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REsumM

Aquest treball té com a objectiu introduir el lector a la teoria K per C*-algebres demostrant-ne dos
dels seus resultats centrals: La periodicitat de Bott i la subsegiient successié exacta ciclica de sis
termes.

De manera similar a la teoria K algebraica, a la teoria K per C*-algebres es construeix una familia
de functors K, de la categoria de C*-algebres a la de grups abelians. Aquests functors, que assignen
a cada C*-algebra A una familia de grups abelians K,,(A), permeten deduir propietats estructurals de
I’algebra. Per construir-los, cal destacar que I’enfoc que es dona difereix lleugerament de Doriginal, fet
que permet fer més concisa 1’exposicio.

A T’hora de calcular els K-grups, la periodicitat de Bott permet reduir-nos a calcular només els grups
Ky i K. D’altra banda, la successié exacta ciclia de sis termes és una eina molt 1til per calcular Ky i
K de l’algebra en termes dels corresponents grups d’un ideal i del seu quocient respectiu.
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Introducci6

Degut a la seva riquesa i varietat d’aplicacions, l’estudi i classificacié de les C*-algebres gaudeix d’un
moment dolg dins de la recerca en algebres d’operadors. Aquestes estructures, definides formalment
I’any 1943 per Gelfand i Naimark, son una generalitzacié de les conegudes algebres de von Neumann,
proposades pel mateix von Neumann ’any 1929 com a models de la Mecanica Quantica.

Usualment, les C*-algebres es defineixen com algebres de Banach tancades per una certa norma
| - || i involucié * relacionades per la igualtat ||aa*|| = ||a|?, també coneguda com a C*-igualtat. Tot
i aixi, la celebrada construcci6 de Gelfand-Naimark-Segal de ’any 1943 ddéna una caracteritzacié de
qualsevol C*-algebra com a sub-algebra de B(H), tancada per la norma i la involucid, per algun espai
de Hilbert H. També sabem, pel conegut Teorema de Gelfand, que tota C*-dalgebra commutativa és
isometricament isomorfa a l'algebra Co(X) per algun espai X Hausdorff i localment compacte.

Com a conseqiiéncia d’aquest darrer resultat, les C*-algebres no commutatives es pensen sovint
com algebres de funcions sobre un espai que, de fet, no existeix. Un dels grans éxits d’aquest punt de
vista, anomenat topologia no commutativa, és la generalitzacié de la teoria K topologica a la teoria K
per C*-algebres, focus principal d’aquest treball.

A grans trets, en teoria K per C*-algebres es defineix, tal i com es fa en teoria K algebraica, una
familia de functors K, de la categoria de C*-algebres a la de grups abelians. En particular, a tota
C*-algebra A se li assignen una familia de grups abelians, coneguts com els seus K-grups, que denotem
per K, (A).

Ara bé, com a conseqiiéncia de dos dels seus resultats centrals, la teoria K per C*-algebres presenta
un gran avantatge respecte la teoria K algebraica: La calculabilitat dels grups K,.

El primer d’aquests dos resultats, conegut com la periodicitat de Bott, s’hereta de la teoria K
topologica i ens assegura que, de fet, només hi ha dos K-grups modul isomorfia, el grup de Grothendieck
Ky(A) i el grup de Whitehead topologic K1 (A).

El segon d’aquests resultats, ’anomenada successié exacta ciclica de sis termes, ens permet reduir-
nos, a I’hora de calcular explicitament els K-grups d’'una C*-algebra A, a només calcular els K-grups
d’un ideal de A i del seu quocient respectiu.

Utilitzant aquests dos fets i altres resultats del treball, podem usar teoria K per deduir propietats
estructurals de I’algebra que tractem. Per exemple, sabem que els K-grups de tot parell de C*-algebres
homotopiques son isomorfs, i que el grup Ko(A) d’'una C*-algebra A separable és numerable.

Gracies a totes aquestes qualitats, la teoria K per C*-algebres ha resultat ser molt fructifera i, des
de la classificacié per part de George Elliott de les AF-algebres 'any 1976, s’ha convertit en una eina
determinant per 'estudi efectiu d’aquestes.

Aixi doncs, I'objectiu del treball és doble: Per una banda, pretén servir de breu introduccié al vast
moén de les C*-algebres, i en concret de la teoria K, suposant inicament que el lector esta familiaritzat
amb els conceptes d’espai de Hilbert i operador. De I’altra, demostrar I’anomenada periodicitat de Bott



i derivar-ne la successié exacta ciclica de sis termes, resultat essencial per realitzar calculs concrets.

Per aconseguir aquests proposits, I’escrit esta estructurat en cinc capitols. En el Capitol 1 s’enuncien
resultats i definicions necessaries per la comprensié dels capitols posteriors. En els Capitols 2 i 3
s’'introduexien els K-functors i es demostren les propietats functorials d’aquests, com ara ’exactitud
escindida i ’estabilitat. Finalment, en els Capitols 4 i 5 es defineixen I’index i "aplicacié exponencial
que, juntament amb el Teorema de Bott demostrat també al Capitol 5, permeten construir la successié
exacta ciclica de sis termes.

Addicionalment, en els Capitols 3, 4 i 5 s’inclouen seccions que, tot i no estar directament relacio-
nades amb 'obtencié de la successio exacta ciclica, informen sobre altres aspectes de la teoria K. Per
exemple, a la Secci6 4.2 es compara l'index de Fredholm amb I’index de la teoria K, i a la Secci6 5.4
s’utilitzen les anomenades dimension drop algebras per construir C*-algebres tals que els seus grups
Ky i K; siguin qualsevol parell de grups abelians finitament generats. Aquest resultat és, de fet, el
primer pas per demostrar un teorema més general, que permet construir una C*-algebra separable tal
que els seus K-grups associats siguin qualsevol parell de grups abelians numerables.

Cal destacar que, encara que estructura que es segueix és en gran mesura la utilitzada en la
majoria de llibres consultats, en el Capitol 3 s’introdueix la notacio K/. Aquesta nova notaci6 ens
permet, juntament amb resultats propis, demostrar les propietats dels functors K, d’un sol cop, fet
que representa una millora respecte ’esquema de [9, 11], on es distingeixen els casos n = 0in =1
abans de passar al cas general.

També és important ressaltar que, tret de mencié explicita, les demostracions dels exemples i els
resultats del treball son propies. En particular, la majoria dels exemples son exercicis de [9].

Com acostuma a passar en matematiques, ’estructura proposada del treball és només una de les
moltes maneres de llegir-lo. Per exemple, es recomana a tots aquells lectors que ja estiguin familiaritzats
amb el concepte de C*-algebra a comengar la lectura pel Capitol 2 i redirigir-se al Capitol 1 només en
cas de dubte.

Si, en canvi, aquest és el primer contacte del lector amb les C*-algebres, pot resultar molt il-lustratiu
comencar a llegir des del Capitol 1 perd ometent totes les demostracions del treball. En aquest cas es
recomana, més concretament, ometre les demostracions dels Teoremes 3.2.10, 4.1.6 i 5.2.1 que, tot i
ser instructives, poden resultar feixuges.



Capitol 1

Preambul

De cara a que el treball sigui autocontingut, en aquest primer capitol es fa esment de definicions i
resultats previs necessaris per la comprensié dels capitols posteriors. A més a més, es fa un resum
breu sobre el calcul funcional en les C*-algebres que, tot i que no s’utilitza en aquest treball, té una
importancia cabdal en el seu estudi.

La majoria de les demostracions dels resultats llistats a continuaci6 es poden trobar a [4, 7, 10].

1.1 Introduccié a les C*-algebres

Definici6é 1.1.1. Sigui A una algebra de Banach sobre C amb una norma || - || i una involucié *, anti-
multiplicativa i lineal conjugada. Direm que A és una C*-algebra si es compleix la segiient igualtat,
també coneguda com a C*-igualtat:

laa*|| = ||a||*> per atotac A

Anomenarem sub-C*-algebres a les sub-algebres de A tancades per la norma i per la involuci6 *, i ideal
de A a tot ideal bilateral tancat de A, com a algebra, tancat per la involucio.

Exemples 1.1.2.
1. C és una C*-algebra amb la norma usual i la conjugacié com a involuci6.

2. Donat un espai de Hilbert H, l’algebra d’operadors acotats B(H) és una C*-algebra amb la
norma i involuci6 usuals.

3. De manera analoga al cas anterior, es pot veure que l'ideal X(H ) format pels operadors compactes,
és a dir, els operadors que sén limit d’operadors de rang finit, és una C*-algebra amb la norma
i involucié de B(H).

4. Sigui A una C*-algebra. Llavors, I’algebra de funcions continues f: [0,1] — A, que denotem per
C([0,1], A), és una C*-algebra amb la norma del suprem i la involucié punt a punt.

5. Donat un espai X localment compacte i Hausdorff, I’espai de funcions continues f: X — C
que s’anul-len a linfinit!, que denotem per Cy(X), és una C*-algebra amb la involucié i norma
anteriors.

Per exemple, si X = R, aquestes son les funcions tals que lim, 1., f(z) = 0.

!Recordem que diem que una funci6 continua f: X — C s’anul-la a I’infinit si per tot € > 0 es compleix que el conjunt
{z € X | |f(z)| > €} és compacte.



4 Capitol 1. Preambul

Com és d’esperar, direm que una aplicacié ¢ entre dues C*-algebres A i B és un *-morfisme si és
un morfisme de A a B com a algebres i, a més a més, en conserva la involucio, és a dir, ¢p(a*) = ¢(a)*
per a tot a € A.

Una de les conseqiiéncies més immediates, pero no del tot trivial, de la C*-igualtat és que tots els
*.morfismes son decreixents en norma i, per tant, continus. En particular, tots els *-isomorfismes sén
isométrics.

Observem també que, de manera analoga a les algebres de Banach, un *-morfisme entre C*-algebres
unitaries pot o no conservar la unitat. En cas de fer-ho, s’anomena *-morfisme unitari. Tot i aixf,
quan el context sigui prou clar, ometrem ’adjectiu unitari.

Encara que la definici6 de C*-algebra que s’utilitzara durant tot aquest treball és la donada a la
Definicié 1.1.1, en molts casos és tutil fer-ne servir una d’alternativa, que ve donada pel Teorema de
Gelfand-Naimark.

Teorema 1.1.3 (Gelfand-Naimark). Per a tota C*-algebra A, existeiz un espai de Hilbert H tal que
A és isomeétricament isomorfa a una sub-C*-dlgebra de B(H).

Exemple 1.1.4. Donada una C*-algebra A i n € N*, podem considerar ’algebra de les matrius amb
entrades de A de mida n, que denotarem per M, (A). Definint de manera adequada una involucio i
una norma sobre aquesta algebra, M,,(A) cobra lestructura de C*-algebra:

e Com a involucio, prenem l’aplicacié transposar i involucionar component a component per la
involucié de A.

e D’altra banda, sabem pel darrer Teorema que existeix un espai de Hilbert H i un *-morfisme
injectiu ¢ de A cap a B(H). Definim la norma ||a|| de M, (A) com la norma de ¢, (a) € B(H™)
on ¢, és el *-morfisme que aplica ¢ component a component.

Definicié 1.1.5. Donat un ideal bilateral I de A, definim el quocient de A per I com
A/l ={a+1]|ac A}

Amb aquesta definici6, A/I és una C*-algebra amb la norma |a| 4 ; == infeer |a+ ] 4.

1.1.1 Unitificacio

Com ja s’ha observat en algun dels exemples, és habitual que una C*-algebra no tingui unitat. Tot
i aixi, existeix un procediment que ens permet estendre qualsevol C*-algebra A, unitaria o no, a una
C*-algebra A que sempre té unitat.

Aquest procés s’anomena unitificacié de A, explicitat a continuacio:

Definicié 1.1.6. Donada una C*-algebra A, definim sobre A x C la segiient norma

II(a7a)IIA=maX{ sup {Ilaw+ax||A},|a|}

z€A,|z|=1

Llavors, amb les operacions suma i involucié component a component i el producte (a,\)(b,n) =

(ab+ pa + Ab, A\), A x C és una C*-algebra unitaria amb unitat 1 ; := (0, 1), que anomenarem A.
Escriurem els elements de A com a + Al 3.

Un dels conceptes més importants del treball és el de successio exacta, definit a I’Apéndix C. En
aquest sentit, el primer resultat on apareix una successié exacta és el segiient Lema.
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Lema 1.1.7. Sigui i la inclusié natural de A a A, 7 la projeccid a C i M) := alj. La construccio
anterior fa que la successio

0——A—s Az——=C——0
A

sigui escindidament exacta.

Aixi doncs, A és un ideal de A tot element b € A es pot escriure com a suma d’un element a € A
i un element o € Cl;. En aquest darrer element se I’anomena part escalar de b, i es denota per

s(b) :== Ao m(b).

Es també important destacar que si A ja tenia una unitat 14, lelement p; = 14 — 1; és una
projeccid, tal i com es defineix a 1.2.1, i podem escriure tot element de A com a + ap; amb a € A
aeC.

Usant aquest element, es pot també veure que h : A — A® C definit per h(a+aly) = (a+ala,a)
és un *-isomorfisme.

Definicié 1.1.8. Siguin A i B dues C*-algebres i ¢ un *-morfisme entre elles. Definim la unitificacié
de ¢ com la segiient aplicacio:

¢p:A———B

atalzela)+alg

1.2 Espectre i elements diferenciats

Encara que els exemples de C i M,,(C) puguin semblar trivials, algunes de les técniques utilitzades en
lestudi de les C*-algebres sén, en certa mesura, generalitzacions de les técniques d’estudi utilitzades
en aquests exemples tant coneguts. En particular, es té la segiient definicio:

Definicié 1.2.1. Sigui A una C*-algebra i  un element de A. Definim I'espectre de z, que denotarem
per sp(z), com el conjunt de tots els nombres complexos A tals que  — A1 ; no és invertible a A.

Molts dels elements diferenciats d’una C*-algebra estan intrinsecament relacionats amb el seu
espectre i, en alguns casos, li deuen el seu nom. De cara al nostre estudi, diferenciarem els segiients
elements:

Donada una C*-algebra A i un element a € A, diem que a és

e normal si aa® = a*a.
e positiu si existeix x€A tal que a = z*z o, equivalentment, si sp(a) C RTU{0} i @ és normal.
Anomenarem AT al conjunt dels elements positius de A.

e unitari si aa® = a*a = 1 o, equivalentment, si sp(a) C T i a és normal. Anomenarem U(A) al
conjunt dels unitaris? de A.

e una projeccid si a = a* = a? o, equivalentment, si sp(a) C {0,1} i a és normal. Anomenarem

P(A) al conjunt de les projeccions de A.

e invertible si existeix un element a~! tal que aa™! = 1. Anomenarem GL(A) al conjunt dels
invertibles de A.

2Com és d’esperar, aquesta definicié6 només té sentit si A és unitaria.
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D’aquests elements, les projeccions i els unitaris tindran especial importancia en la construccié de
Ky(A) i K1(A) respectivament.

Definicié 1.2.2. Siguin A una C*-algebra unitaria i U(A) el conjunt dels elements unitaris de A.
Anomenem conjunt d’unitaris normalitzats, que denotarem per UT(A), al subconjunt d’elements de
U(A) que tenen part escalar de norma 1.

1.2.1 La relaci6 homotopica

Una de les relacions més usades en ’estudi de les C*-algebres, i en la teoria K en particular, s’hereta
de l'estudi d’espais topologics: La relaci6 homotopica.

Definicié 1.2.3. Sigui A una C*-algebra i B un subconjunt de A. Diem que dos elements x,y de
A estan relacionats homotopicament a B, i escrivim = ~j y , si existeix un cami continu, amb la
topologia de la norma de A, entre z iy a B.

En teoria K, la relacié6 homotopica és especialment important en la construccié de K7 mitjancant
unitaris. Un dels lemes recurrents en el tractament de K7 és el Lema de Whitehead, enunciat a
continuacioé:

Lema 1.2.4. Sigui A una C*-dlgebra i u,v unitaris de A. Llavors, els segiients elements son dos a

dos homotopics a U(Ma(A)):

u 0 uwv 0 vu 0 v 0

0 v )’ 0o 1)’ 0o 1)’ 0 wu
Donat el conjunt d’unitaris normalitzats, U7 (4), destaquem que tota part escalar d’un element
unitari u d’una C*-algebra unitaria A pot ser normalitzat multiplicant-lo per 7(u)~'14. El Lema

anterior ens assegura, en particular, que si u i v sén unitaris normalitzats homotopics, també podem
normalitzar les homotopies anteriors.

Definicié 1.2.5. Sigui A una C*-algebra unitaria. Denotem per Uy(A) al conjunt d’elements unitaris
homotopics a 1.

A més del Lema de Whitehead, també utilitzarem diversos resultats que es basen en les particula-
ritats d’alguns dels elements diferenciats definits anteriorment. Resumim aquests fets en forma de tres
lemes:

Lema 1.2.6 (Homotopia i projeccions). Sigui A una C*-algebra unitaria i p, q dues projeccions de
A. Llavors,

o si|lp—q| <1, tenim que p ~, g a P(A).

e p i q estan relacionats homotopicament si i només si existeix una homotopia d’unitaris u; tal que
up =114 p=uiqui.

Lema 1.2.7 (Homotopia i unitaris). Sigui A una C*-dlgebra unitaria i u, v dos unitaris de A. Llavors,
o siflu—v| <2, estéun~pvalU(A).
o siu~pv aGL(A), llavors u ~, v a U(A).

A més a més, donada una altra C*-dlgebra B i un morfisme exhaustiu ¢ entre A i B, es compleiz

que ¢(Uo(A)) = Up(B).
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Lema 1.2.8 (Homotopia i invertibles). Sigui A una C*-dlgebra unitaria i x, y dos elements de A. Si
x és invertible i y és tal que ||z — y|| < 1/||lz7|, Uavors x + t(y — x) son invertibles per tot ¢ € [0,1].
En particular, x ~, y a GL(A).

Destaquem també que la relacié homotopica es pot estendre a *-morfismes i C*-algebres.

Definicié 1.2.9. Siguin ¢, ¢; dos *-morfismes entre dues C*-algebres A i B. Direm que ¢q esta
relacionat homotopicament amb 1, i escrivim ¢g ~p 1, si existeix una assignacié continua t — @
de [0,1] als *-morfismes de A a B tal que per a tot element a € A es té que t — ¢;(a) és una
homotopia entre pg(a) i ¢1(a).

Similarment, direm que dues C*-algebres A i B estan relacionades homotopicament, i ho denotem
A ~y, B, si existeixen dos *-morfismes ¢ : A — Bip: B — A tals que ¢pop ~pidgipodn~yidy.

