptic weights but each adjusts them in a different way.

The neuralnet package allows us to switch between different algorithms:

backpropagation; resilient backpropagation without weight backtracking; and GRProp,

17

the globally convergent version by Anastasiadis, Magoulas and Vrahatis (2005). The

latter was a modification to the resilient backpropagation algorithm, which aims at

improving the convergence speed and stability of the previous algorithms.

I will focus on error correcting algorithms for single layer and multi-layer neural networks

that are under supervised learning, based on the descriptions by Haykin (2009).

First, the Perceptron algorithm. Remember that for the perceptron to work properly, the

patterns it classifies must be linearly separable (in the case of two classes, they should be

easily separable with a straight line, the decision boundary). To make the previously

introduced notation more straightforward, I will treat the bias (𝑏𝑘) as a fixed input whose

weight is equal to one. Therefore, the input (𝑥(𝑛)) and weight (𝑤(𝑛)) vectors have m+1

elements each instead of m, which is the number of inputs. The number of steps in the

training process is denoted by n.

Consider a perceptron whose inputs are classifiable into two categories (𝐶1 and 𝐶2). We

provide it with sets of training vectors 𝐻1 and 𝐻2, corresponding to each of the classes

respectively. The training process will imply the adjustment of the weights vector 𝑤 until

the two classes are linearly separable for all input vectors 𝑥. Equation (8) will hold for all

input vectors belonging to 𝐶1, while equation (9) will hold for all input vectors belonging

to 𝐶2.

𝑤𝑇𝑥 > 0 (8)

𝑤𝑇𝑥 ≤ 0 (9)

Therefore, if the training set 𝑥(𝑛) is correctly classified by weight vector 𝑤(𝑛) on the nth

iteration of the process, the weight vector will not be adjusted (𝑤(𝑛 + 1) = 𝑤(𝑛)). Being

correctly classified implies that if we know the vector comes from the set 𝐻1,

𝑤𝑇(𝑛)𝑥(𝑛) > 0 will hold, so that the network is classifying the input vector into 𝐶1.

However, if 𝑥(𝑛) is not correctly classified, the weight vector will be updated in the

following way:

𝑤(𝑛 + 1) = 𝑤(𝑛) ± 𝜂(𝑛)𝑥(𝑛) (10)

where 𝜂(𝑛) is the learning rate, a parameter that adjusts the change in weight. If 𝑤𝑇𝑥 >

0 but 𝑥(𝑛) belonged to 𝐶2, the weight should be decreased; if 𝑤𝑇𝑥 ≤ 0 but 𝑥(𝑛)

18

belonged to 𝐶1, the weight should be increased. The process should be repeated until the

training input vectors are correctly classified.

The learning rate can take any positive value, but if it is fixed to a constant value then the

Fixed-increment adaptation algorithm for the perceptron is used, as I have just

explained. If the learning rate is variable then the Perceptron convergence algorithm

(Lippman, 1987) should be considered. For the example of the latter algorithm, assume

that the initial weights are set at zero. The learning rate can be changed but should be

taking values between zero and one. Then activate the perceptron by providing it with the

training input vectors 𝑥(𝑛) and a desired response 𝑑(𝑛). In this case, the activation

function is the signum function, so the actual output and the desired response will be

described by the following functions:

𝑦(𝑛) = 𝑠𝑛𝑔[𝑤𝑇(𝑛)𝑥(𝑛)] (11)

𝑑(𝑛) = {
1 𝑖𝑓 𝑥(𝑛) 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐶1

−1 𝑖𝑓 𝑥(𝑛)𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐶2
(12)

Then the weights will be adjusted by the rule in equation (13). The process will be

repeated until the desired response is achieved, which will be the point where 𝑑(𝑛) −

𝑦(𝑛) = 0 so that 𝑤(𝑛 + 1) = 𝑤(𝑛).

𝑤(𝑛 + 1) = 𝑤(𝑛) ± 𝜂[𝑑(𝑛) − 𝑦(𝑛)]𝑥(𝑛) (13)

Secondly, I will introduce the Least Mean Square (LMS) algorithm. This algorithm

works on neural networks called adaptive filters, which are characterized by arbitrary

initial weights, continuous adjustments to the weights are made based on the network’s

behaviour with respect to the desired response, and the computation of adjustments being

completed in a single period. These neural networks create a feedback loop around their

neurons, as their output is used to compute the error signal and that is in turn used to

adjust the initial weights, resulting in a new output and error signal. The LMS algorithm

was developed by Widrow and Hoff in 1960 and it can be used for prediction problems.