1.2.2 Calcul funcional

Com ja s’ha comentat a la introduccié d’aquest capitol, el calcul funcional és una de les eines més
importants en l'estudi de les C*-algebres. Aquest fet és en gran mesura degut als segiients resultats:

Teorema 1.2.10. Sigui A una C*-dlgebra, a € A un element normal i C*(a,1) C A la sub-C*-algebra
més petita que conté a i 1.
Llavors, existeiz un isomorfisme isométric v entre C(sp(a)) i C*(a,1) tal que v(z — z) = a.

Comentari 1.2.11. Com a conseqiiéncia del Teorema anterior, sorgeix la segilient notacio:
Sigui f(-) € C(sp(a)). Denotarem per f(a) a la imatge per v de f(-)
En particular, podem considerar els elements e* de A per a tot @ normal i v/b per a tot b positiu.

Teorema 1.2.12. Per tot element normal a d’una C*-dlgebra A es té que sp(f(a)) = f(sp(a)) per a
tota funcié continua sobre sp(a).

Exemple 1.2.13. Sigui A una C*-algebra. Llavors, si existeix un element normal a € A d’espectre
no connex, tenim que A conté una projeccié diferent de 0 i 1.

En efecte, sigui C' C sp(a) una component connexa. Llavors, la funcié x¢ definida com x¢(z) =1
si z € C'1 0 altrament és una aplicacié continua que pertany a C(sp(a)).

Observem, a més a més, que f2 = f = f. Per tant, amb la notacié del comentari anterior, tenim
que f(a) és una projeccio.

Es clar que aquesta no pot ser ni 0 ni 1, ja que aquests elements corresponen a les funcions constants
0 i 1 respectivament.
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Capitol 2

El grup de Grothendieck K

Comencem fent un resum de relacions i propietats de les projeccions. A continuacid, asignarem un
grup a cada C*-algebra unitaria A, que anomenarem Ky(A), i un morfisme de grups, Ko(¢), a cada
C*-morfisme ¢. Finalment, estudiarem el comportament functorial de K i el generalitzarem al cas no
unitari.

2.1 Projeccions

Com ja s’ha comentat a 1.2, les projeccions sén d’especial importancia en ’estudi de les C*-algebres.
Per tractar-les, és convenient generalitzar relacions ja conegudes a M,,(C) a una C*-algebra arbitraria
A.

Recordant que P(A) denota el conjunt de projeccions, definim dues relacions:

e Relacié unitaria: Siguin p,q € P(A). Direm que p esta relacionada unitariament amb ¢, en
simbols p ~, g, si existeix u € U(A) tal que p = u*qu.

e Relacio de Murray-von Neumann: Donats p,q € A, p i ¢ compleixen la relacié de Murray-von
Neumann, en simbols p ~ ¢, si existeix v € A tal que p = vv* i ¢ = v*v.
Anomenem isometries parcials als elements v € M,,(A) tals que v*v és una projeccio?.
Encara que la relacié unitaria pugui semblar molt natural en un principi, cal destacar que aquesta
relacié utilitza, en el cas no unitari, elements que no sén de la C*-algebra que estem tractant.

En canvi, la relaci6 de Murray-von Neumann utilitza sempre elements de A i, com es veura a la
Subsecci6 2.1.1, és més feble que la unitaria.
Tot i aixi, es pot veure al Comentari 2.1.5 que aquestes dues relacions son equivalents a M,,(C).

Lema 2.1.1. Per a tota C*-dalgebra unitaria A, la relacid unitaria i de Murray-von Neumann son
d’equivaléncia.

Demostracid. Només s’escriu la demostracié per a la relacié de Murray-von Neumann, doncs la relacié
unitaria és clarament una relacié d’equivaléncia.

LE] motiu per donar-li aquest nom a v es desenvolupa més endavant, a I’Exemple 2.2.12

9
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Siguin k£ € N* i p, ¢ dues projeccions de M, (A) tals que p = vv* i ¢ = v*v per a un cert v € My (A).
Llavors, definint ¢t = v* | es tenen les seglients igualtats:

del que se segueix que la relaciéo de Murray-von Neumann és reflexiva i simétrica.
Sigui doncs r € Pi(A) tal que r = w*w i ¢ = ww* per algun w € My (A) i la projeccié ¢ anterior.
Comencem calculant z*z on z = (1 — vv*)v :

Zr=v1-p(l-pv=g—v'pw=q¢—¢*=0

Per tant, v = vv*v i, fent un argument analeg per w, també tenim w = ww*w.
Usant aquest resultat podem veure que p ~ r per la isometria parcial vw i, en conseqiiéncia, que
la relacié de Murray-von Neumann és transitiva i, per tant, d’equivaléncia:

(vw) (vw)* = vww*v* = vgU* = (VV* V)V = Vvt =p

(vw)* (vw) = WV VW = Wqw = (Www)w = ww =71

2.1.1 Propietats generals

Ja hem comentat que la relacié unitaria pot involucrar elements que no sén de A. En el cas unitari
pero, tenim la segiient propietat:

Proposicié 2.1.2. Sigui A una C*-dlgebra unitaria. Llavors, donats p,q € P(A), p ~y q St i només
sip=u*qu ambu € U(A).

Recordem que a 1.2.1 ja haviem definit la relaci6 d’homotopia, ~p, que també es pot aplicar a
P(A). Aixi doncs, tenim tres relacions sobre les projeccions de A i cal estudiar com interactuen entre
elles. En aquest sentit, es tenen les segiients Proposicions:

Proposicié 2.1.3. Siguin p,q dues projeccions d’una C*-dlgebra A:

e Sipr~y qllavors p ~, q
o Sipry qllavors p ~q

Proposicié 2.1.4. Siguin p,q dues projeccions d’una C*-algebra A:

: p 0 q 0
oS1p~q11avors<O 0>~u<0 O)

OSipwuqllavors(g 8>~h<(q) 8)

Comentari 2.1.5. L’anterior proposicio ens permet demostrar, en particular, que la relacié de Murray-
von Neumann i la relacié unitaria son equivalents a M, (C), com ja haviem dit abans.
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2.2 El grup Ky(A) per a una C*-algebra A unitaria

2.2.1 El monoide D(A)
Definicié 2.2.1. Siguin P,,(A) = P(M,(A)) i Pso(A) = UpenPy(A). Definim sobre Py (A) la seglient
operacio @ i relacié ~q:

e p & g = diag(p,q) per a tot p,q € Px(A)

e pr~yq < p=ovv* qg=v"v, on v és una matriu rectangular del tamany adequat.

Destaquem que la relaci6 ~¢ no és la relacié de Murray-von Neumann, siné una generalitzacié d’a-
questa, ja que en aquest cas p i ¢ poden tenir mides diferents.

Comentari 2.2.2. Seguint un argument analeg al Lema 2.1.1, es pot demostrar que la relacié ~g és
una relacié d’equivaléncia.

Com s’ha dit al comengament, un dels objectius d’aquest capitol és construir per a tota C*-algebra
unitaria A un grup abelia Ky(A). La seglient proposicio, la demostracié de la qual és un exercici facil
a partir de les definicions, ens permet donar estructura a Py, (A)/~g i definir el monoide commutatiu
D(A).

Recordem abans la definicié de monoide:

Definicié 2.2.3. Sigui S un conjunt i - una operacié de S x S — S associativa. Diem que S és un
monoide amb - si existeix un element ¢ € S tal que e-x = x-e = x per a tot x € S.

Si ’aplicaci6 - també és commutativa, S s’anomena monoide commutatiu i escrivim la seva operacid
com zx -y =: x + y denotant el neutre per 0.

Proposicié 2.2.4. Sigui A una C*-dlgebra i siguin p,q,p’,q',r € Px(A) qualsevols. Llavors,
1. p®0, ~gp per a tot n € N*
2. Sip~opigrod.pBg~op ®d
3. pBqgr~oqdp
4 pogor)~ (pog®r
5. Sip,q € P,(A) sén ortogonals, p+q € P(A)ip+qg~opDg

Definicié 2.2.5. Donada una C*-algebra A, definim D(A) com el segiient monoide commutatiu

D(A) := (Pso(A)[~0,®)

Comentari 2.2.6. D(A) és un monoide commutatiu en virtut de la Proposici6 2.2.4.

2.2.2 El grup Ky(A)

Definici6é 2.2.7. Sigui A una C*-algebra unitaria. Definim Ky(A) com el grup de Grothendieck de
D(A), és a dir,

on G és la construccié de Grothendieck.
Definim també [ |o := gomp, on mp és la projeccio de P (A) a D(A) i g és P’aplicacié de Grothen-
dieck?.

2Veure Apéndix A per més informacié sobre la construccié de Grothendieck.




12 Capitol 2. El grup de Grothendieck K

Cal destacar que, com a conseqiiéncia de les Proposicions 2.1.4 i 2.2.4, les classes d’equivaléncia
~h, ~y 1~ son les mateixes a Ko(A). Aquest fet ens sera atil més endavant pel calcul explicit de K.

Com és d’esperar, el grup K((A) hereta les propietats llistades a la Proposici6 2.2.4, que utilitzarem
per donar una construcci6 explicita de Ko(A).

Per aquest motiu, ometem la demostracié del Lema segiient.

Lema 2.2.8. Sigui A una C*-dalgebra unitaria i p,q dues projeccions de P, (A). Llavors,

L [p® glo = [plo +[dlo
2. [0,]=0€ Kyo(A) peratot n € N

3. [plo + [g)o = [g]o + [Plo
4. Sip~pq, [plo = ldlo
5. Sipg =0, [p+qlo = [plo+[dlo

Proposicié 2.2.9. Donada una C*-algebra unitaria A, es té la segiient igualtat:

Ko(A) = {[plo — [dlo | p,q € P(A)}
A més, [plo = [glo si i només si existeix r € Poo(A) tal que p® 1 ~g g r.

Demostracid. La igualtat de l'enunciat prové de la construccié de Grothendieck. Per tant, només
demostrem la doble implicacié:

La implicacié cap a ’esquerra se segueix trivialment de la propietat 1 del Lema 2.2.8.

Suposem ara que [p]g = [g]o. Com que []o = g o mp, sabem també per la definici6 de g i la relacio
~¢ de ’Apéndix A que existeix r € Py (A) tal que mp(p) ®7p(r) = mp(q) ®7p(r), del que se segueix
que pdTr ~gqgdr. O

Comentari 2.2.10. A la relacié p ® r ~g g ® r se 'anomena relacié d’estabilitat, que escrivim ~y.
A més a més, si r € P,(A), es té que (1,, — r) és una projeccié ortogonal a r. Per tant, tenim la
segiient equivaléncia

p@ly=p&Ipn—r+r)~(p&r)®(ln—7)
~o (o) ® (L —7)~0q& 1,
Un cop obtinguda la construccié explicita del grup Ky unitari, podem comengar a calcular alguns
exemples. Encara que aquests siguin els primers, en el calcul de Ky(C) es pot entreveure que certs

morfismes de P, (C) a un grup G es poden estendre a morfismes de Ky(C) a G, resultat desenvolupat
amb més generalitat al Lema 2.2.13.

D’altra banda, el calcul de Ko(B(H)) l'utilitzarem per obtenir els K-grups de C*-algebres més com-
plicades, com ara l’algebra de Calkin o la de Toeplitz, dels Exemples 5.3.3 i 5.3.4 respectivament.

Exemple 2.2.11. K,(C) = Z
Per a tota projeccio p € P,(C), sabem per algebra lineal que existeix un tnic &k natural i una matriu
unitaria u € U, (C) tal que upu* = 1 @ 0, . Definim doncs la segiient aplicacio:

dim: Po(C)——N
p——k

Per tant, per veure Ky(C) = Z, és suficient demostrar que [p]o = [¢]o si i només si dim(p) = dim(q).
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D’altra banda, sabem per la Proposici6 2.2.9 que [plo = [g]o si i nomeés si existeix r € Py (C) tal
que pdr ~g q D r. Per la Proposicié 2.1.4, aix6é passa si i només si p D r ®0n ~y, ¢ D7 @ Opf
per a N, M € N adients. Ara bé, pel comentari fet al principi de ’exemple, dues projeccions estan
relacionades unitariament si i només si la seva imatge per dim és la mateixa. Per tant, es té el segiient:

dim(p@r) =dim(p®r ®0x) = dim(g® r @ 0py) = dim(¢ ® )

Com que dim és trivialment additiva amb l'operacié @, se segueix que [p]o = [g]o si i només si
dim(p) = dim(q), fet que acaba la prova.

Cal destacar que podem reproduir I’argument anterior per a M, (C) per a tot n € N, aixi obtenint
Ko(My,(C)) 2 Z . Aquest fet, com es veura al Lema 3.1.14, no és casualitat.

Exemple 2.2.12. Ky(B(H)) = {0} per a tot espai de Hilbert H separable i de dimensi6 infinita

Per demostrar I’anterior isomorfisme cal només veure que p ~ ¢ si i només si dim(p(H)) =
dim(g(H)).

En efecte, un cop vist aix6 dos elements de p,q € P (B(H)) es troben en la mateixa classe
d’equivaléncia a D(B(H)) si i només si p® Oy ~ ¢ @ 0y per alguns N, M € N adients, fet que passa,
segons la doble implicacié anterior, si i només si dim((p ® On)(H)) = dim(p(H)) = dim(q(H)) =
dim((¢®0a)(H)). Com que la dimensio és additiva, se segueix que D(B(H)) = NU{oo} i Ko(B(H)) =
G(D(B(H))) 2.

Veiem doncs la doble implicacié anterior:

Si p ~ g, existeix una isometria parcial v tal que p = v*v i ¢ = vv*. Prenent ¢ = v|,(p), és clar
que ¢ és un isomorfisme entre p(H) i ¢(H) i, en particular, dim(p(H)) = dim(q(H)). Per exemple, si
r = v*v(y) és tal que ¢(x) = 0, es té que 0 = v*(v(z)) = p?(y) = p(y) i, en conseqiiéncia, = = 0.

D’altra banda, si dim(p(H)) = dim(q(H)), la separabilitat de H ens assegura que existeix un
isomorfisme & entre p(H) i q(H). Estenent 6 a H trivialment definint v com v := §X 4, és un calcul
directe que v és la isometria parcial que busquem.

2.2.3 El functor K, unitari

Ens interessa ara tractar de transformar els *-morfismes ¢ : A — B entre C*-algebres a morfismes de
grups Ko(¢) : Ko(A) = Ko(B). Per fer-ho, utilitzarem el segiient resultat:

Lema 2.2.13. (Propietat universal de Ky) Sigui A una C*-dlgebra unitaria i ¢ una aplicacié additiva
per @ de P (A) a un grup G tal que ¢(0,) = 0 i ¢(p) = ¢(q) si p ~p q. Llavors, existeix un inic
morfisme § : Ko(A) = G que fa el segiient diagrama commutatiu:

Peo(A)

o N

Demostracié. Jahem vist a la Proposicio 2.2.9 que tot element de Ky(A) es pot escriure com [p]o —[¢]o-
Per tant, tot morfisme sobre Ky(A) queda univocament determinat per les imatges dels elements [p]o.
Observem doncs que la commutativitat del diagrama ens diu que per a tot p € P (A) es té que
d([plo) = #(p), del que se segueix que, si ¢ és morfisme, ha de ser unic. Comprovem que ¢ estd ben
definit i és un morfisme:
Siguin p,q € P (A) tals que [p]o = [glo. Sabem, per la Proposici6 2.1.4 i la Proposicié 2.2.9, que
aix0 passa siinomés sip®r®d 0y ~, ¢ D0y per ar € Poo(A) i N, M € N adequats.
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Com que ¢ porta a la mateixa imatge les projeccions homotopiques, és additiva per @ i porta els
zeros 0, al zero, tenim la segiient igualtat:

5([plo) + ¢(r) =olp@7r) =P T)+0=0(p &7 @®0N)
=¢(g@ 7 ®0n) = d([glo) + &(r)

Com que G és un grup, es té que d([plo) = d([¢]o)-
Se segueix de la commutativitat del diagrama que § és morfisme. O

Observem que donat ¢ : A — B un *-morfisme, aquest es pot estendre component a component
a un *-morfisme de M, (A) a M,(B). A més a més, com que tot *-morfisme porta projeccions a
projeccions, I'aplicaci6 ¢ : Py (A) — Py (B) induida per ¢, que d’ara en endavant també anomenarem
¢ per reduir la notacio, estd ben definida i és clarament additiva amb 'operacio &.

Per tant, podem definir ’aplicaci6 additiva ¢ = [ ]o,go¢ i, per la propietat universal de Ky, existeix
un unic morfisme § que fa el segiient diagrama commutatiu:

HO,AJ J[]o,s

Ko(A) T’KO(B)

Definicié 2.2.14. Siguin A, B dues C*-algebres unitaries i ¢ un *-morfisme entre elles. Definim Ky (¢)
com a |’anic morfisme ¢ entre Ky(A) i Ko(B) que fa que 'anterior diagrama commuti.

Tenim doncs un métode per convertir C*-algebres unitaries a grups abelians i morfismes entre
C*-algebres unitaries a morfismes de grups abelians. Aquest fet, juntament amb el seglient Lema, ens
permet definir Ky com un functor®.

Lema 2.2.15. Utilitzant la notacidé introduida a I’Apéndiz B, Ky és un functor covariant entre la
categoria de C*-algebres unitaries i la de grups abelians que porta els zeros als zeros.

Demostracio. Es clar que Ky(idy) = idg,(a) 1 Ko(0a,B) = Oxy(a),k0(B) Per a tota parella de C*-
algebres unitaries A i B. Per tant, només queda comprovar que K preserva la composicio.

Siguin doncs A, B i C tres C*-algebres unitaries i ¢ : A — B, ¢ : B — C *-morfismes. Llavors,
per a tot p € P, (A) es té la segiient igualtat:

Ko(¢ 0 ¢)([plo) = [9 0 ¢(p)lo = Ko(#)([p(p)]o) = (Ko(¢) o Ko(#))([plo)

Per tant, com que tot morfisme sobre Ky(A) queda univocament determinat per la imatge dels elements
[plo, Ko preserva la composicio. O

Encara que no es fa servir en aquest treball, es denota per Ky(A) la construccié anterior aplicada
a una C*-algebra no unitaria. Aquesta distincié es deu al fet que el functor Ko no és escindidament
exacte, propietat de gran utilitat en el calcul explicit de K.

Aixi doncs, cal redefinir Ky en el cas d’'una C*-algebra arbitraria, conservant les propietats i
construccié estudiades anteriorment.

3Consultar Apéndix B per una breu introduccié a la Teoria de Categories
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2.3 El grup K, per a una (C*-algebra general

Durant tot aquest apartat utilitzarem la notacié introduida a 1.1.1 per tractar la successié escindida
obtinguda quan unitifiquem una C*-algebra.