This algorithm is computationally efficient, simple to code and robust to external

disturbances.

The LMS algorithm is set to minimize the instantaneous value of the cost function defined

in equation (14). In this case, we also assume that the initial synaptic weights are set to

19

zero. LMS uses the Method of Steepest Descent for its optimization, meaning that the

adjustments to the weights are in the direction of steepest descent, opposite to the

direction of the gradient vector ∇𝜀(𝑛). This method converges to the optimal weights

slowly and learning rate has a large influence on its convergence behaviour. An

instantaneous estimate of the gradient vector is written in equation (15), considering that

the error signal is defined as 𝑒(𝑛) = 𝑑(𝑛) − 𝑥𝑇(𝑛)𝑤̂(𝑛).

𝜀(𝑛) =
1

2
𝑒2(𝑛) (14)

𝛿𝜀(𝑤̂)

𝛿𝑤̂(𝑛)
= 𝑒(𝑛)

𝛿𝑒(𝑛)

𝛿𝑤̂
= −𝑥(𝑛)𝑒(𝑛) (15)

Using the gradient vector in equation (15) for the method of steepest descent, the weights

will be adjusted according to the Widrow-Hoff rule or Delta rule, described in equation

(16). The Delta rule states that the synaptic weight adjustment of a neuron is proportional

to the product of the error signal and the input at time n.

𝑤̂(𝑛 + 1) = 𝑤̂(𝑛) + 𝜂𝑥(𝑛)𝑒(𝑛) (16)

This process of weight adjustment will be repeated until the cost function (a function of

the error signal) is minimized. Basing the learning process on this algorithm implies the

assumption that the error signals are directly measurable and that the desired response is

externally provided, like in a supervised training setting. Assigning credit for overall

outcomes becomes difficult when there are hidden neurons involved.

Finally, I will present the Backpropagation training algorithm. It is commonly used in

the learning process of multi-layer perceptrons. This algorithm solves the credit-

assignment problem that arises when training a multi-layer perceptron with error-

correcting learning, due to the fact that the output of the hidden neurons is not observed.

It does so by computing the gradients differently depending on whether the neuron is at

a hidden layer or at the output layer.

Based on the on-line method of supervised learning, the backpropagation algorithm works

in the following way. The synaptic weights are initially set to values of a uniform

distribution whose mean is zero and variance makes the standard deviation of the neuron’s

activation potentials lie between the linear and standard parts of the sigmoid activation

20

function. The cost function is the total instantaneous error energy, defined by equation

(14). Then present a set of training examples to the network, formed by an input vector

𝑥(𝑛) and a desired response vector 𝑑(𝑛). In the forward computation phase, the input

vector is applied to the input layer and the desired response to the output layer, so that the

error signal can be computed. The error signal for neuron j in the output layer L is

computed in equation (17), where 𝑑𝑗(𝑛) is the jth element of the desired response vector,

or desired response for neuron j, and 𝑜𝑗(𝑛) = 𝑦𝑗
𝐿 is neuron j’s output signal.

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑜𝑗(𝑛) (17)

Once we have the error signals, the Backwards computation phase can be started, where

the local gradients of the network are computed in the following manner, depending on

whether neuron j is in a hidden layer l or in the output layer L:

𝛿𝑗
(𝑙)(𝑛) = {

𝑒𝑗
(𝐿)(𝑛)𝜑′

𝑗
(𝑣𝑗

(𝐿)(𝑛)) 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝐿

𝜑′
𝑗

(𝑣𝑗
(𝑙)(𝑛)) Σ𝑘𝛿𝑘

(𝑙+1)(𝑛)𝑤𝑘𝑗
(𝑙+1)(𝑛) 𝑓𝑜𝑟 𝑛𝑒𝑢𝑟𝑜𝑛 𝑗 𝑖𝑛 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑙

(18)

where the activation potential is defined as 𝑣𝑗
𝑙(𝑛) = Σ𝑖𝑤𝑗𝑖

𝑙 (𝑛)𝑦𝑖
𝑙−1(𝑛), with 𝑖 being a

neuron in the previous layer; and 𝜑′
𝑗
 is the activation function’s differentiation with

respect to the argument.