0— A3 Az—=C——0
A

El segiient Lema ens permet generalitzar Ky i conservar, tal i com voliem, la construccié en el cas
unitari.

Lema 2.3.1. Sigui A una C*-dlgebra unitaria. La successié escindida obtinguda en adjuntar una
unitat indueir la segiient successio escindida de grups

i . Ko(m)
0 —— Ko(A) 229 ko (A) o Ko(@) ——0
0

Demostracid. Recordem que a la Secci6 1.1.1 haviem donat, en el cas unitari, un isomorfisme explicit
entre Ai A®C, h(a+aly) := (a+ ala,«). Aixi doncs, tenim el segiient diagrama(no commutatiu):

0 A : Ac————C—0
A
[id,&, [h A[idc
0 A" AGC———C— 0
TA ic

Per veure que la successié escindida d’unitificacié induex a la successié escindida de 1’enunciat,
utilitzarem que i4,ic i A de U'anterior diagrama sén seccions i aplicarem les propietats vistes al Lema
2.2.15:

1. Ko(i) és injectiu: En efecte, doncs m4 o hoi = idy i, com que Ky preserva la composicio,

Ko(ma) o Ko(h) o Ko(i) = idg,(a)- Per tant, I"inic element x € Ko(A) tal que Ko(i)(x) = 0 és
el zero.

2. Im(Ko(7)) C Ker(Ko(m)): Cal només observar que 7o i = 0 i aplicar que Ky és un functor que
envia els zeros al zero.

3. Ker(Ko(m)) C Im(K((i)): Seguint el diagrama anterior, es té que idgy =iomgaoh+h toicon
amb i o w4 o h ortogonal a h™! oic o 7. Per tant, pel Lema 2.2.8 , idg, 1) = Ko(i) o Ko(ma) o
Ko(h) + Ko(h™") o Ko(ic) o Ko(r). Aixi doncs, si # € Ko(A) és tal que Ko(r)(z) = 0, tenim
x = Ko(i)((Ko(ma) o Ko(h))(x)) € Im(Ko(i))-

4. Ko(m) és exhaustiu i K(A) és una seccio: Observem que 7o A = idc i, en conseqiiéncia, Koy() o
Ko(\) = idg,(c)- L'exhaustivitat de Ko(7m) ve de I'exhaustivitat de 7.

O

Comentari 2.3.2. Destaquem que Ky(7) esta definit per a tota C*-algebra A, ja que AiC sén C*-
algebres unitaries. Observem també que, com a corol-lari del Lema anterior, tenim que ker(Ko(w)) =
Ky(A) quan A és unitaria.

Definicié 2.3.3. Sigui A una C*-algebra. Denotarem per Ko(A) al nucli de I'aplicacié Ko().
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Com a conseqiiéncia de les observacions del Comentari 2.3.2, aquesta definici6 de Ky(A) compleix
totes les propietats que haviem imposat al final de la Subsecci6 2.2.3. A més a més, observem que si
p és una projecci6 de P,(A) es té que Ko(m)([plo) = [7(p)]o = 0, del que se segueix [p]o € Ko(A).

De manera analoga a la definici6 de K unitari, donem una representaci6 estandar del grup Ko(A)
genéric.

Proposicié 2.3.4. Donada una C*-algebra A, es té la segiient igualtat

Ko(A) = {[plo = [s(p)]o [ p € Po(A)}

on s és l’aplicacid escalar definida a 1.1.1.

Corol-lari 2.3.5. Per a tot element x no nul de Ko(A) existeizen n € N i p € Py, (A) tals que
z = [plo — [1n ® On]o-

Demostracio. Sabem, per la Proposicié 2.3.4, que tot element x no nul de Ko(A) es pot escriure com
x = [glo — [s(¢)]o amb ¢ € P,,(A) per algun m € N.
Com que s(g) € Pp,(Cl;), sabem per resultats d’algebra lineal que s(g) ~y 1 @ Opm—x per a algun

k € N. Per tant, prenent n > max{k,m — k}, es té la segilent igualtat:

z = [qlo — [s(q)]o
= [qlo + [Ln—k D Ontk—mlo — [Ln—t D Ontk—mlo — [1& D Om—rlo
= [q @ ln—k ¥ 0n+k—m]0 - [1n &® On]()

Prenent p=q¢® 1,,_r D 01k _m, hem acabat. O

Exemple 2.3.6. Si A és separable, K((A) és numerable

Sigui k € N fixat. Sabem pel Lema 1.2.6 que si dues projeccions p,q € Px(A) es troben a distancia
inferior a 1, existeix una homotopia entre p i g. Per tant, considerem la base {B(p, 1) N Px(A)},cp, (a)
de P;(A) on B(p,1) és la bola centrada en p de radi 1.

Com que A és un espai métric, la propietat de separabilitat és equivalent a complir el segon axioma
de numerabilitat i, com que Py (A) és un subespai topologic de A, Py(A) també el verifica. Aixi doncs,
la base anteriorment definida té una sub-familia numerable { B(p,, x, 1)N Pk (A) }nen que continua essent
base de Py (A).

Aplicant 'anterior raonament a P,,(A) per a tot m i usant que {[z]o | z € B(p, 1)N P (A)} = {[p]o}
per a tot p € P,,(A), obtenim que Ky(A) és numerable?, fet que acaba la prova.

Definicié 2.3.7. Siguin A, B dues C*-algebres i ¢ un *-morfisme entre elles. Definim K(p) com la
segiient aplicacio
K()(QD)I Ko(A) EE— K()(B)

[plo — [s(P)]o = [2(P)]o — [s(A(P))]o

Lema 2.3.8. K(p) esta ben definit i és ["inic morfisme que fa el segiient diagrama commutativ

Ko(A) =2 ko (A) 22 ey ()
JKO(W) lKo(sﬁ) lidmm

Ko(B) ——— Ko(B K,(C
o(B) oS o(B) o) 0(C)

on Ko(ia) i Ko(ip) son les inclusions de Ko(A) i Ko(B) a Ko(A) i Ko(B) com a subgrups.

4Ja que la uni6 numerable de conjunts numerables és numerable
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Demostracié. Comencem destacant que el morfisme s commuta amb ¢, doncs per a tota projeccio
p € Ps(A) es té que ¢(s(p)) = ¢(m(p)1z) = m(p)ls = s(B(w(p)14)) = s(&(p))-

Aixi doncs, Paplicacio Ky(¢) definida anteriorment és una restriccio de Ko(p) sobre Ky(A) i, com
que és clar que Im(Ko(¢)) C Ko(B), tenim que Ko(¢) és un morfisme ben definit.

Sigui doncs [plo — [s(p)]o un element de Ky(A) qualsevol. Llavors, per tal que el diagrama de

I’enunciat sigui commutatiu cal que es compleixi la segiient igualtat:
Ko(¢)([plo — [s(p)lo) = (Ko(®) © Ko(ia))([plo — [s(p)]o) = [&(p)]o — [s(&(p))]o
Per tant, Ky(p) és I'tanic morfisme que fa que el diagrama commuti. O
Finalment, es torna a escriure el Lema 2.2.15 per a la construccié generalitzada de K.

Lema 2.3.9. K és un functor covariant entre la categoria de C*-dalgebres i grups abelians que porta
els zeros als zeros.
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Capitol 2. El grup de Grothendieck K




Capitol 3

Els K-functors d’ordre superior

En aquest capitol s’estudien les propietats functorials del functor suspensié S i es construeixen els
functors K, d’ordre superior basant-se en la construccié de K;. Es veu també el primer dels dos
resultats principals d’isomorfia d’aquest treball, K; = K o S, que s’utilitza per obtenir les propietats
functorials de K.

3.1 El functor suspensié

Definicié 3.1.1. Donada una C*-algebra A, definim el seu con, C' A4, i la seva suspensié, SA, com les
segiients C*-algebres:
CA={feC([0,1],4) | f(0)=0}
SA=A{feC([0,1,A) | f(0)=f(1)=0}
Observem que donat un *-morfisme ¢ entre dues C*-algebres A i B, podem definir un altre *-morfisme,
S¢, entre SA 1 SB:

S¢: SA— SB
f———¢0of
Lema 3.1.2. S és un functor covariant que porta els zeros als zeros.

Un cop definit el functor S, ens centrem ara en les seves propietats functorials. Més en particular,
volem veure que S és un functor exacte. Per demostrar-ho pero, cal un Lema previ.

Lema 3.1.3. Siguin A una C*-dlgebra i X un espai topologic localment compacte i Hausdorff. Llavors,
el conjunt F'A generat per combinacions lineals de les funcions f - a, definides per (f -a)(xz) = f(x)a
amb f € Co(X) ia € A, és dens a Cp(X, A).

Demostracio. Seguim la demostracié del Lema 10.1.1 de [9]:

Sigui Xt = X U {oo} la compactificaci6 de X, f una funci6 de Cy(X, A) i € un real positiu.
Llavors, per la compacitat de X+, sabem que existeix un recobriment obert Uy, --- , U, de X tal que
If(z) — f(2")]| < esix,a’ €U; per algun .

Prenem ara uns elements x; € U; tals que x; = 0o si oo € Uj;. Llavors, donada una partici6 de la
unitat h; subordinada a Uj, tenim que

£ () = > flap)hi@)] <Y hi(@)l|f (@) = fla)]| <€D hy(z) =e
j=1 j=1 j=1

19
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Aixi doncs, com que f(z;) = 0 quan oo € Uj, el sumatori 2?21 f(xj)h;(x) és una combinacio lineal
on els termes no nuls f(x;)h;(x) compleixen que h; € Co(X, A).
Per tant, Z?Zl f(xj)h;(z) pertany al conjunt F'A1i, en conseqiiéncia, aquest és dens a Cy(X, A). O

Lema 3.1.4. S preserva lexactitud de les segiients successions:

0 I— s AT AT 0

on i és la inclusid natural i 7 el pas al quocient.

Demostracié. Tal i com també s’observa a la Proposicié 10.1.2 de [9], 'anica part no trivial d’aquesta
demostracié consisteix en comprovar que S7 és exhaustiva. Per veure-ho, recordem que qualsevol
morfisme de C*-algebres és, en particular, continu.

Per tant, cal només veure que la imatge de S7 conté un conjunt dens de S(A/I).

Aixi doncs, sigui F(A/I) el conjunt dens de S(A/I) definit al Lema 3.1.3 1 f-b un element de
F(A/I) amb b € A/I qualsevol. Llavors, sabem per l’exhaustivitat de 7 que existeix un element a € A
tal que w(a) = b i, en conseqiiéncia, que Sw(f-a) = f - b.

Com que els elements de F'(A/I) son combinacions lineals d’elements de la forma f - b, se segueix
que la imatge de S7 conté F(A/I) i, en conseqiiéncia, que S7 és exacte. O

3.1.1 Els grups K,

Atés que Ko i S son functors, té sentit considerar la familia (Kg o S™),en, amb el conveni SY = Id i
on S™ es defineix recursivament com S™ = S o S”~!. La segiient definici6 no és estandard i només és
per facilitar la notacio.

Definicié 3.1.5. Sigui n € N. Denotarem per K, al functor Ko S™.

Ens disposem ara a estudiar les propietats dels functors K;l, doncs seran les mateixes que els
functors K,,. D’aquestes, destaquem la Proposicié 3.1.12 (exactitud escindida), un dels motius pels
quals no hem adoptat el functor Kyg com a K genéric.

Comentari 3.1.6. Observem que SA = {f € C(T,A) | f(1) = 0}, fet que ens permet interpretar els
elements de SA com deformacions continues del cercle unitat que passen pel 0.

Aquesta nova interpretacié s’utilitzara en les proves d’algunes propietats de K,;, i ens serd molt
atil per a la demostracié del Teorema 3.2.10.

Proposicio 3.1.7. Siguin A, B dues C*-dlgebres i @g, 01 dos *-morfismes entre elles. Si pg ~p 1,
llavors K, (o) = K,,(¢1) per a tot n € N.

Demostracio. Com a conseqiiéncia del Comentari 3.1.6, i un abus de notacid, escriurem
SA={feC(T,A) | f(1)=0}

durant tota la prova. -
Siguin n € N fix i ¢ € P (S™A). Veurem que es compleix la segiient igualtat

Ko(5720)([alo) = Ko(5"¢1)([glo)

Sigui doncs t — ¢y 'homotopia entre ¢q i ¢1. Definim

qt = %(Q)
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Com que per a tot ¢t € [0, 1] tenim que S™p; i % s6n morfismes, se segueix que q; € Pw(%) per a
tot t. Aixi doncs, ens cal només comprovar que ’assignacio t — ¢; és continua, ja que llavors tindrem
[90]o = [g1]0, que és la igualtat que voliem demostrar.

Recordem de la Seccié 1.1.1 que podem escriure ¢ = p + alg , amb p € M(S"A) i a € My(C)

per a un cert k € N. Per tant, definint p, := S™¢;(p), tenim la segiient expressioé per g,

g =S"pi(p+algy ) =S5"ep) +olgip , =P +algpy

D’aquesta expressié se segueix que ¢t — ¢; és continua si i només si ¢t — p; ho és, ja que « és constant
per a tot t. Veiem doncs que p; és continua:
Sigui J, la segiient aplicaci6

5, [0,1] x T" —— A
(t, (21, 20)) B pe(21) - (20)

Observem que per a tota parella (¢1,&1), (t2,&2) € [0,1] x T™ es té la segiient desigualtat

[0p(t1,81) = 0p(t2, &2)|l = (10, (1, €1) — 0p(t2, &1) + p(ta, €1) — Sp(ta, )|
< oty (p(&1)) = @1, (P(E)) | + [lep2, (P(&1) — P(E2)) ]
< s, (p(€1)) = @i, (P(E)) | + [Ip(€1) — p(&2) ]

Per tant, com que p és continua i ¢ — ¢; és una homotopia, se segueix de l’anterior desigualtat que J,
és continua i, com que té suport compacte, és uniformement continua.

Aixi doncs, t — p; és continua i t — ¢; també, fet que implica que Ko(%) = KO(S%) i, com
que Ko(S™pg) 1 Ko(S™p1) son restriccions dels anteriors morfismes, tenim Ko(S™pg) = Ko(S™¢1), fet
que acaba la prova.

O

Corol-lari 3.1.8. Si dues C*-dalgebres A i B estan relacionades homotopicament, llavors K;LgA) =
K, (B) per a tot n € N. En particular, si existeiz algun nombre natural m tal que K, (A) 2 K,,(B),
es té que A 2 B.

L’anterior Proposicié és molt natural en el sentit que tota la construccié de Ky ha estat modul
homotopia. Per tant, era d’esperar que dues C*-algebres homotopiques tinguessin els mateixos K-
grups.

En particular, podem utilitzar aquest fet en espais ja coneguts, com ara en el segiient exemple.

Exemple 3.1.9. Per a tot espai topologic X, definim C(X) com l’algebra de les funcions continues
entre X i C. Llavors, es té que

per a tot espai X compacte!, Hausdorff i contractil.

En efecte, pel Corol-lari anterior i 'Exemple 2.2.11, és suficient comprovar que C(X) esta ho-
motopicament relacionat amb C. Ho veiem utilitzant el mateix argument que a I’Exemple 3.3.6 de
[9]:

Recordem que un espai X compacte i Hausdorff és contractil si es pot contraure de manera continua
a un punt, és a dir, si existeix un punt z( i una aplicaci6 continua ¢ : X x [0,1] — X tal que ¢(z,0) = x
ic(x,1) =xo per atot x € X.

I'Notem que X és compacte si i nomeés si C(X) = Co(X).
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Observem doncs que la familia de morfismes v, : C(X) — C(X) tals que v (f)(z) = f(c(z,t))
formen una homotopia ¢ — v; entre vo(f) = ide(x) 1 11(f) = f(20). Aixo és degut al fet que ci f son
continues per a tot f i, en consequéncia, que es tingui f(c(x,t)) ~p f(x).

Per tant, el parell d’aplicacions segiients séon una homotopia entre C(X) i C

C(X)—C—CX)
f = f(zo)

2 le(X)

del que se segueix que K, (C(X)) 2 Zi K, (C(X)) = K, (C).
Un cop vist que els functors K;l transformen homotopies en igualtats, donem un Lema técnic que
ens permetra reduir, tant en notacié com en dificultat, les proves de les propietats d’exactitud de K,,.
Més concretament, el Lema ens permet reduir-nos a I'estudi del comportament de Ky amb succes-
sions exactes que només involucren ideals i quocients d’una C*-algebra.

Lema 3.1.10. Les segiients afirmacions son equivalents:

, K,
1. Per a tota successid evacta 0 — I 25 A 25 B — 0 i per totn € N, la successid K, (I) &

K (A) K—w)> K, (B) és exacta.

Ko(

Ko ('L) KO (A) 77)

2. Per a tota C*-dalgebra A i tot ideal I C A, la successio Ko(I)
eracta.

Ko(A/I) és

Demostracio. L’afirmacié 1 implica trivialment 'afirmaci6 2. Veiem la implicacié contraria:
Comencem observant que el segiient diagrama té totes les files exactes i que és commutatiu per a
tot n € N

0 sn(r) 2 gnay D L gngy g
e, ]

0 —— 5™ (Tm()) 2% gn(4) 27 on (4 /Tm(p)) ——— 0
e

0 —— Im(S"(ip)) — =y §7(A)/Im(S" (i) — 0

on i, i m, sén les inclusions naturals i passos al quocient corresponents en cada cas.

En efecte, és clar per n = 0 que la primera fila commuta amb la segona, que els elements de cada
columna sén isomorfs entre ells i que les dues files soén exactes. A més a més, la segona i tercera fila
son iguals en aquest cas.

Per n > 0, la functorialitat i 'exactitud de S del Lema 3.1.4 ens asseguren que la primera i segona
fila commuten i que aquesta ultima és exacta. Per tant, la primera fila també és exacta i, aplicant la
commutativitat i exactitud vistes per n = 0, tenim que la segona i tercera fila també sén exactes i
commuten.
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Aixi doncs, com que Ky és un functor covariant i U'anterior diagrama és commutatiu, tenim el
segiient diagrama commutatiu

K.(I) _ K K.(4) — =@ g (B)
IldK/ a) I
Ko (in) Ko(mn) .
Ko(Im(S™ (1)) =23 Ko (57 (A)) 2 e (5™ (A)/Tm(S™ (io))

Per tant, demostrar 'exactitud de la primera fila del diagrama anterior és equivalent a demostrar la
de la segona, que sabem que és exacta per hipotesi. O

Proposicié 3.1.11. Tota successid exacta curta

0 I—%44-%,B 0

de C*-algebres indueiz per cada ne N la segiient successio exacta

’

K,/
K.(I) n(®)

K, ()
—

K, (4) K,(B)

Demostracié. Seguim, un cop feta la reduccio, la demostraci6 del Teorema 6.3.2 de [11]:
Sabem pel Lema 3.1.10 que és suficient demostrar el resultat sota les hipotesis llistades a continu-
acio:

1. I és un ideal de A i ¢ =17 on i és la inclusié natural.
2. B és el quocient A/Ii ¢ =m on 7 és el pas al quocient.
3. n=0

Per tant, cal només comprovar que ker(Ko(m)) C Im(Ky(7)), ja que laltra inclusio és clara. Per
veure-ho, adaptem l’argument del Teorema 6.3.2. de [11].

Sigui doncs ¢ = [plo — [s(p)]o € ker(Ky(w)) amb p € P, (A). Sabem pel Comentari 2.2.10 i la
Proposicié 2.1.4 que es té la segiient igualtat:

w(@(p) ® 1n ® Op)u” = 7(s(p)) ® 1n ® Ok = s(p) ® 1n © O

perau € Uy(A/I) amb N =k +n+mik,n e N adequats.
Pels Lemes 1.2.4 i 1.2.7, existeix un lift w € Uy(Man(A)) de u @ u*. Aixi doncs podem definir la
segiient projeccio:
=w(p® 1, ® Oppn)w* € Pog(A)

A més a més, sabem per construccio que 7(r) € My (Cl,4) i, en conseqiiéncia, 7 € My (I). Per tant,
com que [r]g — [s(r)]o € Im(K (7)) i r ~y p® 1, @ O, tenim que [plo — [s(p)]o € Im(Ko(i)):

[plo — [s(p)]o = [p @ 1, ® Oxlo — [s(p) @ 1,, ® Oxlo
= [rJo — [s(r)]o € Im(Ko(7))
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Proposicié 3.1.12. Tota successio escindidament exacta

0——1—"=A # B——0
de C*-algebres indueiz per cada ne N la segiient successio escindidament exacta
' K, (9)

K !’ !’
(1) 229 K (A) == KL, (B) —— 0
K, (M)

’

0 K,

n

Demostracio. Sigui A una C*-algebra i I un ideal de A. Es pot veure, fent una prova analoga a la
del Lema 3.1.10, que per demostrar la Proposicio és suficient veure que les segiients successions son
escindidament exactes:

Ko(4) KO(T?
0

on 7 és la inclusié natural, 7 és el pas al quocient i A és una seccio.
La part restant de la prova és una adaptacio de la Proposicio 4.3.3. de [9].
Comencem observant que, per la functorialitat de Ko, es dona la segiient igualtat:

idse,(a/n) = Ko(moA) = Ko(m) o Ko(A)

Aixi doncs, Ko(m) és exhaustiva i Ky(A) n’és una seccié. Veiem que Ky (i) és injectiva o, equivalentment,
que ker(Ky(7)) = {0}:

Sigui [plo — [s(p)]o € ker(Ky(i)). Pel Comentari 2.2.10 i la Proposici6 2.1.4, sabem que existeixen
n,m € N tals que es compleix la segiient relacid

p®1l, 0y, ~, s(p) @1, 80, =s(pd1,®0,)

Per tant, definint p’ = p @ 1,, ® 0,,, podem trobar un unitari u € Uy, (A) tal que up’u* = s(p’).

Sigui v = Ao 7(u*)u. Observem, de manera analoga a la demostracié de la Proposicié 3.1.11, que
es doéna la segiient igualtat:

7(v) = (T o A) o7 (u"))7(u) = T(u'u) = 1 € Moo(Cl )

Aixi doncs, v € Moo (I) i és un calcul directe que vp'v* = s(p’), del que se segueix que p’ ~, s(p’)

a My (I) i, en conseqiiéncia, [plo — [s(p)]o = 0 a Ko(I).
Finalment, 'exactitud a Ky(A) prové de la Proposici6 3.1.11. O

Lema 3.1.13. Donades dues C*-algebres A i B, la segiient igualtat es compleiz per a tot n natural
K, (A& B) > K,(A) & K, (B)

Demostracid. Per a tot parell de C*-algebres A i B es té que la segiient successio és escindidament
exacta

0%A%A@B‘><ﬁ33*>0

B
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Per tant, per la Proposicié 3.1.12, tenim que la segiient successié de grups abelians també és escindi-
dament exacta

LK) K,(r5)
0—— K, (A) 2N K (4@ B) 2= K,(B) ——0
K, (ip)

Aixi doncs, usant la Proposicié 4.3. de [6], també coneguda com a Lema d’escisio, tenim que K;L(A &)
B)= K, (A)® K,,(B), tal i com voliem veure. O

A la Secci6 1.1.1 hem vist que A=~ A®C quan A és unitaria. Per tant, el Lema anterior implica
que per calcular K, (A) cal només calcular K,,(A) i K,(C):

K, (A) = K,(4) & K, (C)

n

En particular, sabem per ’Exemple 2.2.11 que Ky(A) = Ky(A) @ Z.

Lema 3.1.14. Per a tota C*-dlgebra A es compleiz K, (M,,(A)) = K, (A) per a tot n,m € N.

3.2 Els grups K,
3.2.1 El grup de Whitehead K;

En certs aspectes, la construccié de K7 és més simple que la de Ky, ja que no es requereix la construccio
de Grothendieck ni la distincié del cas unitari i no unitari. Tot i aixi, caldrd donar importancia a certs
matisos que s’usaran amb freqiiéncia a partir d’ara, com per exemple el Comentari 3.2.5.

Definicié 3.2.1. Sigui A una C*-algebra unitaria i Us(A) = UpenUn(A). Definim sobre Uy (A) la
segiient operaci6 i relacio:

e u®dv=diag(u,v)

e Per a u € Up(4) iv € Up(A), escrivim v ~; v si i només si existeix N > n,m tal que
UDIN_p~p VD 1INy a UN(A)

De manera analoga a la construcci6 de Ky, denotarem per [u]; a les classes de Uoo(/i)/ ~1.

Lema 3.2.2. Per a tota C*-dlgebra A, el quocient Us(A)/ ~1 té estructura de grup abelia amb la
suma [u]; + [v]1 = [u @ v]1 @ neutre [1];.

Demostracié. Comencem observant que, per la definicié de ~q, [1]; és el neutre de Uoo(fl)/ ~1.
Demostrem les altres propietats en un format breu:

1. + esta ben definida i és abeliana: Siguin u € U,(A) i v € Uy, (A) tals que [u]; = [v]1, és a dir,
que existeix N € N tal que u® 1y_p, ~p v® In_s,. Llavors, per a tot w € Uy (A), tenim les segiients
igualtats:

[ui+wh=udwh=udw+[Iv_nh=wdus+[Inv_ni=wdudly_nh
Wi+ wh =kewi=vewi+[Iyv_mi=wevli +Inv-mi = wdvS In_n)h
on la peniltima igualtat de cada fila és conseqiiéncia del Lema 1.2.4.

Per tant, com que u® Iny_p, ~p VB Iny_m, també es té que w D u B Iny_p ~p W DVD IN_m i, en
conseqiiéncia, [u]; + [w]; = [v]1 + [w]1 = [w]1 + [v];.
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2. Tot element [u]; € Us(A)/ ~1 té un invers: Tornant a utilitzar el Lema 1.2.4, sabem que
u@u* ~p, 1y amb M € N adequat. Per tant, [u]; + [u*]; = [1p]1 = 0.

3. + és associativa: Com que [1;]; = 0 per a tot k € N, per a tota tupla ([u1, [v]1, [w]1) d’elements
de Uy (A)/ ~1 podem suposar que els seus representants tenen la mateixa mida. Aplicant altre cop el
Lema 1.2.4, és clar que + és associativa.

O

Definici6 3.2.3. Donada una C*-algebra A, anomenem K;(A) al grup abelia (Us (A)/~1,+).

Tal i com hem fet després de definir el grup Ky(A), comencem fent el calcul del grup K; de C i
B(H).

Exemple 3.2.4. K;(C) 2 0i K;(B(H)) = 0 amb H un espai de Hilbert de dimensié infinita i
separable

Sabem per un exercici de I’assignatura Equacions Diferencials I que per a tota matriu complexa
B € M, (C) amb det(B) # 0, existeix una matriu A € M, (C) tal que e* = B. A més a més, si B és
unitaria, podem escollir A = ¢H amb H una matriu hermitica. Aixi doncs, per a tot element unitari
u € M,(C) existeix una funcié continua 4, : t — e*« tal que 6,(1) = u i 6,(0) = Id,,. Per tant,
Uso(C)/ ~1={Id} i K1(C) 20, tal i com voliem veure.

Aquesta demostracio també es podria haver fet usant ’isomorfisme de C(sp(u)) a C*(u, 1) i obser-
vant que tot element unitari u amb sp(u) # T esta relacionat homotopicament amb 1. Per veure’n els
detalls, consultar [9].

Utilitzant aquest ultim fet, i altres resultats que se’n deriven, es pot veure que tot element de B(H)
és homotopic a 1 i, en conseqiiéncia, que K;(B(H)) 0.

Comentari 3.2.5. Destaquem que per a tot element z € K (A) existeix n € Ni u € U (A) tal que z
es pot escriure com x = [u];, on U;F(A) és el conjunt d’unitaris normalitzats de la Definicio 1.2.2.

En efecte, com que la projeccié 7 de A cap a C és un s-morfisme, tenim que 7(z) € U, (C) i, per
Pexemple anterior, sabem que existeix una homotopia unitaria ¢(t) de m(z) a 1,.

Definint u com ¢(0)*z = 7(z)*z, és clar que & ~p, u amb 7(u) = 7(¢(0)*x) = w(z)*n(z) = 1,.

En particular, com a conseqiiéncia del Lema 1.2.4, per a tot element 2 de K;(A) es pot trobar un

representant u € U,7 (A) i un unitari v € U7 (A4) tal que z = [u]; 1 u® v ~p, Lyt a Uppi(A).

Lema 3.2.6. (Propietat universal de K1) Sigui A una C*-algebra, G un grup abelia i ¢ una aplicacio

additiva de Ux(A) a G tal que ¢([1,]1) = 0 i ¢p(u) = ¢(v) si u ~p v. Llavors, existeiz un inic
morfisme  tal que el segiient diagrama és commutatiu:

Uso(A)

| \

Demostracié. Cal només observar que, donat § que compleixi les condicions de I'enunciat, la commu-
tativitat del diagrama implica §([u]1) = ¢(u) per a tot u € Us(A) i, per tant, ¢ és tnic sempre i quan
estigui ben definit.

Per veure que § esta ben definit, s’utilitza un argument analeg a la Proposici6 2.2.13. O
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Aquest fet ens porta, tal i com també s’ha fet a la construccié de Ky, a donar la segiient definicio:

Definicié 3.2.7. Siguin A i B dues C*-algebres i ¢ un *-morfisme entre elles. Denotem per K;(p)
I"anic morfisme entre K7(A) i K7(B) que fa que el segiient diagrama commuti:

Uoo(le) # Uoo (B)

[]LAl J([]l,B

K (A K (B
1) = Ja(B)
Lema 3.2.8. K, és un functor covariant de la categoria de C*-algebres a la categoria de grups abelians
que porta els zeros als zeros.

Ens disposem ara a demostrar el primer dels dos teoremes d’isomorfia d’aquest treball. Abans pero,
cal demostrar el segiient Lema, que també ens sera tutil més endavant.

Lema 3.2.9. Sigui A una C*-algebra i y una homotopia a U;; (;1) que commuta amb 1, ®0,,. Llavors,

y=a®b amb a i b homotopies a U,S (A). )
En particular, si y és una homotopia constant, és a dir, un element de U;;L(A), podem escriure

y=a®bamba,be Ul (A).

Demostracio. Comencem escrivint y en forma matricial

. . as Ct
y.tn—>yt—<dt bt>

on ag, by, ¢y, dy € M, (A) per tot t.
Com que y commuta amb 1,, & 0,,, es compleix la segiient igualtat per tot ¢ € [0, 1]

0 0
( 0 0 ) = (ln@on)yt _yt(ln@on)

o 1 0 atz Ct az Ct 1 0 o 0 Ct
<0 O><dt bt><dt bt>(0 0>(dt 0>
del que se segueix que c=01id = 0.
Per tant, com que per a tot t € [0,1] sabem que y; és un element unitari amb part escalar 1o,
tenim que y = a ® b on ay, by € U (A).
Recordant que la norma de My, (A) ve donada per la norma de B(H?") per algun espai de Hilbert
H, és clar que a @ 0, i 0,, © b sén assignacions continues, ja que y ho és i la norma de B(H?") és la
norma del suprem.
Aixi doncs, a i b també son continues, fet que acaba la prova. O

Teorema 3.2.10. Per a tota C*-algebra A existeix un isomorfisme 04 natural entre Ko(SA) i K1(A),
és a dir, tal que per a tot *-morfisme ¢ : A — B el segiient diagrama és commutatiu:

Ki(4) — Ky (B)

"l Jo»

Ky (o)
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Demostracio. Comencem deduint, de forma heuristica, una definici6 de 0 4:

Sigui w € U,F (A). Sabem, per la Proposicié 2.3.4, que s’ha de tenir la segiient igualtat:
0a([ul1) = [plo — [s(P)]o

per algun p € P,(SA).
En particular, siu € Uy(A), cal que 04 ([u];) =0 i sabem pel Lema 2.1.4 que eisteiz w € Uy, (SA)
tal que wpw* = s(p) on p:=p®0,. Aizi doncs, si u € Uy(A), hem de poder escriure 0 4([u];) com

04([u1) = [wpw*]o — [s(D)Jo on p=p® 0y, p € Po(SA), w € Us (SA)

Ens interessa doncs relazar les hipotesis sobre w o p per tal d’obtenir, per a tot [u]; € Ki(A), una
expressio de 04 ([u]1) similar a Uanterior:

Recordant que w € Uztl(gjél) si i només si w : t — wy és una homotopia a A tal que 7c(w;) = 1oy
i wy = w1 = lay,, prenem w tal que wy # la,. D’aquesta manera, p », s(p) i lexpressid heuristica no
sera identicament nul-la.

Per tant, com que volem que 04 sigui un isomorfisme, volem escollir una homotopia w a A tal que
wo = loy, i que sigui diferent per a cada u. Aixi doncs, és natural escollir w com a una homotopia
entre 1o, 1t u@u*, que sabem que existeir i que compleir totes les propietats anteriorment mencionades
pel Lema 1.2.4. . .

Finalment, com que genéricament es tindra w ¢ Uy (SA) i volem wpw* € Ma,(SA), cal imposar
la segiient igualtat:

Do @ 0, = po = wopowWy = Wip1Wy
= (u®u")(Po ® 0n)(u S u")* = (upou™) & 0,

Per tant, prenem p =1,, & 0,, =: p,, que és la projeccio més simple que compleizx la igualtat anterior.

Definim, per a tot u € U (A), I’aplicaci6 04

0a([u]1) = [wpnw*]o — [Pnlo

on w és una homotopia unitaria entre 1o, i © @ u*.2

Cal doncs veure que 84 estd ben definida, que és morfimse i que és bijectiva, atés que és clar que
fa que el diagrama de ’enunciat sigui commutatiu.

La part restant de demostracié és una versio adaptada del Teorema 7.2.5 de [11]:

1. 04 esta ben definida: Siguin u € U,(A) i v € Uy,(A). Siguin també w i  homotopies de 1g,, i
lo, au@u™ iv@v* respectivament. Denotarem per uy =u® 1y i vy =v P 1.

Si [u]1 = [v]1 o, equivalentment, uy ~p, var per a uns certs N, M € N tals que n+ N =m+ M,
existeix una homotopia « : t — ay a U;+N(A) tal que g = un i a1 = vyy.

Comencem observant que, tal i com passa a M, (C), existeixen matrius unitaries que permuten
files i columnes. En particular, existeixen matrius unitaries P, P, € Uy (C) tals que es compleixen les
segiients igualtats:

P,(uduw @Iy ®lIn) Pl =ud1ly)d (u* ®ly) =uy Duy
P,vav elyely)Pl=0waly)d @ ely) =uvy dvy

Siguin doncs wy = P, (w ® lony) P¥ i 7y = Py, (1 @ 1aps) P*. Es clar que aquestes aplicacions sén

Y u

homotopies a U;E"Hv) (A) de 1y(N4n) @ uy @ u}y i var @ v}, respectivament.

2 Aquesta definici6 de 04 és molt natural si ja es coneixia I’aplicacié index, tractada al Capitol 4.
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A més a més, com que sabem per 'Exemple 3.2.4 que es té P, ~p, Id i P, ~j Id, tenim el segiient
resultat:

= (w® lan) (pn ® pN) (W* @ 1on) = (Wprw™) ® pn
TMPmMTr ~h (1D lang) (Pypmam Py) (1" @ lany
= (r @ lan) (Pm © pur) (7" @ lans) = (rpm?™) © pur

WNPrgNWN ~h (W B Lon) (PypnanPu) (W @ 1on)
)

Per tant, per veure 04([ul1) = [wpr,w*]o — [Prlo = [TPmT*]o — [Pm]o = 64([v]1) cal només comprovar
WNPn+NWx ~ TMPm+MT 3> onn+ N =m+ N:

Sigui X = wy(uiya @ uya®)ri,. Llavors, si X;, wnt, 7 denoten el valor de X, wy,rar en un
instant ¢ € [0, 1] respectivament, observem que X compleix les segiients propietats:

Xo = wn,o(unao ®uUnag)Tiy o
= ly(van) (Unun © unuy)lo(nin) = lo(Nin)
X1 = wn(uyor ® uyai)riy
= (uny @ uy)(upyva S unviy) (Vi S var) = Lo(Nn)

me(Xt) = la(v4n)

Per tant, X € U;E SNA) i tenim la segiient igualtat a Py, (SNA)

N+n)(

X(raypmamri) X = wy(uya @ una™)ppen(una”™ @ uya)wy
= WNPniNWy
Aixi doncs, WNPn+NWh ~u TMPm+MT s 1, €0 conseqiiéncia, es té 04 ([u]1) = 04 ([v]1).
2. 04 és morfisme: Donats u,v € U (A), volem veure que 04 ([u @ v]1]) = 04 ([u]1) + 0.4([v]1)-

De fet, sabem pel punt 1. que és suficient veure 'anterior igualtat per u,v unitaris de la mateixa
mida, que anomenarem n.

Per tant, siguin w,r homotopies de u ® u* i v & v* a 1y, respectivament.