Finally, the synaptic weights in layer l are adjusted according to the generalized delta

rule, described as Δ𝑤𝑗𝑖(𝑛) in equation (19), where 𝛼 is the momentum constant and 𝜂 is

the learning rate. The Widrow-Hoff rule presented for the perceptron is a specific case of

the generalized delta rule, where 𝛼 was set to zero. The addition of a momentum provides

stability to the algorithm, as it controls the feedback loop around the weight modification.

𝑤𝑗𝑖
(𝑙)(𝑛 + 1) = 𝑤𝑗𝑖

(𝑙)(𝑛) + 𝛼[Δ𝑤𝑗𝑖
(𝑙)(𝑛 − 1)] + 𝜂𝛿𝑗

(𝑙)(𝑛)𝑦𝑖
(𝑙−1)(𝑛) (19)

The Forward and Backwards computation phases should be iterated while presenting new

training data sets so that the synaptic weights will be adjusted until one of the chosen

stopping criteria is met. These stopping criteria must be set because the backpropagation

algorithm cannot be shown to converge on its own. The most reasonable stopping

criterion is reaching a minimum in the error surface, which happens when the gradient

vector of the error surface with respect to the weights is sufficiently small or when the

21

rate of change of the cost function 𝜀𝑎𝑣(𝑤) is sufficiently small. Another possible reason

for the learning process to stop is if it reaches a maximum number of iterations before

having completed any of the previously defined convergence criteria.

A variation of the Backpropagation algorithm that can be used in the neuralnet package

is the Resilient Backpropagation algorithm. It differs from traditional backpropagation

in that it uses a different learning rate for each weight. This rate can also be changed

during the process. This solves the problem of setting a learning rate that is appropriate

for the overall learning process, which can be hard for complex networks. Moreover,

resilient backpropagation only uses the sign of the gradient to modify the weights, not

their magnitude. That ensures that the learning rate will have equal influence over the

whole network. The learning rate will be increased if the sign of the gradient stays the

same, and decreased if the sign changes (as that would imply that the minimum point was

missed), in order to speed up the convergence to the local minimum.

3.4 neuralnet

As described in its documentation (Fritsch, Guenther, Suling, and Mueller, 2016),

neuralnet is a package that can be used to train neural networks using different algorithms

and in a flexible manner, as it allows us to choose the error and activation functions we

prefer.

3.4.1 Fitting a neural network

The following are some basic steps on how to fit a neural network with neuralnet. I have

written in italics some of the basic functions required to use this package, as well as

examples of how to code the different steps.

0. Set Working Directory and read the data: setwd(direction) to the direction where your

data files are saved, then set read.csv(“file”) to open the data file itself. Or work with

one of R’s datasets, in which case you just need to load the package it is related to.

1. Decide which dependent and independent variables out of your data set you will

use in your neural network.

2. Check that there are no observations missing. If there are, fix the data set to either fill

them or remove them.

22

3. Data preprocessing: normalise the data so that our results are not misled by the scale

of the some of the variables, and the accuracy of our prediction is higher. You can do

so by min-max normalisation, Z-score normalisation, median and MAD, and tan-h

estimators. The scale() function in R could also be used. I use min-max normalisation,

which transforms the data into a common range while maintaining the original

distribution. It can be used by creating the normalise function below, where df is a

data frame with the variables to normalize:

normalise <- function(x) {

 return ((x - min(x)) / (max(x) - min(x)))

 }

 dfnormalised <- as.data.frame(lapply(df, normalize))

Additionally, if we have factor or character variables, we should convert them to

numerical variables (dummy variables). This is done using the model.matrix()

function.

4. Divide the data into training and test sets to perform the learning process. These

should be assigned using random sampling, with the function sample(). Remember to

use set.seed() every time you use random sampling or the results will not be

reproducible.

a. Create an index with the function sample(). In the following example the

training sample would contain 75% of the observations in our data:

index <- sample(1:nrow(data), round(0.75*nrow(data)))

b. Specify the variables trainNN and testNN by using the index in square brackets

on the normalized data:

trainNN <- dfnomalized[index,]

testNN <- dfnormalized[-index,]

23

You can also fit a linear regression model and test it on the test set, using the Mean

squared error to see how far our predictions are from the real data and use it to later

compare with the MSE resulting from testing the neural network.