Utilitzant el mateix argument que a I’apartat anterior, existeix una matriu P € My, (C1 ;) tal que

P((u@u") @ e ) P = (udv) ® (u* &)

Per tant, s := P(w & r)P* és una homotopia de (u @ v) ® (u* & v*) a 1yg,.
També sabem, tal i com s’ha comentat a l’apartat 1., que P ~, 14,, del que se segueix la segiient
relacio
8p2ns” ~p (WO )P 2 P(w* @ 1")
= (w B 71)(pn © pn)(W* S 17) = (Wppw™) & (rppr”)
Utilitzant aquesta homotopia és clar que 64 és un morfisme.

3. 04 és injectiva: Siguin u,v € U, (A) tals que 04([u]1) = 04([v]1). Seguint amb la notaci6 del
primer apartat, es té la segilient igualtat:

[wan*]O = [Tpnr*]O

Per tant, usant la Proposicié 2.1.3, sabem que wp,w* @ 1 ~y rp,r™ @ 1), per a algun k € N.
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Ara bé, hem vist abans que també es tenen les segiients relacions

WNPn+ NWN ~h (Wppw™) © py

TNPn+NTN ~h (TPa7™) © PN

per a tot N € N, del que se segueix que WiDn+kWj ~y TePnt+kT-
Sigui doncs x € U;EnJrk)(SA) tal que
zwkpn+kw;§$* = Tkpn+k7’lt

0, equivalentment, tal que pp4r (Wix*ry) = (WEL* L) Pt

Definint y = wjz*ry, podem aplicar el Lema 3.2.9 per obtenir que y = a®bona:t— a;ib:t+— b
sén homotopies a U:+k(/~1).

Observem a més que xg = x1 = ly(p4r) i que els valors de y en t = 01t =1 s6n els segiients

Yo = w?;,oxzér}i,o = lotnyk) = Llatk © lngk

Y1 = w2178 = (g ® ug) logngr) (0r D f) = (W0 @ 1) © (uv™ © 1)

Per tant, ap = 1,4% 1 a1 = u*v® 1 i, en conseqiiéncia, es té que (u® 1 )a és una homotopia a U:Jrk (fl)
entre u @ 1y i v @ 1. Per la construccio de K (A) tenim [u]; = [v];.

Aixi doncs, si u,v € Uso(A) tals que 04([u];) = 04([v]1), podem ampliar tant u com v afegint 1’s
a les seves diagonals per tal que u i v tinguin la mateixa mida i, com que ja hem vist que 64 estd ben
definida, que tinguin la mateixa imatge.

Utilitzant el resultat per a unitaris amb la mateixa mida n, tenim que [u]; = [v1], del que se segueix

que 64 és injectiva.

4. 04 és exhaustiva: Sigui © € Ko(SA). Sabem pel Corol-lari 2.3.5 que existeixen n € N i
q € P2, (SA) tal que = [g]o — [pn]o- -

Com ja s’ha comentat a I’obtenci6 heuristica de 04, tenim que ¢ € P»,(SA) siinoméssiq:t+— g
és una homotopia a Ps,(A) tal que qo = q1 € M2, (C) i mc(q:) és constant per tot ¢. En particular,
com que 7c(q) = pn, sabem que g ~p, p, per a tot ¢t € [0,1] i, per la Proposici6 2.1.3, es compleix, per
a cada t, la segiient igualtat:

*
qrt = WiPpWy

on w : t+— wy és una homotopia a U;l(/i) amb wg = 1g,, donada pel Lema 1.2.6.
Observem que de 'anterior igualtat se segueix que ppw; = quwi = wipy, 1, tornant a utilitzar el
Lema 3.2.9, tenim que w; = u @ v amb u,v € U,F (A).

Sigui 7 una homotopia a Uy (A) entre 1o, a u @ u* tal que 04([u]y) = [rpnr*]o — [pn]o. Veurem
que es compleix la segiient relacioé:

q~0 Tpnt”

Sigui doncs W = w @ w* i a : t — a; una homotopia a U;;L(fl) de 13, a v* & 1, & v, que sabem que
existeix pel Lema 1.2.4 i I'existéncia de matrius que permuten files i columnes.
Com que es compleix p, @ 02, = (1, ® a)(p,, ® 02,,)(1,, ® a*), tenim la segiient igualtat:

q P 02, = W(pn @ 02 )W* =W (1, ® a)(pn ® 02p) (15, ® )W
=W (1, ®a)(r" @ lan)(rpnr”™ @ 02,)(r & 12,) (1, ® ™) W™

Definint Y := W(1,, ® a)(r* @ 125,) és una comprovacio directa que Y € UZ;L(SNA), del que se segueix
que g ® Ogy ~y Pp7T™ @ 02, 1, en conseqiiéncia, es té que g ~g rp,r*, fet que acaba la prova. O
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Donada una C*-algebra A, és usual utilitzar la definicié de Ki, i no pas l'isomorfisme donat al
Teorema anterior, per calcular explicitament K;(A). Tot i aixi, existeixen situacions on utilitzar
aquest isomorfisme pot ser profitos:

Exemple 3.2.11. Ky(Cp(0,1)) =20
Cal nomeés observar que Cp((0,1)) = SC i aplicar el Teorema 3.2.10 i I’Exemple 3.2.4.

3.2.2 Els functors K,
Definici6 3.2.12. Per a tota C*-algebra A, definim

K, (A) = K (S"'A)
Teorema 3.2.13. K, (A) = K;(A) per a totn € N ambn > 0.

Demostracié. Recordem que K, (A) = K1(S"'A) i que K, = Ko(S"A) = Ko(S(S" ' A)) per a tot
n>1.

Per tant, sabem pel Teorema 3.2.10 que existeix un isomorfisme entre K;(S" 1 A) i Ko(S(S"1A4)).

O

Com ja s’ha comentat al principi d’aquest Capitol, la definicié dels functors K,; no és estandar.
Tot i aixi, aquesta definicié ens ha permés demostrar, gracies al Lema 3.1.10 i el Teorema 3.2.10, les
propietats de K, comprovant, inicament, les de K.

Si, per altra banda, haguessim primer donat la definici6 de K,, hagués fet falta demostrar les
propietats de Ky i K per separat, tal i com es fa als Capitols 7 i 8 de [11] i de [9] respectivament.

Resumim doncs les propietats de K, sense donar cap demostracid, ja que sén una conseqiiéncia
directa de la naturalitat de ’aplicaci6é 64 del Teorema 3.2.10 i dels isomorfismes del Teorema 3.2.13.

Proposicio 3.2.14. Siguin A i B C*-dalgebres. Llavors,
1. Si g i 1 sén dos *-morfismes tals que pg ~p p1, Kn(vo) = Kn(e1)-
2. K, és mig exacte
3. K, és escindidament exacte
4. K,(A® B) 2 K,(A) & K,.(B)
5. K, (M, (A)) 2 K,(A) per a tot n,m € N

Finalment, acabem aquesta Subseccio calculant tots els K-grups de la C*-algebra T A. Més endavant,
quan haguem demostrat la periodicitat de Bott, tornarem a visitar aquest Exemple per donar una
millor expressio de K;(T"A).

També farem servir aquest resultat, juntament amb els calculs dels K-grups de B(H), per la
obtencié dels K-grups de 'algebra de Toeplitz.

Exemple 3.2.15. K,,,(T"A) on TB = C(T, B) per a tota C*-algebra B
Sigui i : S(A) — TA la inclusi6 natural, ev; : TA — A Pavaluacié en el 11ic¢: A — TA la inclusio
constant. Per a tota C*-algebra A i tot n € N, la successio

0— ST 1A4) — 5 T A =T A0

és escindidament exacta.
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Per tant, per la propietat 3 de la Proposicié 3.2.14, es té que la segiient successi6 és escindidament
exacta

00— K (S(T" 1 A)) —— Ky (T"A) = K (TP A) —— 0

Atés que els K-grups son abelians, sabem pel Lema d’escisio i el Teorema 3.2.10 que es compleixen els
segiients isomorfismes

K (T"A) 2 K, (T" T A) @ K (S(T 1 A)) = Ky (T A) @ Ky (T A)

De cara a reduir la notacié, definim NA := @
calculant K, (T?A) :

A per a tot grup, C*-algebra i N € N. Comencem

n=1

K (T?A) =

o~

(TA) & Kt (TA)

K,,
Epn(A) ® Koyt (A) ® K1 (A) @ Koo A)
Usant la propietat 4 de la Proposicié 3.2.14, tenim la segiient igualtat

Kn(T?A) 2 K, (A) @ 2K, 41 (A) @ Kppya(A)
=~ K (A) @ Kpy1(24) © Ko A)

Se segueix d’un argument per inducci6, i un abus de notacio, que K,,(T™A) es pot calcular utilitzant
una férmula ja coneguda:

1+.’L’ Z(n> z+m reR

=0

Ko (T A) é (C‘) Kopyi(A) = Qj Kot ( (’Z) A)

i=0
En particular, per A =C, n =11 m = 0, obtenim

Ko(C(T)) = Ko(C) & K1 (C) = Z

3.3 Continuitat de K, i K;

En aquesta seccié, de caire informatiu, resumim els resultats més importants que es deriven de la
continuitat dels functors Ky i K.

Proposicioé 3.3.1. Sigui

Y1 P2 ¥3
Ay A A3

una successio de C*-algebres.
Llavors, tenim que Ko(limA4;) = imKy(A4;) @ K1(limA;) = limK;(A;) on limA; és el limit inductiu
— — — — —
del sistema, definit a I’Apéndiz D.



3.3. Continuitat de Ko i K3 33

3.3.1 AF-algebres

Un dels resultats classics de la teoria K per C*-algebres és la classificacié d’Elliott de les anomenades
AF-algebres. Encara que aquesta classificacié utilitza conceptes no definits en aquest treball, com per
exemple el de grup ordenat, ’anterior Proposicié ens permet dur a terme el primer pas: Calcular-ne
el grup K.

Per més informaci6 sobre la classificacié d’Elliott i les proves d’aquesta Subseccid, es pot consultar
el Capitol 7 de [9] o l'article original [2].

Teorema 3.3.2 (Proposicié 7.1.5. de [9]). Sigui A una C*-dlgebra de dimensid finita com a C-espai
vectorial. Llavors, A és x-isomorfa a

M, (C)®-- & M, (C)

Definicié 3.3.3. Sigui A una C*-algebra. Diem que A és AF (aproximadament finit-dimensional) si
és el limit inductiu d’una successio de C*-algebres de dimensi6 finita.

Lema 3.3.4. Donada una AF-dlgebra A, el seu grup Ko(A) associat és el limit inductiv d’una successio

AG ! Az 2 A 33

Aquests limits s’anomenen grups de dimensid®.

3.3.2 Algebres de rotacio6 irracional

Un altre exemple on s’observa la importancia de la continuitat de Ky i K7 és en el calcul de les algebres
de rotacié irracional, una familia de C*-algebres simples i separables que no sén AF.

Encara que existeixen diverses definicions equivalents d’algebra de rotaci6 irracional, a continuacié
en donem una de les més simples.

Altres definicions es poden trobar a la Secci6 12.3 de [11].

Definicié 3.3.5. Sigui B una C*-algebra unitaria i u,v € U(B) tals que vu = €™ uv amb 6 € (0,1)
un nombre irracional. Anomenem algebra de rotacié irracional, i la denotem per Ay, a la C*-algebra
generada per u i v, és a dir, a C*(u,v).

Usualment, els K-grups de Ag s’acostumen a calcular utilitzant ’anomenada successié de Pimsner-
Voiculescu, com per exemple es fa a la mateixa seccié de [11].

Tot i aixi, Elliott i Evans van demostrar a [3] que tota algebra de rotacio irracional és limit inductiu
d’una successi6 de les anomenades circle algebras.

Definici6é 3.3.6. Diem que una C*-algebra A és una circle algebra si és x-isomorfa a una C*-algebra
de la forma @7_, M, (C(T)).

Més en particular, el que es demostra a [3] és que Ay és limit inductiu d’un sistema que té per blocs
Per tant, com a conseqiiéncia dels Exemples 3.2.15 i 5.2.16, tenim que Ko(Ag) = K1(Ag) XZDZ
per tot irracional 6 € (0,1).

3Formalment, tant els grups de dimensié com el seu sistema associat estan ordenats. Tot i aixi, com que en aquest
treball no hem definit aquesta nocié, la ometem.
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Capitol 4

Index i la successio exacta llarga de la
teoria K

Com s’ha comentat a la introduccié, un dels objectius principals d’aquest treball és determinar una
successio ciclica i exacta de sis termes per a cada successié exacta curta de C'*-algebres.

0 I—%4-%,B 0

Un dels resultats centrals per la construccié d’aquesta successio és determinar un morfisme §; tal que
la segiient successio sigui exacta:

(1) 29 ke a) 29 k()
:
Ko(B) ¢ Fold) 55— Kol

Aquesta aplicacié s’anomena index i es construeix a continuacio.

4.1 1Index

Recordem que, tal i com hem fet a la demostracié del Lema 3.1.10, en tota successié exacta i curta
podem suposar que el primer terme és un ideal del segon i el tercer el quocient dels dos anteriors.

0 I— A" AJI 0

Aixi doncs, d’ara en endavant treballarem sota aquestes hipoétesis, ja que ens permetran donar una
definicié de I'index més concisa que les comentades al Lema 4.1.5.
Comentari 4.1.1. Com a conseqiiéncia del Lema 1.2.7 i el Comentari 3.2.5, per a tot element [u]; €
Ki(A/I)amb u € UJ(M) podem trobar unitaris v € U,j(;{—/vf) iw e Uy(Myy(A)) tals que 7(w) =
u D .

En particular, es pot pendre u* com a v.

35
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Definicié 4.1.2. Siguin [u]; € K1(A/I) amb u € U,J[(Z\/JI) ive U,j(Z\/JI) tals que u ® v ~p, 1 4k.
Definim I'index com l'aplicaci6 1 : K1(A/I) — Ko(I) tal que

01([u)1) = [w(1ln @ 0r)w*]o — [1n @ OxJo
on w és un lift unitari de u & v.

Comentari 4.1.3. Sigui 0 — I 5 A %, B — 0 una successi6 exacta i pr:Im(p) > Iipg:B—
A/Im(yp) isomorfismes. Quan només estiguem interessats en les propietats de d; com a aplicacio (sense
utilitzar-ne la definicié explicita), anomenarem &1 a Ko(py) 0 41 0 K1(pp).

Lema 4.1.4. Per a tota successié ezacta 0 — I —— A - A/I — 0, 01 és un morfisme de grups
ben definit.

Demostracio. Recordem que, per exactitud de la successié d’unitificacio, una projeccio x és de Py (1)
si i només si 7(x) € Ps(C). Per tant, com que per a tot u € U, (A/I) es tenen les segiients igualtats

(w1, ® 0g)w*) = 7(w)(1, & 0) 7 (w)*
= (u®v)(1, ®0)(u* ®v*)=uu* =1,
(w)s(1y @ Op)s(w)*

s(w(l, ® 0p)w™) = s
1n+k(1n (&) Ok:)]-nJrk = ]-n (&) Ok:

tenim que [w(1l, ® 0r)w*]o € Ko(I) i 61([u]1) € Ko(I).
La demostracié que §; no depén de w, de les mides n,k i I’eleccié de u i v és analoga a la del
Teorema 3.2.10." O

Encara que la definicié de d; serd suficient per construir la successio exacta i ciclica de sis termes, és
important destacar que aquesta aplicacié es pot també definir de dues maneres diferents sense suposar
que I és un ideal de A.

Enunciem a continuacio el Lema que resumeix aquestes definicions sense donar-ne una demostracio,
que es pot trobar al Capitol 9 de [9].

Lema 4.1.5. Sigui 0 — I 5 A % B — 0 una successid ezacta i sigui u € Uy, (B). Tenim les
segtients igualtats:

e 61([u]1) = [plo — [s(p)]o on p € Pan(I) tal que G(p) = v(1, & 0,)v* i v una isometria parcial tal

que ¢(v) = u ® u*.
e 51([u]1) = [plo — [qlo on p,q € P,(I) tal que ¢(p) = 1 — v0*, @(q) = 1,y —v*v i v € Up(A) tal
que ¢(v) = u ® Opy—_p.

Teorema 4.1.6. Per a tota successié evacta 0 —s I —> A - A/l — 0, la successid

Ki(2) Ky (m)

|

Ko(A/I) WKO(A) WKO(I)

Ky (I)

és exacta.

IPer veure la prova en detall consultar [11].
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Demostracié. Seguim la demostracio del Teorema 8.2.1. de [11]:
Comencem destacant que, per la Proposicié 3.2.14, cal només provar exactitud a Ko(I) i K1(A/I)
0, equivalentment, demostrar les segiients inclusions:

1. Tm(d7) C ker(Ko(i))
2. Im(K; (7)) C ker(dy)

3. ker(d1) C Im(XK; (7))
4. ker(Ko(7)) C Im(dy)
Les demostrem en l'ordre anterior:
1. Sigui y = 61([v]1) amb [v]; € K1(A/I). Per la definici6 de §; tenim la segilient igualtat

y = [w(l, ® 0x)w o — [1n ® 0klo

on w és un lift unitari de v ® s ~jp 1,4 per a s i k adequats. ~
En particular, w € U, (4) i, en conseqiiéncia, w(1, @ Op)w* ~y 1, ® 0) a U5, (A). Per tant,
tenim Ky(¢)(y) = 0.

2. Sigui z = [#(u)]; on u € U;F (A). Observem que w = u@u* és un lift per 7@ de 7 (u) ®7 (u)* ~ la,.
Aixi doncs, aplicant §; a x obtenim que d1(x) = 0. En efecte:

n+k

01(x) = [w(l, ®0,)w*]p — [1n B 0p]o = [uu” B 0,)o — [1n ®0,]o =0

3. Sigui u € Uﬁ,;(;f//l) tal que [u]; € ker(6,) i w € U (A) un lift de u®u*. Com que 1 ([u];) = 0,
tenim la seglient igualtat a Ko(I):
[glo — [1m ® 0p]o =0

on g =w(ly @ 0p)w
Per tant, per la Proposicié 2.1.4, existeix k € N tal que es compleix la relacié

G =q® 1 ® 0y, ~y (1, @ 0p) @ (1 B 0y,) =: 51

onn=k+2m.

Com és d’esperar, la relacié unitaria es conserva per pas a l'ortogonal, és a dir, es té 1o, — qx ~u
1o, — s Aixi doncs, sabem, per la Proposici6 2.1.3, que existeix una isometria parcial v € Mzn(f) tal
que es compleixen les segiients igualtats:

*
vo* = lop — g
viv =1y, — Sk

A més a més, utilitzant la igualtat vv*v = v demostrada al Lema 2.1.1, també es tenen les segiients
propietats sobre 7(v):

T(v) = 7(v)7 (v ) = 7(v)(0m B 11)
7(v) = 7 (vv*)T(v) = 7?((1 am — q) ® (0 ® 1,))7(v)
= ((lam — uu* ® 0,,,) & (0 & 1,,))7(v)
=t (0 ® 1r2)7(v)

onry,rg € Pgn_m((CIA).
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Fent servir aquestes dues tltimes igualtats és clar que 7(v) = 0,, ® X on X € Ms,,_,,,(C1 ;).

Per tant, definint W := qu @ v € Up(y4m)(A), existeix una matriu complexa U de mida (2n+m) x

(2n +m) tal que #(W) = u ® U. Ho veiem:
(W) = 7(qu) ® 7(v) = (u @ u”)(Ln ® Om) ® (O © X)
=u®(0,00,X)=udU
D’aquest darrer fet se segueix la segiient igualtat a K;(A/I):
Ky (m)((Wh) = [uls + [Uy

Ara bé, com que Uy (C) C Uoo(ffl\/JI), sabem per l'exemple 3.2.4 que U ~p, lopim a UOO(Z\/JI). Per
tant, tenim que K1 (7)([W]1) = [u]1 i, en conseqiiéncia, que [u]; € Im(K()).

4. Sigui z = [plo — [1, ® 0,]o amb p € Py, () un element de ker(Ko(i)). Per la Proposici6 2.1.4,
existeix k£ € N tal que es compleixen les segiients relacions a P (A)

on m = 3(2n + k).

Tal i com també hem fet al Teorema 3.2.10, prenem una matriu complexa P € Ms(2,41)(C) que
commuti les files i les columnes de sy, és a dir, tal que

Psk:P* = 1n+k: 5> On+m

Aixi doncs, definint ¢ := PpgP*, tenim que ¢ ~p 1y @ Opym 1, per la Proposicié 2.1.3, existeix

w € UL (A) tal que
U/*qw = 1n+k S 0n+m

A més a més, observem que 7(w) commuta amb 1,4 @ 0p4p. En efecte:

T(w)(ngk ® Opgem) T (w*) = 7(q) = 7(P)7 (pr)7(P7)
== PSkP* - 1n+k S On+m
del que se segueix, pel Lema 3.2.9, que 7(w) = a ® b amb a € U:{M(fl).
Observem també que a b ~p1,4k D 0pt 1 que w és un lift unitari de a @ b, del que se segueix
la segiient igualtat
51 (77('(0/)) = [w(1n+k 52 0n+7n)w*}0 - [1n+k 3] Oner]O = [q]O - [1n+k 53] 0n+m]0 =

Per tant, 2 € Im(d1), fet que acaba la demostracié d’aquest apartat i tota la prova. O

Comentari 4.1.7. Donada una successio exacta 0 —s I 25 A 23 B — 0, les propietats functorials
de Ky i K impliquen que, utilitzant la notacié per d; del Comentari 4.1.3, la successio

Ki(p) Kl(A) Ki(¢) Kl(B)

|

Ko(B) ¢«——— Ko(A) «——— Ko
0(B) s Ko(A) ¢ Kol

Ki(I)

és exacta.
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Gracies al Comentari anterior, podem ara relacionar les successions exactes induides per Ky i K1, que
en un principi podien semblar independents 'una de I'altra.

Encara que la utilitat d’aquest fet no es pot comparar amb la de la successié exacta i ciclica de sis
termes definida a la Secci6 5.3, comencem a poder calcular K-grups amb més facilitat que abans.

Exemple 4.1.8. Ky(Cp(R?)) = K,(C(T))
Sigui i : Co(D\T) — C(D) la inclusi6 natural i r : C(D) — C(T) I'aplicacio6 restricci6. Es clar que
la successio

0 —— Co(D\T) —— C(D) —— C(T) 0

és exacta.
Per tant, com a conseqiiéncia del Teorema 4.1.6, es té que ’aplicaci6 d; : K1(C(T)) — Ko(Co(D\T))
compleix les segilients igualtats:

ker(01) = Im (K (r))
Im(d,) = ker(Ko(i))

Ara bé, usant que D és contractil i 'Exemple 3.1.9, sabem que K7(C(D)) = 0. D’aquest fet es segueix
que ker(d;) = 0.

També sabem que Ko(C(D)) = Z i recordem que a ’Exemple 3.2.15 ja haviem vist que Ko (C(T)) =
Z. Per tant, tenim que Ky(r) és injectiu i, en conseqiiéncia, que ker(Ko (7)) = Ko(Co(D\T)).

Aixi doncs, §; és un isomorfisme i K1 (C(T)) = Ko(Co(D\T)). Usant que Co(D\T) = Cy(R?), tenim
el resultat que buscavem.

4.2 1Index de Fredholm

Recordem del Teorema 1.1.3 que tota C*-algebra és isométricament isomorfa a una sub-C*-algebra
de B(H) per algun espai de Hilbert H convenient. En particular, podem calcular a certs elements de
B(H) el seu index de Fredholm, més conegut en la teoria d’equacions integrals.

L’objectiu d’aquesta secci6é és resumir els resultats que permeten veure que, de fet, I'index de la
teoria K generalitza I'index de Fredholm. A més a més, també definim dues C*-algebres relacionades
amb aquest index, ’algebra de Calkin i la de Toeplitz, de les que calcularem els seus K-grups més
endavant, a la Seccid 5.3.

De cara a que el treball sigui autocontingut perd, comencem donant la definici6 d’operador de
Fredholm i ’enunciat del Teorema d’Atkinson.

Les definicions i resultats no relacionats amb la teoria K son de [8], mentre que la demostracio de
la Proposici6 4.2.5 es pot trobar a la Proposici6 9.4.2 de [9].

Definici6 4.2.1. Sigui H un espai de Hilbert de dimensi6 infinita i separable. Direm que un operador
T € B(H) és de Fredholm si T(H) és tancat, dim(ker(7)) < oo i dim(ker(7T™)) < oo.
Definim també I'index de Fredholm de T, que denotarem per index(7"), com la diferéncia

dim(ker(7T)) — dim(ker(7™))

Per tal de reduir la notacié, d’ara en endavant H sera sempre un espai de Hilbert, de dimensio
infinita i separable, i K sera 1’algebra d’operadors compactes definida als Exemples 1.1.2. Notem que
K és un ideal tancat de B(H).
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Definici6 4.2.2. Definim I’algebra de Calkin de H, que denotarem per Q(H ), com el quocient Q(H) =
B(H)/K.
Comentari 4.2.3. De manera analoga al calcul de I’Exemple 2.2.11, es pot comprovar que l'aplicacié
Ko(Tr): Ko(K) — Z definida per Ko(Tr)([T]o) = dim(T'(H)) és un isomorfisme.

A més a més, com a conseqiiéncia del Lema 3.2.14 i del fet, no trivial, que K és limit inductiu de
matrius sobre C, també sabem que K;(K) = K;(C) = {0}.

Teorema 4.2.4 (Atkinson). Sigui T un operador de B(H). Llavors, les segiients condicions son
equivalents:

e T és un operador de Fredholm.
e La classe de T a Q(H) és invertible.
o Ezisteiz un operador S € B(H) tal que 1 —TS € K i1 - ST € K.

Proposicié 4.2.5. Per a tot operador de Fredholm T, tenim la segiient igualtat
index(T) = (Ko(Tr) o 61)([m(T)]1)

on w és la projeccio de B(H) a Q(H), [n(T)]1 = [Ulx amb U unitari tal que U ~p, w(T') i 61és Uindex
associat a la successio exacta segiient

05 KL BH)D QH)—0

Acabem aquest apartat definint 1’algebra de Toeplitz i provant-ne una propietat que, tal i com ja
s’observa a [9], és de gran importancia pel calcul dels seus K-grups.

Definici6 4.2.6. Sigui S: [?(N) — [?(N) Poperador de decalatge sobre [?(N) definit per
S($1,$27x3,"') = (0,371,3:2,"')

Anomenarem algebra de Toeplitz, que denotarem per T, a la sub-C*-algebra més petita de B(I?(N))
que conté S.

Comentari 4.2.7. De la definicié de S, és clar que S*(z1, 22,23, -+ ) = (22, 23,24, ).
Destaquem també que K és un ideal de 7. Aquest fet és conseqiiéncia del Teorema 3.3.3. de [8].

Lema 4.2.8. Sigui S l'operador de decalatge. Llavors, C*([S]) = T/K = C(T) on K és l'espai
d’operadors compactes de 1?(N).

Demostracidé. Seguim la demostracié de 'Exemple 9.4.4 de [9]:
Sigui * = (21,22, 73,--+) € [2(N). Comencem observant la segiient igualtat

(xlvovoa"') = ((El,x27$37"‘)—S((xz,ifg,l'zl"')) =x— 858"z

Per tant, I—S5S5* és’operador que projecta tot element a la seva primera coordenada i, en conseqiiéncia,
tenim que I — SS* € K.

En particular, la classe [I — SS5*] és zero a Q(I?(N)) i [I] = [S][S]*, del que se segueix que [S] és un
element unitari de Q(H).

Aixi doncs, si demostrem que sp([S]) = T haurem acabat, ja que C*(S) = T i sabem pel Teorema
1.1.3 que C*(1,5) = C*(S) = C(sp(S5)). Ho veiem:

Notem que S és un operador de Fredholm, ja que S(I?(N)) és tancat, ker(S) = {0} i ker(S*) = (e1),
on e; és el primer vector de la base de [2(N). Per tant, index(S) = —1i 7(S) = [S] no pots ser nul, ja
que en cas de ser-ho tindriem index(S) = 0 per la Proposicio 4.2.5.

Utilitzant, com a I’Exemple 3.2.4, que tot element unitari no homotopic a la identitat té espectre
T, hem acabat. O
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4.3 La successi6 exacta llarga de la teoria K

De manera analoga a la teoria K algebraica, tota successié exacta i curta de C*-algebres indueix una
successio exacta llarga de K-grups.

Encara que la periodicitat de Bott, demostrada al capitol 5, ens estalvia 1'as d’aquestes successions,
en aquest apartat construim per a tot n € N una successié exacta que utilitza els functors Ko, -+ , K,
ja que aquesta ens permet, en alguns casos, entreveure l'isomorfisme Ky = K; o S.

Definici6 4.3.1. Sigui 0 — I % A %, B — 0 una successi6 exacta de C*-algebres i (5; I'index
associat a la successi6

n—1 n—1
0 12 gm0 S gnip g

Definim 4, := 6; '06,, on ; és lisomorfisme de K,,(I) a K, (I) establert al Teorema 3.2.13.

Proposici6 4.3.2. Sigui 0 — I 25 A %4 B — 0 una successid ezacta de C*-algebres. Llavors, la
seglient successio €s exacta

K1) —2 s g (a) 29 ()

16n

Ko1(6) Kno1(9)
Kp1(B) 2 K 1 (A) 222 K,y (D)
671—1l

Ko(9) Ko(p) 1o
Ko(B) +— Ko(A) =2 Ko(I)

Demostracid. Se segueix de la definicié de §, i del Teorema 4.1.6. O
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Capitol 5

La periodicitat de Bott 1 la successi6
exacta ciclica de sis termes

En el treball es demostren tres resultats centrals, essent el primer el Teorema 3.2.10, Koo S = K;. En
aquest ultim capitol es demostren els dos restants.

Aquests resultats son la periodicitat de Bott, K7 o S = Ky, i la construccié d’una successio exacta
i ciclica per a tota successi6 exacta de C*-algebres mitjancant I’aplicacié exponencial, també definida
en aquest capitol.

5.1 L’aplicacié de Bott

La demostracié de la periodicitat de Bott que es déna en aquest capitol és I'original donada per Atiyah,
tal i com es fa en els llibres [9, 11].
Com també es comenta a [1], aquest resultat és valid per algebres de Banach locals.

De cara a construir i treballar amb I’aplicacié de Bott, és convenient donar una definicié alternativa
de M, (SA), explicitada en el segiient Lema.

Com que el resultat és clar fent servir les definicions d’unitificacié i suspensio, ometem la seva
demostracio.

Lema 5.1.1. Donada una C*-dalgebra A, es té el segiient isomorfisme
M, (SA) = {f € C(T, M, (A)) | f(1) € M,(Clz)}
Si A és unitaria, també tenim M, (SA) = {f € C(T, M,(A)) | f(1) € M,(C1,)}.

Comentari 5.1.2. D’ara en endavant treballarem amb la nova definici6 de M, (SA). En particular,
tenim

Un(SA) = {f € C(T,Un(A) | F(1) € My(C15)}
i analeg corresponent quan A és unitaria.

Definicié 5.1.3. Sigui A una C*-dlgebra unitaria i p una projeccié de P, (A). Definim el llag de la
projeccié p, que denotem f, : T — A, com

fo(2) =2p+ (1, — p)

43
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Comentari 5.1.4. Amb la definici6 de U, (SA), és clar que fp € U, (SA) per a tot p € P,(A).

Aixi doncs, tenim ara una aplicacio de P,(A) a Un(gjﬁl) i ens agradaria que aquesta induis una
aplicacio de Ko(A) a K1(SA). Per veure-ho, utilitzarem la Propietat Universal de Ky(A) definida al
Lema 2.2.13.

Proposicié 5.1.5. Per a tota C*-dalgebra unitaria A, Uaplicacié 54: Ko(A) — K1(SA) donada per
Ba([plo) = [fpl1 esta ben definida i és un morfisme.

Demostracid. Siguiya: Ps(A) — Ki(A) definida per v4(p) = [fp]1. Comencem observant que v4(p)®
v4(q) = va(p ® q). En efecte, si p € P,(A) i g € P(A), tenim la segiient igualtat:

(va(p) ®7a(9)) (2) = (fp @ fo) (2) = (zp+ (1, = p)) © (2¢ + (1n — q))
=z2(p®q) + (120 =P D q) = fpaq(2) =740 ® ¢)(2)

A més a més, donades dues projeccions p,q de P,(A), és clar que si tenim p ~p, ¢ a P,(A), llavors
fo ~n fq a Up(SA), és adir, [fp]1 = [fg]1 a K1(SA).

Per tant, com que fy = 1, sabem per la Proposicié 2.2.13 que 84 és un morfisme de grups ben
definit de Ko(A) a K1(SA). O

Comentari 5.1.6. Sigui [p]o — [g]o un element qualsevol de K(A). Llavors, la seva imatge per 54 és

Ba(lplo — lalo) = Ba(lplo) — Ba(lalo) = [fpl1 — [far
= [fp]l + [f;h = [fp @f;]l

Utilitzant el Lema 1.2.4, deduim que

Ba(lplo — [dlo) = [fp & 3]s = [fofgh
on fpfy és la funci6 producte.

Definicié 5.1.7. Donada una C*-algebra A, anomenem aplicacié6 de Bott, que denotem per [4, al
morfisme definit a I'anterior Proposicié.

Un cop definida aplicacié de Bott, comencem observant que 4 és natural. Aquest fet ens perme-
tra, com a conseqiiéncia del Comentari 5.1.9, reduir-nos al cas unitari.

Lema 5.1.8. Siguin A i B dues C*-dlgebres unitaries i p: A — B un x-morfisme entre elles. Llavors,
el segiient diagrama és commutatitu

Ko(A) Ko(y) Ko(B)
BAJ lﬁB

Demostracié. Sigui p una projeccié de P,(A). Cal només comprovar que les imatges de [p]o per
Bp o Ko(p) i K1(S¢) oS4 s6n iguals:

(BB o Ko(p)) ([plo) = B([e(®)]o) = [fomh
(K1(S) 0 Ba) ([plo) = K1(Se)([f)1) = [Se(f)lt = [fomh

Per tant, el diagrama és commutatiu. O
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Comentari 5.1.9. Donada una C*-algebra A, no necessariament unitaria, es pot fer un raonament
analeg al del Lema 2.3.8 per demostrar que l’aplicacié S4: Ko(A) — K1(SA) definida per

Ba([plo — [s(p)lo) = [fpfimh

és I'anic morfisme tal que el segiient diagrama és commutatiu

0——— Ko(A) ———— Ko(A) —/—— Ko(C) ———0

e e e

00— K (SA) ——— K (SA) —— K;(SC) ——— 0

Per aquest motiu, anomenarem aplicacié de Bott al morfisme 84 definit anteriorment quan A no sigui
unitaria.

5.2 El Teorema de periodicitat de Bott

En aquest apartat ens disposem a demostrar el Teorema de la periodicitat de Bott, enunciat a conti-
nuacio.

Teorema 5.2.1. Per a tota C*-algebra A, els grups Ko(A) i K1(SA) = K3(A) son isomorfs i I’apli-
cacid de Bott B4 n'és un isomorfisme.

Com a primera observacio, destaquem que, com a conseqiiéncia del Comentari 5.1.9 i el Lema dels
Cinc, ens podem reduir al cas A unitari i, per tant, a la definicié de 84 per aquest cas.

Com ja hem comentat anteriorment, el resultat i la prova d’aquest Teorema son valids en casos més
generals que C*-algebres. En particular, no es treballa a U, (SA), sin6 al conjunt Invy(n).

Definici6 5.2.2. Sigui A una C*-algebra unitaria. Per a cada n € N definim
Invy := C(T, GLo(M,A))

on GLo(M,A) és el subconjunt de M, A que té per elements les matrius invertibles homotopiques a
1,.

Com que la prova que es dona de la periodicitat de Bott es basa en igualtats modul homotopia a
Invy, cal primer comprovar que quan es treballa a U, (SA) les homotopies que obtindrem es poden
passar a homotopies d’unitaris. Aquest fet ens ’assegura el seglient Lema:

Lema 5.2.3. Sigui A una C*-dlgebra unitaria i f,g € Un(g';l) Tenim:
e U,(SA) C Invl!
o Si f~p g alnvy, llavors f ~p g a Un(gjél)

Demostracio. Comencem demostrant la inclusié Un(ﬂ) C Invy

Un(SA) = {f € C(T,Upn(A)) | f(1) € Un(Cla)} C {f € C(T,Un(A)) | (1) ~n 1}

_ n
= Inv,
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on el segon pas és conseqiiéncia de 'Exemple 3.2.4.

Per veure el segon punt, veiem primer, utilitzant el mateix argument que el Lema 11.2.2 de [9], que
si f ~n g aInv?, llavors f ~j, g a GL(M,(SA)).

En efecte, sigui ¢ — f; la homotopia a Inv{ on fo = f i fi = g, i sigui també ¢ — a; la homotopia
entre ag = f(1) € M,(Cla) ia; = g(1) € M,(Cla) a GL(M,(Cl,4)) donada per ’Exemple 3.2.4.
Considerem la segilient aplicacio:

t gi(2) = atft(l)_lft(z)

Observem que per a tot ¢ tenim que g(1) = a; € M,,(Cl4) i, en conseqiiéncia, que g; és de GL(Mn(§:4))
A més a més, com que f; i a; sén assignacions continues, g; també ho és.