5. Fit the neural network using the scaled data:

a. Install the package neuralnet: install.packages(“neuralnet”)

b. Load the package: library(neuralnet)

c. Decide how many layers and neurons there will be in the network. One hidden

layer is usually enough. However, there is no rule of thumb to decide which

setting will fit your model best, so the only option is to experiment with

different configurations.

d. Fit the neural network, using the function neuralnet().

Its basic arguments are the formula describing the function to be fitted (f, which

should be previously defined as.formula(y~x1+x2+...+xn)), where the function’s

data comes from the train subset (data=trainNN) , and the hidden layers and

neurons (hidden=(,)). If hidden is equal to a scalar there is only one hidden layer

with however many neurons the scalar indicates; if it is a vector each number in

it determines how many neurons there are in each subsequent hidden layer.

Another possibility is to change the algorithm used (algorithm=). Different

algorithms may require additional arguments in order to work. Some other

relevant arguments include threshold, stepmax, startweights, learningrate, act.fct,

and rep. The package’s documentation (Fritsch et al., 2016) can be checked for

more details on all the possible arguments, which allow for a lot of customization.

The only compulsory arguments to specify are the formula and the source of the

data, so the documentation also details what the default values of the optional

arguments are. For example, the default number of hidden layers is one, with a

single neuron, the default algorithm is resilient backpropagation with weight

backtracking and the default activation function is the logistic function.

NN <- neuralnet(f, data, hidden, ...)

24

After using the function neuralnet(), all information about the training process

and the trained neural network is stored in NN (or any name you have given to the

trained neural network). The information about the network can be explored by

printing the elements in NN, which include: NN$net.result, NN$result.matrix,

NN$weights, NN$generalized.weights, NN$startweights. net.result is a list of the

neural network’s output, equivalent to fitted values. result.matrix is a matrix

containing a summary of the main result of the network, including the error,

reached threshold, number of needed steps, information criteria and the weights.

The other elements are lists of the final, generalized and starting weights.

6. Prediction: once the network has been trained, it can be used to predict values of the

dependent variable. This is done in this package using the compute() function, which

calculates and summarizes the output of all neurons in the network. If it is provided

with a vector of new covariate combinations (NNtest) that were not in the train set of

the neural network, the compute function can be used to calculate the new outputs.

newoutput <- compute(NN, NNtest ,...)

newoutput$Net.result

Net.result is a list of the predicted outputs. The results will be scaled due to the

previous normalization, so they must be transformed before we can compare them to

the real values. These comparisons can easily be done through visualization.

We can also evaluate it using just the Mean Squared Error, and compare it to the

previous results using the linear regression model, if we estimated that beforehand. If

the MSE of the neural network is smaller than the MSE of the linear model then the

network is doing a better job at predicting the dependent variable. However, keep in

mind that these results depend on the train-test set split that has been performed above.

3.4.2 Additional features

Some additional features available when using neuralnet to fit a neural network include

the ability to visualize the results in different ways as well as the computation of

confidence intervals for the weights that the network has estimated.

25

There are three possible ways to visualize the results of the learning process of a neural

network. The first one is simply using the plot() function on our neural network NN. It

results in a graph showing the structure of the trained neural network: all covariates and

result variables, layers, neurons, and synapses, along with their corresponding weight. It

also includes the resulting error and the number of steps involved in the training process.

It is a good option to visualize the structure of the neural network, but it can look very

cluttered and not convey much information if the neural network is very complex. To

make larger neural networks’ plot clearer, we can customize it using the parameters

dimension and plot to edit the size of the plot and that of each neuron.

Another possibility is to plot the generalized weights using gwplot. It plots the generalized

weights with respect to each covariate, so it gives us multiple plots. It allows visualizing

the possible linear relations within the data in a clearer way.