Per tant, g; és una homotopia entre go = f i g1 = g a GL(M,(SA)).

Finalment, sabem pel Lema 1.2.7 que si f ~; g a GL(M,(SA)), lavors f ~;, g a U,(SA), fet que
acaba la prova. O

A meés de treballar sobre Inv(, també utilitzarem la notacié de [9] per fer referéncia als segiients
conjunts:

Definicié 5.2.4. Donada una C*-algebra unitaria A, anomenem

e Llacos polinomials de grau m sobre matrius de mida n:
Poly, :={f eInv( | f(z) = iaizi on ag,- - ,am € M,(A)}
i=0
e Llacos trigonométrics de grau m sobre matrius de mida n:
Trig, .= {f € Invy | f(2) = i ;2" on a_p, - am € My (A)}
e Llacos de projeccions de mida n:
Proj" :={f, | p € P.(A4)}

Comentari 5.2.5. Com que Pol,, Trigl i Proj” son subconjunts de Invy, sabem pel Lema 5.2.3
que totes les homotopies entre unitaris que puguem construir en aquests es podran transformar en
homotopies a U, (SA).

5.2.1 Exhaustivitat de P’aplicacié de Bott

Tant en aquesta Subseccié com en la segiient, on seguim ’estructura i les demostracions del Capitol 9
de [11], A sera una C*-algebra unitaria.

Lema 5.2.6. Siguin n,k € N tals que k < n i pp =1, ®0,_. Llavors, fp,, ~p 2 191,1 a Un(§21)
Demostracid. Comencem observant que f; = z-11i que fy = 1. Per tant, tenim que

foo=he @) fo, , =10 02z-1)® 1, 4

Com que z € T, sabem que z-1 € U (3‘?4) Aixi doncs, aplicant el Lema de Whitehead obtenim la
homotopia z @ z ~, 22 ® 1 a Uy(SA).
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Utilitzant aquest fet iterativament, deduim que
Tox =z 1@ @2-1)D 1y ~p (Z'lEB"'EBZ'1@22'1)@17#1719

oy 2RO 1,
on les homotopies son a U, (SA). O

Lema 5.2.7. Per tot n € N i tot llag f € Inv( existeiz un natural m(n) € N i un llag trigonométrica
h e Trig:;(n) tal que h aprorima uniformement f i, a més a més, f ~yp h.

Demostracio. Sigui n € N fixat, f € Invj i € un real positiu. Comencem observant que els oberts
O(a) ={z € T |supy||f(z) —a| < €} somn un recobriment de T per a tot € > 0.

Com que T és compacte, existeixen un nombre finit d’elements ay, - - - , a,, € Atals que T = U;0(a;).
A més a més, com que T també és una subvarietat de C, sabem que existeix una particié de la unitat
{pi}™, subordinada al recobriment anterior’.

Utilitzant ara el Teorema de Weiestrass, sabem que per cada ¢ € {1,--- ,m} existeix una successio
de funcions trigonométriques {(5 tren tals que aproximen unlformement a p;.

Per tant, definint la funcié hy := Y., a;0}, que pertany clarament a Trig],, tenim les segiients
desigualtats per a un k € N suficientment gran:

I£(=) Zazék =1 (Z pilz ) f(2) = 3 aidi(2)
< <Z Pi(z)) F2) =Y aipi)l+ 1D aipi(z) = Y aidj ()
— Py im1 i=1
< sz —a;)| + Z llailllpi(2) = 0(2)] < 2¢

per tot z € T.

En efecte, el primer terme de la suma és menor que € perqué cada terme del sumatori és o bé 0 o
bé menor que p;(z)e per la construccié de O(a).

D’altra banda, podem fer el segon terme de la suma tant petit com vulguem ja que {8} }ren
aproximen uniformement a p;.

Aplicant el Lema 1.2.8 per un € prou petit, hem acabat. O

Lema 5.2.8. Per tots n,m € N ezxisteix una funcio continua
pr: Poll, — Pol{™ "
tal que p (f) ~n f @® Linyn a Polp"™ ™™ per tot polinomi f € Pol}! amb k < m.

Demostracié. La prova que s’escriu a continuacio6 és la corresponent al Lema 11.2.5 de [9]:
Sigui f € Poly, tal que f(z) = > i~ a;2". Llavors, definim p? (f) de la segiient manera

ago ay az 0 Qm-1 Gm
—z1, 1, 0o --- 0 0
0 —zl, 1, .- 0 0
to (f)(2) = 0 € Mpmy1(Mn(A)) = Mimpin(A)
: : : 0 0
0 0 o --- —z1,, 1,

!Recordem que aix0 vol dir que suport(p;) C O(a;) i que >_, pi(2) = 1 per tot z € T.
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A més a més, donats dos llagos polinomials f, f/ € Pol},, podem utilitzar la definici6 de la norma de
M,,(A) per obtenir una cota per ||u (f)(z) — ul (f)(2)| és

m

i () (=) = i () <D llai = ai]

=0

En particular, p), és continua.

Per tant, queda només comprovar que p7 (f)(1) ~pn lumin, que pl(f)(2) € GLyman(A) 1 que
w (f) ~n f @ Linp. Per fer-ho, comencem definint la successié gx(z) = Z;n:k a;jz? =% per k < m iles
dues matrius

Ly =91 —g2 ~ —9m Ly 0 0 0
0 1, 0 --- 0 z1, 1, 0 0
G = 0 0 1, --- 0 H(z) = 221, z1, 1, 0
0 0 o - 1, 2™, 2", 2m21, - 1,

Fent ara el producte de matrius, un pot comprovar que

foo 0
0 1, ---

Gup(HH =1 . . . | =rfetn,
0o 0 - 1,

D’altra banda, és facilment demostrable per induccié que G i H(z) son invertibles i que G, H(z) ~p,
Lymin a Pol"*™ per tot z.

Aixi doncs, com que f(z)®1,,, també és invertible per tot z, se segueix que 2 (f)(2) € GLpmin(A)
i que

fet que acaba la prova. O

Lema 5.2.9. Per a tot llag lineal f € Pol} existeix un llag¢ de projeccions ~v(f) € Proj" tal que
Y(f) ~n f a Poll. A més a més, l'assignacié f — ~(f) és continua i v(f,) = f, per tot p € P,(A).

Demostracié. Recordem que donada una projeccio p € P, (A), el seu llag és

fp(z) =1, +p(2 —1)

Sigui f € Pol{ un llag lineal de la forma f(z) = a + bz on a,b € M, (A). Pel recordatori anterior, ens
interessa trobar una homotopia entre f i un llag de la forma 1, + ¢(z — 1) amb ¢ € M,,(A) homotop a
una projeccio.

Per fer-ho, comencem observant que f(1) = a+b ~p 1,, a GL,(A). Per tant, tenim les segiients
igualtats

FHOf ) = 7 W@+ b2) = fHA)(f(Q) +b
1

(z
n () (z=1) =1, +c(z— 1) =: g(2)

i, a més a més, que f ~yp g.

Fent servir eines de calcul funcional que no hem tractat en aquest treball, es pot veure que ¢ ~p p
amb p € P,(A). D’aquest fet es segueix, d’una manera no trivial, que f, ~ f a Polf.

Tota la prova en detall es pot trobar al Lema 9.2.7 de [11]. O
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Proposicié 5.2.10. L’aplicacié de Bott és exhaustiva.

Demostracio. La prova es basa en utilitzar totes les homotopies que hem vist anteriorment:
Sigui n € N fixat i [f]; € K1(SA) tal que f € U,(SA). Pel Lema 5.2.7, sabem que existeix un llag
trigonomeétric h tal que
f~nhalnv]

Recordem que en el Lema 5.2.6 haviem vist que 2% @ 15 ~p fpn Per atot N < M i, en conseqiiéncia,
que 2 N1y~ f;‘N.

Definint ¢ = hz" on —N és el coeficient de grau menor de h, tenim que g és un lla¢ polinomial i
podem aplicar el 'anterior observacié per obtenir que

gz N ol = (9@ 1m) (27N @ 1n) ~n (9® 1) (f5y) = (9@ 1ar) f,,

on M éstalque N < MiPy=1x5®0y_n.
A més a més, utilitzant ara els Lemes 5.2.8 i 5.2.9, tenim la segiient homotopia a Inv{:

9D Linn ~n H:Ln(g) ~h 7(#%(9)) = fp

per a una certa projeccid p.
Aixi doncs, com que f, & 1y = f, ® fo,, = fowo,, per tot M € N, tenim la segiient cadena
d’homotopies a Invy

F@® Ly ~n gz N @ lay ~n (90 L) fry ~n (fp @ 1an) fry = foaou [on

on M' = M + mn.
Per tant, utilitzant el Lema 5.2.3, se segueix que tot element de K;(SA) té antiimatge. En efecte,

Ba(lplo — [pnlo) = lfpfpi = [f © I = [fa

5.2.2 Injectivitat de 1’aplicacié de Bott i alguns exemples

La injectivitat de ’aplicacié de Bott és molt més curta de provar que la seva exhaustivitat, ja que tenim
a la nostra disposici6 tots les eines desenvolupades a l'apartat anterior. Per poder fer la demostracio,
només ens fan falta una definicié i dos lemes.

Lema 5.2.11. L’aplicacié 7: Proj” — P,(A) definida per w(f,) = p és continua per tot n € N.

Demostracio. Siguin n € N fixat i p,q € P,(A). Llavors, tenim la segiient igualtat
1fp = fall = sup [1n+p(z—1) =1, —q(z —1)| = sup [(p—a)(z =Dl =2[lp —ql|
z€ FAS

Per tant, 7 és continua. O

Definicié 5.2.12. Sigui B una C*-algebra i v: ¢t — -4 una homotopia de B. Diem que = és poligonal
si és lineal en t a trossos.

Lema 5.2.13. Sigui A una C*-dlgebra i x: t — x; una homotopia a Invy. Llavors, x es pot aprozimar
uniformement per una homotopia poligonal y: t — y; amb y; € Triglh, per un cert N.
En particular, si xo,x1 € Trighy, es té que yo = xo i y1 = 1.
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Demostracid. Comencem observant que x és uniformement continua. Per tant, donat un nombre
positiu € que acotarem més endavant, existeix un nombre M € N tal que es compleix la segiient
implicacio
€
5
Aixi doncs, donats t,, = f;, sabem pel Lema 5.2.7 que existeixen un nombre N € N prou gran i
hy, € Trighy tals que ||2¢,, — hp|| < § per tot m.

En cas que xg,z; € Trigh;, prenem hg = 2o i hpyr = 1.

D’altra banda, observem que els camins ¢ — (1 — 0)h;,—1 + ohy, sén clarament homotopies de
hm—1 & hy,. Per tant, definim "homotopia poligonal y com la concatenacié dels camins anteriors.

En particular, observem que (1 — 0)h;,—1(1) + ohp, (1) ~p 1, per tot o i m.

Finalment, cal només observar que, per € prou petit, ys és de Trigh; per tot s € [0,1]. En efecte,

prenent € < min; H% i donat s tal que ys = (1 — 0)hy—1 + chy, per un certs o i m, tenim la segiient

-1
el

1
=< o = lloe—ayl <

desigualtat:

1ys = 20, | = (1 = @)1 + Ohm + (1 =0 + )21, |
<A =a)hm =2, || + 0llhm — 24, |

< (1 =o)(|hm-1 — @t || + ||z

m—1 " Lt

€
)+U§

€
<(-o)et+o;<e< ——
2 g, I
del que se segueix, pel Lema 1.2.8, que y; és invertible.
Com que és clar que (1—0)h,,—1+0h,, és sempre un llag trigonomeétric, deduim que ys € Trigh,. O

Proposicié 5.2.14. L’aplicacié de Bott és injectiva.

Demostracid. Siguin p,q € P,(A) tal que Ba([plo — [glo) = 0, és a dir, tals que [f,fy]1 = 0. Llavors,
possiblement afegint uns quants zeros diagonalment a p i ¢, tenim que f, ~y, f, i, pel Lema anterior,
que existeix una homotopia y; € Trigh, tal que

fp:yONhylzfq

Multiplicant per z%, la homotopia anterior passa a ser de llacos polinomics. Per tant, utilitzant el
Lema 5.2.6, tenim que

N N
fpéBpN ~h % fp ~h 2 fq ~h fqéBpN

on totes les homotopies continuen sent de llagos polinomics. Aixi doncs, podem aplicar ara el Lema
5.2.8 per deduir que hi ha una homotopia de llagos lineals entre frgpy i foapy-

Utilitzant l’aplicacié v del Lema 5.2.9, deduim que hi ha una homotopia ¢t — f,, de fo = frapn
a fi = fq@py- Com que sabem pel Lema 5.2.11 que I'assignacié f, — p és continua, la homotopia
anterior passa a ser una homotopia entre les projeccions p @ py i ¢ D pn.

Per tant, tenim que [p ® pn]o = [¢ ® pn]o 1, en conseqiiéncia, que [plo = [qlo, fet que acaba la
prova. O

Aquesta ultima Proposicié acaba la demostracio de la periodicitat de Bott. Aquesta ens permet,
en particular, donar millors expressions a K-grups que haviem calculat de forma recursiva, com ara el
grup Ky de SC i els K-grups de T™A.



5.3. L’aplicaci6é exponencial i la successié exacta ciclica de sis termes 51

Exemple 5.2.15. El grup K; de SC
Tal i com ja s’ha vist a ’Exemple 3.2.11, tenim que Cy(0,1) = SC. Per tant, utilitzant el que ja
haviem vist i el Teorema 5.2.1, podem calcular Ky i K; de SC:

Exemple 5.2.16. Els K-grups de T"A
A I’Exemple 3.2.15 hem obtingut la segiient familia d’isomorfismes

n

K (T"4) = (D (Z‘) Komai(A) = QEJ Konyi ( (Z‘) A>

i=0

~

on lanotaci6 sKy,+,(A) amb s € Nindicala suma directa de s copies de Ky, 1;(A), és adir, sKp,4,(A) =
(Kmti(A))°.
Utilitzant el Teorema 5.2.1 obtenim, per a tot m € N, les segiients formules

Kam(T"A) = Ko(T"A)= | P (’;)Kl(A) o P (’Z)KO(A)

i<n,senar i<n,parell

Kamia(T"A) = K (T"A)= | @D <7Z>K1(A) o P (:,L)KO(A)

i<n,parell i<n,senar

n\ _ on—1 ; n\ _ 9on—1 : s 4
i<msenar (1) = 2"V ique 3o oo (7) = 271, obtenim una expressio per

Com que sabem que Y
Ko(T"A) i Ky(T"A)

Ko(T"A) = (2" 'Ko(A)) @ (2" ' K1 (A))
Ki(T"A) = (2" 'Ky (A)) @ (2" K1 (A)) = Ko(T"A)

Finalment, Si A = (C’ es té que KO(’]I%(C) o~ Kl (T"(C) o ZQn—ll

5.3 L’aplicacié exponencial i la successié exacta ciclica de sis
termes

Sigui 0 — I 25 A %, B —» 0 una successi6 exacta de C*-algebres. Recordem que a la Secci6 4.3
haviem construit la successié exacta i llarga

KQ(B) Ka(¢)

J.
Lo Ki(9) K1(9)

s

Ko(¢) Ko(p) Ko(I)
Ko
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Utilitzant ara isomorfisme g : Ko(B) — K>(B) donat pel Teorema 5.2.1, podem tancar aquest
diagrama

K> (B)
L2
oo [ KL(D) —0 k) 29 k(B
Lo
KO(B) Ko (o) KO(A) Ko(p) KO(I)

Definicié 5.3.1. Anomenem aplicacié exponencial, que denotarem per &g, a la composicié ds o g :

Teorema 5.3.2. Per a tota successid ezacta 0 — [ —25 A B 0, la successio ciclica

Ky (1) 20 k() 2 k()

50T l&l
Ko(B) 29 ko (4) 229 k(1)

és exacta.

Demostracié. Com és usual, ens reduim, sense pérdua de generalitat, al cas on B = A/I amb ¢ =7
el pas al quocient i I és un ideal de A amb ¢ = 7 la inclusié natural.

Pel Teorema 4.1.6, cal només comprovar exactitud a Ko(A/I) i Ki(I). Per fer-ho, observem que,
pel Lema 5.1.8 i el Teorema 3.2.10, el segiient diagrama és commutatiu

Ko(ﬂ') do Kl(i)

BAI BA/II 161 IHA
Ky (ST) 51 Ko(S1)
K(SA) 225 g (s(a/1)) — s Ko(51) 2B Ky (54)

Com que les aplicacions de les columnes sén totes isomorfismes i la segona fila és exacta pel Teorema
4.1.6, la primera fila també ho és. O

Exemple 5.3.3. L’algebra de Calkin d’un espai de Hilbert H de dimensi6 infinita i separable
Recordem que algebra de Calkin es defineix com Q(H) = B(H)/K on K és I’algebra d’operadors
compactes de B(H). Per tant, tenim la segiient successio exacta

0——K—"B(H)—">Q(H) ——0

Pel Teorema 5.3.2, ’anterior successié indueix a la successioé exacta ciclica

K1(3) Ky (m)

K1T<K)—>K1(B(H)) K1<cj<H>>
8o ) o1
Ko(QUH)) 2 o(B(H)) 2 Feo ()

Com que sabem pels Exemples 2.2.12 i1 3.2.4 que Ko(B(H)) = {0} i K;(B(H)) = {0}, les aplicacions
dp 1 01 s6n isomorfismes.

Utilitzant ara els resultats Ko(K) 2 Zi K;1(K) = {0} del Comentari 4.2.3, deduim que Ky(Q(H)) =
0i Ky(QUH)) = 7.
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Exemple 5.3.4. L’algebra de Toeplitz
Sabem pel Lema 4.2.8 que 7/K = C(T). Llavors, donat 7: T — T /K el pas al quocient i ¢
I'isomorfisme entre 7 /K i C(T), tenim la successio exacta

0 K——T—%C(T) 0

on ¢ =¢gorm.
Tornant a utilitzar el Teorema 5.3.2, sabem pel Comentari 4.2.3 i ’Exemple 5.2.16 que tenim la
successio ciclia segiient

0 K1(i) Ki(T) Ki(p) 7

gl Ko(9) o(3) |

K
Z+——— Ko(T) — 7
on les aplicacions estan escrites modul composar amb isomorfismes.
En particular, observem que K;(¢) és injectiva i Ky(¢) és exhaustiva.
D’altra banda, sabem pel Lema 4.1.5 que

61([p(S)]1) = [I = 85%]o — [I = SS5*]o = —[I — 55"]o

Per tant, com que sabem pel Lema 4.2.8 que Ko(Tr)(—[I — SS*]o) = —11 —1 genera Z, també tenim
que 67 és bijectiva.