The final possibility regarding visualization is to plot the output results of the neural

network (𝑦𝑘 for all output layer neurons). This should provide a visual approximation to

the performance of the trained neural network. This can be plotted alongside the results

of the equivalent linear model, to visually compare them. Less dispersion in the output

implies better predictions from the model.

On the other hand, the confidence.interval() function in the neuralnet package allows us

to compute the confidence intervals for each of the weighs in the trained neural network.

That is possible as long as the weights of the neural network follow a normal distribution,

which is the case when the network is identified (it does not include neurons that have no

effect or ones that are a linear combination of other neurons in the input or hidden layers);

and the error function equals the negative log-likelihood. The confidence.interval()

function does not control for these conditions being satisfied, so the user should be careful

when interpreting the results, as they will not be meaningful unless the assumptions are

satisfied.

3.5 Benefits and challenges of neural networks

As a point of closure to my theoretical analysis of neural networks, I will discuss some of

the benefits and challenges related to this machine learning method, mostly based on

Haykin (2009).

26

First, I will mention some of the beneficial characteristics of neural networks. They are

non-linear in their processing of information and have a parallel distributed structure. As

I have described in detail in section 3.3, one of the network’s most characteristic features

is their ability to learn from the training set of inputs and afterwards generalize, so that

they can predict reasonable outputs for inputs that are out of the training sample. These

characteristics make neural networks able to find good solutions to complex problems. In

addition to that, neural networks do not require making any prior assumptions on a

statistical model for the input data, in a similar manner to nonparametric statistical

inference in statistics: the networks learn from the training set they are provided with and

construct an input-output mapping for the specific problem they are working with.

Networks are also very adaptable to changes in their environment, so they can be retrained

when they are presented with new conditions, and they will adjust the synaptic weights

accordingly. Another benefit arising from the network’s distributed information structure

is their fault tolerance: if a neuron or synapsis is damaged, the network should be able to

mostly keep up their performance, degrading slowly rather than having a catastrophic

failure. Finally, their analysis and design are uniform, using the same notation and

structure for all of its different applications.

On the other hand, there are also some challenges involved with the use of neural

networks. Their hidden layers and neurons of multi-layer perceptrons act like black boxes,

which, along with their nonlinearity and full connectivity, makes their analysis difficult

to tackle. On a related subject, the neural network training process can be computationally

expensive and sometimes that additional cost might not yield better results than simpler

methods would. Regarding the algorithm chosen for the learning process, as it works

toward the minimum in the error surface it might get caught in a local minimum and miss

the global minimum. Some algorithms address this by including random jumps to

different sections of the error surface. To conclude, a difficulty that I have mentioned

several times: there is no set rule to optimally set the learning rate and number of hidden

neurons and layers, the only way to find what is optimal for each setting is

experimentation.

27

4. EMPIRICAL EXERCISE

4.1 Introduction to the exercise and data

As an empirical exercise to complement my analysis of big data methods applied to

economics, I have decided to train a multi-layer feedforward neural network in R, using

the neuralnet package which I have previously introduced.

 To train the model, I have used a dataset that is preloaded into an R package. Specifically,

the Wages data set from the Ecdat package. My data set includes panel data on individual

wages as well as other characteristics of the individuals, like their experience, years of

education and marital status. It has data on 595 United States’ individuals in the period

from 1976 to 1982, a total of 4165 observations. The Ecdat package includes many

econometrics data sets ready to use in R, which are all from published books or articles

that used them in their models. My dataset was originally used in an article by Cornell

and Rupert (1988) published in the Journal of Applied Econometrics, and more recently

it was published with the book Econometric Analysis of Panel data by Baltagi (2003).

A dataset with only slightly over 4000 observations cannot be considered Big Data.

However, I have limited computing power available so I am restricted to using smaller

data sets. In addition to that, I want this exercise to be focused on my ability to use new

tools, specifically neural networks and R, to solve a problem similar to those I have seen

during the Bachelor’s degree. That is why I have decided to use a data set from R rather

than collect my own data set from a statistical service, which would have been difficult

to summarize and manage if I wanted a dataset with as many observations as the one I

have used. My focus has been placed on being able to successfully apply these new

techniques and solve the problems that arise when using new methods, rather than in

getting an economically relevant interpretation out of my results. However, I am still

interested in using economics’ data during my training with neural networks, which is

why I have chosen this dataset.

4.2 Results

In this section I will introduce the results of my analysis. The script I used to achieve

these results can be found in the Annex, along with a short description of the variable

28

names. During my analysis I followed the steps I detailed on section 3.4 that explain how

to work with the package neuralnet to train an artificial neural network.

To begin with the analysis, I opened the data and checked if it had any missing values,

which was not the case. Then I proceeded to normalize my data set so that the magnitudes

of the variables did not affect the learning process of the neural network and it would

converge. This was not as straightforward as I expected because the factor variables had

to be excluded from the normalization and later turned into dummy variables so they

could be included in the neural network. The creation of dummy variables implied the

renaming of all the factor variables. For example, bluecol became bluecolyes, which

means that the dummy is equal to one for the individuals that are blue collar workers.

After the pre-processing of the data set was completed, I created the training and testing

sets. Having done that, I usedthe neuralnet() function to create my first artificial neural

network. I decided that I wanted the network to have only one hidden layer with six

hidden neurons. This initial decision is quite arbitrary, as there is no optimal rule to set

the number of hidden neurons. The decision to only include one hidden layer to start with

was based on the study by Hornik et al. (1989) that proved that a neural network have

potential to be universal approximators – a network with only one hidden layer and a

finite number of neurons is able to model any piece-wise function. The dependent variable

is the logarithm of wages and the independent variables are all of the others in the data

set: experience, work hours, years of education, being a blue-collar worker, employed in

manufacturing, black, living in the south, living in a metropolitan area, marital status,

gender and union membership. I used the default values for the rest of arguments in the

neuralnet() function, so my neural network was trained using the resilient

backpropagation algorithm with weight backtracking, and the activation function was the

logistic function. The error was computed as the Sum squared of the residuals.

The trained neural network, with all of its adjusted synaptic weights can be seen in Figure

5. The large number of independent variables makes the first layer of weights impossible

to distinguish. The bias nodes are represented in blue. More detailed results are given by

the NN6$netresults table which, in addition to all the synaptic weights seen in the figure,

contains interesting details on the learning process of the neural network. The network

needed 91988 steps to reach the minimum in the error surface, which is 10.7.

29

Having completed the training process, I used the network to predict the values of the

train set by using the compute() function. After reversing the normalization process that

I used to train the network on the results, I illustrated them against the real values in the

training set in Figure 6. If the points were all on the straight line, it would mean that the

predictions were exactly equal to the real values of observations in the train set. That did

not happen, but the points are quite clustered around the line which suggests the prediction

is not bad.

As a last part of my exercise, I decided to train the network again by changing its

architecture. This second version had two hidden layers, with eight and three hidden

neurons respectively. I repeated the whole process in the same way, and the results are

Figure 6 First neural network, with 6 hidden layers Figure 5 Predicted and real values of the test set (NN6)

Figure 8 Second network, with two hidden layers Figure 7Predicted and real values of the test set (NN83)

30

illustrated in figures 7 and 8. In terms of the comparison between predicted results and

actual values of the test set, there does not seem to be a lot of difference between the two

specifications of the networks.

As a final measure in the analysis of these networks, I computed the Mean squared error

of both, to compare the results. The first one’s is 0.0965 and the second’s is 0.0925 – also

very similar. I initially intended to use the same data in a linear regression model to

compare the results, but I do not think it would make sense considering that the data used

is panel data and would require another type of model.

31

5. CONCLUSIONS

This project has taught me a lot about big data and machine learning, and how truly large

the opportunities for its application in economics are.

I have learnt about big data and some of the tools that could become useful to economists,

like cross-validation and regularization, as well as new predictive models like CART and

neural networks. I have also read about a lot of interesting research that relates the large

amount of data now available to economic topics, and how big data has allowed for new

questions to be considered that were previously not possible due to data limitations.

Neural networks have turned out to be a method with a lot more complexity than I was

expecting, but which is still approachable with some effort. It has taught me about

machine learning, from which economists could borrow many methods. My empirical

exercise using neural networks consisted of using two neural networks to predict the

values of wages for individuals. The predictions were not perfect, but the example helped

me put to practice some of the concepts which I had previously described, which was

very interesting. I am sure that using more complex datasets and taking more advantage

of neuralnet’s customization options could result in very interesting results.