En conseqiiéncia, ker(Ko(7)) = Z i Im(Ky(7)) = 0. Com que la successio és exacta a Ko(T), se
segueix que Ko(p) és també injectiva i Ko(7T) = Z.

Finalment, com que d; és injectiva, tenim que Im(K7;(p)) = 0 pero, com que K;(p) és injectiva,
aix0 passa si i només si K;(7) = 0.

A continuacié enunciem una Proposicié que justifica el nom d’aplicacié exponencial. Com que la
prova, que es pot trobar a la Proposicio 12.2.2 de [9], utilitza eines de calcul funcional que no hem
tractat en aquest treball, la ometem.

Proposicié 5.3.5. Sigui

@

0 I—2 5 A B 0

una successio ezvacta. Llavors, donat un element [plo — [s(p)lo € Ko(B) amb p € P,(B), existeiz un
element autoadjunt a € M, (A) tal que ¢(a) = p.
Prenent u € U, (I) IMinic element tal que $(u) = >, tenim que 5o ([plo — [s(p)]o) = [u]1-

Comentari 5.3.6. Recordem que hem definit I'exponencial d’'un element autoadjunt a la Subseccio
1.2.2.

5.4 Grups abelians finitament generats i dimension drop alge-
bras

En aquesta ultima secci6 del treball veurem que és possible construir per a tot parell de grups abelians
finitament generats, G i G, una C*-algebra A tal que Ko(A) = Go i K1(A) = Gy.

Aquest resultat és el primer pas per demostrar un Teorema més general, que permet construir
una C*-algebra separable tal que els seus K-grups associats siguin qualsevol parell de grups abelians
numerables.

Tot i aixi, per motius d’extensi6é del treball, ometem la demostracié d’aquest darrer Teorema, que
es pot trobar al Capitol 13 de [9].
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5.4.1 Blocs lliures

De cara a construir una C*-algebra amb les propietats anteriors, comencem recordant el Teorema de
classificacié de grups abelians finitament generats, que correspon al Teorema 2.1. de [5].

Teorema 5.4.1. Sigui G un grup abelia finitament generat. Llavors, existeizen constants enteres
n,k>0iny, -, ng tals que

G2Z"® (Z/mZ)® - & (Z/niZ)
onZ" i (Z/n1) ® -+ ® (Z/ng) s’anomenen la part lliure i la part de torsid de G respectivament.

Prenem ara G i G grups abelians finitament generats amb parts lliure i de torsié G, GT' i GF, GT
respectivament.

Llavors, com a conseqiiéncia de l'anterior Teorema i les propietats de Ky i K; llistades a la Pro-
posicio 3.2.14, per construir una C*-algebra A amb Ky(A) = Go i K1(A) = G sera suficient trobar
quatre C*-algebres, que anomenarem blocs, tals que

Ki(Al) = GF, K;(A]) =G}

i tots els seus altres K-grups siguin isomorfs a {0}.
En efecte, definint A com A = A} @ AF & AT @ AT, tindrem que
Ko(A) = Ko (Af) @ Ko (A}) @ Ko (A]) @ Ko (A])
=~ Gy @ {0} & Gf ® {0} = G
Ki(A) = K, (Af) @ K1 (A}) @ Ky (A]) & K1 (A])
~{0}oGre{0}eGT =G,
D’altra banda, recordem que ja haviem vist als Exemples 2.2.11 1 3.2.4 que Ky(C) 2 Z i K;(C) = {0}.
Per tant, si G§ = Z™ i GI' = Z™ | definim els blocs lliures Af i ALY com
Al =Co ™ aC
Al = sCo ™ @SC

5.4.2 Blocs de torsid

Un cop construits els blocs lliures, ens cal ara trobar una familia de C*-algebres D,, tals que Ko(D,,) =
{0} i K1(D,) = Z/nZ. Encara que es coneixen varies families amb aquesta propietat, com ara les
algebres de Cuntz definides al Capitol 12 de [11], prenem la familia de les dimension drop algebras,
definides a continuacié.

Definicié 5.4.2. Per a tot n € N — {0,1}, definim D,, com la C*-algebra formada per les funcions
continues f € C([0,1], M,,(C)) tals que f(0) =01 f(1) € Cl,,.

Comentari 5.4.3. Observem que S(M,(C)) és un ideal de D,,. Per tant, es té la segiient successio
exacta

0—— SM,(C) —— D,

on 7 és la inclusié natural i evy és I’avaluacio en el 1.



Aixi doncs, com a conseqiiéncia del Teorema 5.3.2, la successio

Ko(SM,(C)) —2, Ko (D) Ko(C)

o] [

Kl((C) (W Kl(Dn) (T(l) Kl(SMn<(C))

Ko(evy)

també és exacta.

Proposicié 5.4.4. Per a cada n € N —{0,1}, els grups Ko(D,,) i K1(D,,) son isomorfs a 0 i Z/nZ
respectivament.

Demostracid. Donarem la idea de la demostracié, ometent algun detall que es pot trobar a la Seccié
13.1 de [9].
Utilitzant ’Observacio anterior i els Exemples 2.2.11 i 3.2.4, es té la segiient successié exacta

Ko(‘n’)

T, g () =2 Ky (S0, (C)) 22

0—— Ko(Dy) — K1(D,) ——0

Per tant, com que sabem que K((C) i K1(SM,(C)) sén isomorfs a Z, cal només provar que &y amb
aquesta identificacié és ’aplicacié multiplicar per n:

Donada p una projeccié unidimensional de M,,(C), sabem que [p]y és un generador de Ko (M, (C)).
Llavors, definint els elements w,,, v, € U(S(M,(C))) com

u, () = e*™1,

on(t) =™ 'p+ (1, — p)

es pot veure que n[v,]1 = [unl1-

Finalment, utilitzant la formula de la Proposicio 5.3.5, es dedueix que do([1clo) = —[un]i = —nfvn]1
i, en conseqiiéncia, que §p és injectiva i que és la multiplicacié per n.
Per tant, Ko(D,,) =01 Ki(D,) £ Z/nZ. O

Concloem aquesta Seccié enunciant el Teorema que resumeix els resultats anteriors:

Teorema 5.4.5. Siguin Go i Gy dos grups abelians finitament generats i {n; o}, {nj1}ite C N tals
que

Go X Z™° & (Z/n1,0Z) & - & (Z/nk0Z)
G =2Z2"" @ (Z/maZ)® - & (Z/nmaZ)

Llavors, definint la C*-algebra A = AL ® AL © AT © AT amb

Ab=co ™ eC |, AF=SCe " @SC
AT:SDnl,()@"'EBSDm«,o ’ A{:Dnl,l@-..GBDnm,l

tenim que Ko(A) = Gy i K1(A4) 2 G;.
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Apéndix A
Construccio de Grothendieck

Donat un monoide commutatiu S, ens interessa construir un grup abelia G(S) que reprodueixi algunes
de les propietats que es poden observar en el cas N C Z. Més concretament, volem que es compleixin
les segiients propietats:

1. Existeix un morfisme de monoides commutatius g: S — G(S), és a dir, que G(S) contingui, en
cert sentit, a .S.

2. Per a tot morfisme f: S — P amb P un grup abelia, existeix un tnic morfisme de grups
f':G(S) = Ptalque ffog=Ff.

El grup G(S) sempre existeix i s’anomena el grup de Grothendieck de S:

Definici6. Sigui S un monoide commutatiu. Definim la relacié de Grothendieck, en simbols ~¢, com
la segiient relaci6 sobre S x S:

(z1,y1) ~G (22,y2) si i nomes si existeix z € S tal que 1 +yo + 2 = a2+ y1 + 2
Lema. La relacié de Grothendieck és d’equivaléncia.
Demostracid. En comprovem les propietats:
1. Reflexiva: Donat « € S'i z € S qualssevol, z + z + z = x + x + z. Per tant, (x,2) ~¢ (z,z).

2. Simétrica: Com que S és un monoide commutatiu, per tot parell z,y € Si z € S es compleix
que z +y+ 2z =y + x+ 2. Per tant, (z,y) ~g (y,x).

3. Transitiva: Suposem (z1,y1) ~¢ (%2,y2) 1 (x2,y2) ~¢ (x3,ys3). Llavors, existeixen elements z; i
zo tals que es compleixen les segiients igualtats

r1t+y2t+tzn=r2+y1+2
To+ Y3+ 22 =23+ Y2+ 22

Sumant-les, s’obté
T1tys+ (@2 +y2+21+22) =x3+y1 + (X2 +y2 + 21 + 22)

del que se segueix que (z1,y1) ~g (x3,y3)-
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60 Apéndix A. Construccié de Grothendieck

Definici6. Sigui S un monoide commutatiu. Definim el grup de Grothendieck de S, que denotarem
G(S5), com el quocient S x S/ ~¢.
Escriurem, momentaniament, els elements de G(S) com [z, y]¢

Lema. Per a tot S monoide abelia amb operacié +, el grup de Grothendieck és un grup abelia amb
loperacio + component a component.

Demostracio. Comencem veient que 'operaci6 estd ben definida.
Siguin z,y,2’,y’ € S tals que [z,y]l¢ = [¢/,¥']¢ 1 [a,b]¢ qualsevol. Llavors, existeix z € S tal que
es compleix la segiient igualtat
r+y +z=y+2' +z

Sumant a + b als dos costats tenim
(x4+a)+ @ +b)+2=(y+b)+ (2 +a)+z

i, en conseqiiéncia, que [z + a,y + blg = [’ + a,y" + bl¢.
A més a més, donat un element [x,ylg € G(S5), es pot veure que [y, z|¢ + [2,y]¢ = [0,0]g. Per
tant, tot element de G(S) té un invers i és clar que [0, 0] és I'tnic element neutre d’aquesta operacio.
Les altres propietats de grup s’hereten de S. O

Comentari. Com a conseqiiéncia del Lema anterior, escriurem 0 en comptes de [0, 0] i denotarem les
altres classes d’equivaléncia [z, y|g com = — y.
Comencem comprovant que es compleix la propietat 1. de les dues llistades al comengament d’aquest

apeéndix:

Definicié. Sigui S un monoide commutatiu i G(S) el seu grup de Grothendieck. Anomenarem apli-
caci6 de Grothendieck al morfisme g : S — G(5) tal que g(x) = [x+y, y], on y és un element qualsevol
de S.

Comentari. Amb la notacié anterior, g és independent de I’eleccié de y i, si S és cancel-latiu, tenim
que g(z) =[x +vy,y] = (x +y) —y = x per a tot x € S. Per tant, g és injectiva si S és cancel-latiu®.
Amb aquesta definici6, podem veure que també es compleix la propietat 2.

Proposicié. Donat S un monoide, A un grup abelia i f : S — A un morfisme, existeix un 1inic
morfisme de grups f': G(S) — A tal que f' o g = f on g és laplicacio de Grothendieck.

Demostracio. Definint f'(x —y) = f(z) — f(y), la demostraci6 és analoga a la de la Proposicio 2.2.13.
O

1De fet, g és injectiva si i només si S és cancel-latiu.



Apéndix B
Categories 1 functors

En aquest apéndix es fa una breu i informal introduccio6 a la teoria de categories. Per una introduccio
més detallada, es pot consultar [5].

Definici6é. Una categoria € consta de dues classes, juntament amb una familia de funcions:
1. Ob(%): Una classe d’elements que anomenem objectes.

2. Mor(%): Una classe de conjunts disjunts, un per cada parella d’elements A, B de Ob(%). A
aquests conjunts els denotem per Mor(A, B) i anomenem morfismes de A a B als seus elements.

A meés a més, per tot triplet d’objectes (A, B, C'), existeix una correspondéncia associativa
¢: Mor(B, C) x Mor(A, B) — Mor(4, C)

que anomenarem composicio i escriurem c(g, f) =: go f.

Per cada objecte A també es demana que existeixi un morfisme id 4 € Mor(A4, A) tal que per a tot
parell d’objectes (B, C) i tots els morfismes g € Mor(A, B) i f € Mor(C, A) es compleixi goidg =g i
idaof=Ff.

Exemples.

1. Set és una categoria que té com a objectes els conjunts, com a morfismes les aplicacions entre
conjunts i la composicié usual.

2. Les categories Gr i Ab, que tenen com a objectes els grups i els grups abelians respectivament i
els morfismes de grups com a morfismes.

3. La categoria C* — alg, amb les C*-algebres com a objectes, els *-morfismes com a morfismes i la
composicié usual.

Definicié. Donada una categoria %, direm que %’ és una subcategoria de € si €’ és una categoria
tal que tots els objectes i morfismes de %’ sén objectes i morfismes de €, i la composicié a &’ és la
mateixa que la de %.

Exemple. Ab i C*-alg sén subcategories de Gr.

Una vegada definit el que son les categories, ens interessa estudiar les relacions entre elles. Per
fer-ho, es defineix el concepte de functor covariant.
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62 Apéndix B. Categories i functors

Definici6. Siguin 4 i & dues categories. Un functor covariant F' esta format per un parell de corres-
pondéncies, que també denotem per F':

1. Una correspondéncia de Ob(%) a Ob(2) que porta cada objecte A de € a un objecte F/(A) de
2.

2. Una correspondéncia tal que, per a tot parell d’objectes A, B de ¥, porta els morfismes g de
Mor(A,B) a morfismes F(g) de Mor(F(A), F(B)) i que, a més a més, compleix les segiients
propietats:

(a) F(ida) =1id4 per a tot A objecte de E.
(b) F(fog)=F(f)o F(g) per a tot parell de morfismes que es puguin composar.

Comentari. Si a la definicié anterior es canvia la propietat 2 de manera que F' porta morfismes de
Mor(A, B) a Mor(F(B),F(A))ique F(fog)= F(g)oF(f), diem que F és un functor contravariant.

Definici6. Siguin € i & subcategories de Ab. Diem que un functor covariant F' de ¥ a Z porta els
zeros als zeros si per a tot parell d’objectes A, B de ¢ es compleix que F(04,8) = 0p(a),r(B) o0 04,8
és ’aplicacié que porta tot element de A al zero de B.

De manera analoga, diem que un functor contravariant porta els zeros als zeros si F'(04,p5) =

Or(B),F(A):



Apéndix C
Successions exactes

Encara que el concepte de successioé exacta es pot definir en categories més generals, com ara la de
moduls [5], ens centrem en definir successions exactes sobre les estructures tractades en aquest treball.

Definicié. Siguin {A;};cz una familia de C*-algebres (resp. de grups abelians) i {p;: A;—1 — A;}iez
x-morfismes entre elles (resp. morfismes de grups).
Diem que la successio

Pr+1 P2

Pk
A1 —

Ay,

és exacta a Ay si ker(pr+1) = Im(py).
Diem que la successio és exacta si ho és a Ay per tot k € Z.

Comentari. En el cas que existeixi k¥ € N tal que A,,, = {0} per a tot m > ki m < 0, escriurem
I’anterior successié com

Pr—1

0 Ao i A1 i Akfl i> Ak —0

Observem que aquesta és exacta a Ag si i només si 1 és injectiva i que és exacta a Ay si i només si
k. és exhaustiva.
Definicié. Direm que una successié exacta és curta si té la foorma 0 - A —- B — C — 0.

Exemple. Sigui ¢1: Z/2 — Z/4 definida per ¢ (1) = 2 i sigui po: Z/4 — Z/2 definida per p2(1) = 1.
Llavors, la successio

0 7)2 742572 0

és exacta 1 curta.

Definicié. Direm que una successié exacta curta 0 - A — B — C' — 0 és escindida si existeix un
morfisme secci6 s: C' — B, és a dir, si existeix un morfisme s tal que h o s = id¢.

Exemple. Siguin Ai B dues C*-algebres o dos grups abelians i siguinis: A - A@Bing: AGB — B
els *-morfismes inclusié de A i projeccié en B respectivament. Llavors, la successio

0*)ALA@B$B*>O
iB

és escindidament exacta.
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Apéndix D
Limits inductius i C*-algebres

Donada una successié d’anells i morfismes

Y1 Y2

Ry Ry

volem fabricar un anell “limit” R.
Més en particular, definint els morfismes ¢;; := ¢; o--- o ; per j > i, ens interessa construir un
anell R i morfismes ¢; »: R; — R tals que el segiient diagrama sigui commutatiu

Piji
R; % Rj

5,
w&l s

R

per a tot 4,5 € N amb j > i.

A més a més, també estem interessats en que R sigui universal. Es a dir, si S és un anell i tenim
morfismes ¢; o : R; — S tals que ¢ o 0 ;i = 400 51 j > 1, llavors volem un tnic morfisme 7: R — S
tal que el diagrama

R;

w,ool \ﬁw
R——5
sigui commutatiu per a tot ¢ € N.
Proposicié. L’anell R, que anomenem limit inductiu (o colimit) del sistema (R;, p;), sempre ezisteis.

Demostracio. Sigui R = U2, R; la uni6 disjunta dels R;’s. Definim sobre R’ la relacié ~ segiient:
Donats r,s € R amb r € R; i s € Rj, escrivim r ~ s si existeix k£ > max{7, j} tal que gy ;(r) =

Pr,j(s)-
Definint R := R’/ ~, deixem com a exercici pel lector comprovar que aquest anell compleix les dues
propietats que voliem. O

Comentari. Canviant anells per grups abelians a les anteriors propietats, es pot veure de manera
analoga a lanterior demostracié que sempre existeix el limit inductiu G d’un sistema (G;, ¢;), on G;
son grups abelians i ¢; sén morfismes de grups.

Tant per anells com per grups, escriurem R = liglRi iG= liinGi.
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Un cop definit el limit inductiu per anells i grups abelians, volem definir el mateix concepte per
C*-algebres. Sigui doncs
P1

P2 ¥3

Ay Ao As

una successio de C*-algebres i Ay el limit del sistema (A4;, p;) com a anells, també conegut com a limit
algebraic.

Comentari. El limit algebraic Ay és una x-algebra.

Proposicié (Proposicio 16.2. de [4]). Sobre el conjunt Ay definim la seminorma
2] = mf{llpi; (@) | j =4}, z €A
Llavors, prenent l'ideal bilateral N = {x € A | ||z|| = 0}, tenim que Ayg/N és una x-algebra normada.

Definicié. Anomenem limit inductiu, o C*-algebra limit, del sistema (A;, ;) a la complecié de la
x-algebra normada Ag/N.
Escriurem limA; per fer referéncia a aquesta C*-algebra.
—
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