32

6. ANNEX

Meaning of the variable names in the dataset Wages:

• exp: years of full-time work experience

• wks: weeks worked

• bluecol: blue collar worker (yes/no)

• ind: works in a manufacturing industry (yes/no)

• south: resides in the south (yes/no)

• smsa: resides in a standard metropolitan statistical area (yes/no)

• married: the individual is married (yes/no)

• sex: the gender of the individual (male/female)

• union: whether the individual’s wage set by a union contract (yes/no)

• ed: years of education

• black: whether the individual is African-American (yes/no)

• lwage: logarithm of wage

This is the R script detailing everything I used in the empirical exercise (section 4).

#Remove everything that was in the previous workspace and install packages needed:

Ecdat and neuralnet

rm(list=ls())

install.packages(c("Ecdat", "neuralnet"))

#Load Ecdat and neuralnet and open the data set of interest, Wages

library(Ecdat)

data(Wages)

#Check the srtucture of the data set and if it contains any missing values

str(Wages)

sum(is.na(Wages))

#Normalise the data frame, now called wagesn, and check the results with str(). Include

model.matrix function at the end to turn all the factor variables to dummy variables. After

33

the dummies have been included, I turn the data set back to a data frame instead of a

matrix

normalise <- function(x){

 if(is.numeric(x)) {

 return((x-min(x))/(max(x)-min(x)))

 } else {

 x

 }

 }

wagesn <- as.data.frame(lapply(Wages, normalise))

wages.matrix <-

model.matrix(~exp+wks+bluecol+ind+south+smsa+married+sex+union+ed+black+l

wage, data=wagesn)

wages <- as.data.frame(wages.matrix)

#Check the results of the normalisation. Comparing wages and wagesn, I can see that the

variables that were factor have been renamed, and a 1 indicates the option that has been

added to its name

head(wages)

head(wagesn)

#Create the test and train subsets

set.seed(42)

index <- sample(1:nrow(wages), round(0.75*nrow(wages)))

trainNN <- wages[index,]

testNN <- wages[-index,]

#Fit the neural network with the training subset

library(neuralnet)

set.seed(24601)

f <-

as.formula(lwage~exp+wks+bluecolyes+ind+southyes+smsayes+marriedyes+sexmale

+unionyes+ed+blackyes)

NN6 <- neuralnet(f, data=trainNN, hidden=6)

34

#Plot and see the results of the trained network

plot(NN6)

NN6$result.matrix

#Predict using the test set

predwages <- compute(NN6, testNN[,2:12])

predwages$net.result

#Reverse the normalization process on the predicted output

predwages2 <- (predwages$net.result*(max(Wages$lwage)-

min(Wages$lwage)))+min(Wages$lwage)

#Plot the prediction against the real values of the test sample

plot(testNN$lwage, predwages$net.result, ylab = "Predicted rating (NN6)", xlab =

"real rating")

abline(0,1)

#Retrain the neural network with a different architecture: 8 and 3 hidden nodes, and

repeat all previous steps done with NN6

set.seed(24601)

NN83 <- neuralnet(f, data=trainNN, hidden=c(8,3))

plot(NN83)

NN83$result.matrix

predwages83 <- compute(NN83, testNN[,2:12])

predwages83$net.result

predwages832 <- (predwages83$net.result*(max(Wages$lwage)-

min(Wages$lwage)))+min(Wages$lwage)

#Plot the new network

plot(testNN$lwage, predwages83$net.result, ylab = "Predicted rating (NN83)", xlab =

"real rating")

abline(0,1)

#MSE of both neural network specifications, which requires having the test samples

without normalisation

35

set.seed(42)

index2 <- sample(1:nrow(Wages), round(0.75*nrow(Wages)))

train2 <- Wages[index2,]

test2 <- Wages[-index2,]

MSE.NN <- sum((predwages2 - test2$lwage)^2)/nrow(test2)

MSE.NN83 <- sum((predwages832 - test2$lwage)^2)/nrow(test2)

36

7. BIBLIOGRAPHY

Alice, M., 2015. Fitting a neural network in R, neuralnet package. [online] R-bloggers.

Available at: https://www.r-bloggers.com/fitting-a-neural-network-in-r-neuralnet-

package/. Accessed 4 March 2018.

Anastasiadis, A., Magoulas, G. and Vrahatis, M., 2005. New globally convergent training

scheme based on the resilient propagation algorithm. Neurocomputing, 64: pp.253-270.

Choi, H. and Varian, H., 2012. Predicting the Present with Google Trends. Economic

Record, 88: pp.2-9.

Croissant, Y. (2016). Package ‘Ecdat’. [online] Available at: https://cran.r-

project.org/web/packages/Ecdat/Ecdat.pdf. Accessed 2 May 2018.

Einav, L. and Levin, J., 2014. The Data Revolution and Economic Analysis. Innovation

Policy and the Economy, 14: pp.1-24.

Fritsch, S., Guenther, F., Suling, M. and Mueller, S., 2016. Package 'neuralnet'. [online]

Available at: https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf. Accessed

on 1 May 2018.

Grogan, M., 2018. neuralnet: Train and Test Neural Networks Using R. [online] Michael

Grogan. Available at: http://www.michaeljgrogan.com/neural-network-modelling-

neuralnet-r/. Accessed 15 Mar. 2018.

Günther, F. and Fritsch, S., 2010. neuralnet: Training of Neural Networks. The R Journal,

[online] 2(1). Available at: https://journal.r-project.org/ Accessed on 16 March 2018.

Haykin, S., 1999. Neural networks: a comprehensive foundation. 2nd ed. London:

Prentice-Hall International.

Haykin, S., 2009. Neural Networks and Learning Machines. 3rd ed. Pearson Prentice

Hall.

Hornik, K., Stinchcombe, M. and White, H., 1989. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5): pp.359-366.

https://www.r-bloggers.com/fitting-a-neural-network-in-r-neuralnet-package/
https://www.r-bloggers.com/fitting-a-neural-network-in-r-neuralnet-package/
https://cran.r-project.org/web/packages/Ecdat/Ecdat.pdf
https://cran.r-project.org/web/packages/Ecdat/Ecdat.pdf
https://cran.r-project.org/web/packages/neuralnet/neuralnet.pdf
http://www.michaeljgrogan.com/neural-network-modelling-neuralnet-r/
http://www.michaeljgrogan.com/neural-network-modelling-neuralnet-r/
https://journal.r-project.org/

37

James, G., Witten, D., Hastie, T. and Tibshirani, R., 2013. An introduction to statistical

learning. New York: Springer.

Kuan, C. and White, H., 1994. Artificial neural networks: an econometric

perspective. Econometric Reviews, 13(1): pp.1-91.

Lippmann, R., 1987. An introduction to computing with neural nets. IEEE ASSP

Magazine, 4(2): pp.4-22.

McCulloch, W., and Pitts, W., 1943. A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5(4): pp.115-133.

Portilla, J., 2016. A Beginner’s Guide to Neural Networks with R. [online]

Kdnuggets.com. Available at: https://www.kdnuggets.com/2016/08/begineers-guide-

neural-networks-r.html Accessed 4 Mar. 2018.

Rosenblatt, F., 1957. The Perceptron: a perceiving and recognizing automaton. Report

85-460-1, Cornell Aeronautical Laboratory.

Sagar, C., 2017. Creating & Visualizing Neural Network in R. [online] Analytics Vidhya.

Available at: https://www.analyticsvidhya.com/blog/2017/09/creating-visualizing-

neural-network-in-r/. Accessed 3 March 2018.

Samuel, A., 1959. Some Studies in Machine Learning Using the Game of Checkers. IBM

Journal of Research and Development, 3(3): pp.210-229.

Varian, H., 2014a. Big Data: New Tricks for Econometrics. Journal of Economic

Perspectives, 28(2): pp.3-28.

Varian, H., 2014b. Beyond Big Data. Business Economics, 49(1): pp.27-31

https://www.kdnuggets.com/2016/08/begineers-guide-neural-networks-r.html
https://www.kdnuggets.com/2016/08/begineers-guide-neural-networks-r.html
https://www.analyticsvidhya.com/blog/2017/09/creating-visualizing-neural-network-in-r/
https://www.analyticsvidhya.com/blog/2017/09/creating-visualizing-neural-network-in-r/

