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Resum

Aquest treball té com a objectiu introduir el lector a la teoria K per C∗-àlgebres demostrant-ne dos
dels seus resultats centrals: La periodicitat de Bott i la subsegüent successió exacta cíclica de sis
termes.

De manera similar a la teoria K algebraica, a la teoria K per C∗-àlgebres es construeix una família
de functors Kn de la categoria de C∗-àlgebres a la de grups abelians. Aquests functors, que assignen
a cada C∗-àlgebra A una família de grups abelians Kn(A), permeten deduir propietats estructurals de
l'àlgebra. Per construir-los, cal destacar que l'enfoc que es dóna difereix lleugerament de l'original, fet
que permet fer més concisa l'exposició.

A l'hora de calcular els K-grups, la periodicitat de Bott permet reduir-nos a calcular només els grups
K0 i K1. D'altra banda, la successió exacta cíclia de sis termes és una eina molt útil per calcular K0 i
K1 de l'àlgebra en termes dels corresponents grups d'un ideal i del seu quocient respectiu.



Agraïments

Vull expressar tot el meu reconeixement al meu tutor, el Dr. Francesc Perera, per introduir-me al
món de les C∗-àlgebres i per les seves inestimables aportacions, comentaris crítics i, en general, pel seu
suport i ajuda durant tota la redacció del treball.

També m'agradaria expressar el meu més profund agraïment a tots els professors del departament, per
la seva professionalitat i dedicació que m'ha permés disfrutar durant els últims quatre anys d'aquesta
magní�ca carrera. En especial, vull agrair al Dr. Ramon Antoine les incomptables hores dedicades,
juntament amb el meu tutor, a la lectura d'articles que de ben segur em resultaran útils al llarg de la
meva vida acadèmica.

Finalment, dono gràcies a la meva família i amics, sense el suport dels quals no hagués estat possible
escriure aquest treball.



Índex

Introducció 1

1 Preàmbul 3
1.1 Introducció a les C∗-àlgebres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Uniti�cació . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Espectre i elements diferenciats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 La relació homotòpica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Càlcul funcional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 El grup de Grothendieck K0 9
2.1 Projeccions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Propietats generals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 El grup K0(A) per a una C∗-àlgebra A unitària . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 El monoide D(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 El grup K0(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 El functor K0 unitari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 El grup K0 per a una C∗-àlgebra general . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Els K-functors d'ordre superior 19
3.1 El functor suspensió . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Els grups K
′

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Els grups Kn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 El grup de Whitehead K1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Els functors Kn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Continuïtat de K0 i K1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 AF -àlgebres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Àlgebres de rotació irracional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Índex i la successió exacta llarga de la teoria K 35
4.1 Índex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Índex de Fredholm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 La successió exacta llarga de la teoria K . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 La periodicitat de Bott i la successió exacta cíclica de sis termes 43
5.1 L'aplicació de Bott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 El Teorema de periodicitat de Bott . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 Exhaustivitat de l'aplicació de Bott . . . . . . . . . . . . . . . . . . . . . . . . . 46

i



5.2.2 Injectivitat de l'aplicació de Bott i alguns exemples . . . . . . . . . . . . . . . . . 49
5.3 L'aplicació exponencial i la successió exacta cíclica de sis termes . . . . . . . . . . . . . 51
5.4 Grups abelians �nitament generats i dimension drop algebras . . . . . . . . . . . . . . . 53

5.4.1 Blocs lliures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4.2 Blocs de torsió . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Construcció de Grothendieck 59

B Categories i functors 61

C Successions exactes 63

D Límits inductius i C∗-àlgebres 65

ii



Introducció

Degut a la seva riquesa i varietat d'aplicacions, l'estudi i classi�cació de les C∗-àlgebres gaudeix d'un
moment dolç dins de la recerca en àlgebres d'operadors. Aquestes estructures, de�nides formalment
l'any 1943 per Gelfand i Naimark, són una generalització de les conegudes àlgebres de von Neumann,
proposades pel mateix von Neumann l'any 1929 com a models de la Mecànica Quàntica.

Usualment, les C∗-àlgebres es de�neixen com àlgebres de Banach tancades per una certa norma
‖ · ‖ i involució ∗ relacionades per la igualtat ‖aa∗‖ = ‖a‖2, també coneguda com a C∗-igualtat. Tot
i així, la celebrada construcció de Gelfand-Naimark-Segal de l'any 1943 dóna una caracterització de
qualsevol C∗-àlgebra com a sub-àlgebra de B(H), tancada per la norma i la involució, per algun espai
de Hilbert H. També sabem, pel conegut Teorema de Gelfand, que tota C∗-àlgebra commutativa és
isomètricament isomorfa a l'àlgebra C0(X) per algun espai X Hausdor� i localment compacte.

Com a conseqüència d'aquest darrer resultat, les C∗-àlgebres no commutatives es pensen sovint
com àlgebres de funcions sobre un espai que, de fet, no existeix. Un dels grans èxits d'aquest punt de
vista, anomenat topologia no commutativa, és la generalització de la teoria K topològica a la teoria K
per C∗-àlgebres, focus principal d'aquest treball.

A grans trets, en teoria K per C∗-àlgebres es de�neix, tal i com es fa en teoria K algebraica, una
família de functors Kn de la categoria de C∗-àlgebres a la de grups abelians. En particular, a tota
C∗-àlgebra A se li assignen una família de grups abelians, coneguts com els seus K-grups, que denotem
per Kn(A).

Ara bé, com a conseqüència de dos dels seus resultats centrals, la teoria K per C∗-àlgebres presenta
un gran avantatge respecte la teoria K algebraica: La calculabilitat dels grups Kn.

El primer d'aquests dos resultats, conegut com la periodicitat de Bott, s'hereta de la teoria K
topològica i ens assegura que, de fet, només hi ha dosK-grups mòdul isomor�a, el grup de Grothendieck
K0(A) i el grup de Whitehead topològic K1(A).

El segon d'aquests resultats, l'anomenada successió exacta cíclica de sis termes, ens permet reduir-
nos, a l'hora de calcular explícitament els K-grups d'una C∗-àlgebra A, a només calcular els K-grups
d'un ideal de A i del seu quocient respectiu.

Utilitzant aquests dos fets i altres resultats del treball, podem usar teoria K per deduir propietats
estructurals de l'àlgebra que tractem. Per exemple, sabem que els K-grups de tot parell de C∗-àlgebres
homotòpiques són isomorfs, i que el grup K0(A) d'una C∗-àlgebra A separable és numerable.

Gràcies a totes aquestes qualitats, la teoria K per C∗-àlgebres ha resultat ser molt fructífera i, des
de la classi�cació per part de George Elliott de les AF-àlgebres l'any 1976, s'ha convertit en una eina
determinant per l'estudi efectiu d'aquestes.

Així doncs, l'objectiu del treball és doble: Per una banda, pretén servir de breu introducció al vast
món de les C∗-àlgebres, i en concret de la teoria K, suposant únicament que el lector està familiaritzat
amb els conceptes d'espai de Hilbert i operador. De l'altra, demostrar l'anomenada periodicitat de Bott
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i derivar-ne la successió exacta cíclica de sis termes, resultat essencial per realitzar càlculs concrets.

Per aconseguir aquests propòsits, l'escrit està estructurat en cinc capítols. En el Capítol 1 s'enuncien
resultats i de�nicions necessàries per la comprensió dels capítols posteriors. En els Capítols 2 i 3
s'introduexien els K-functors i es demostren les propietats functorials d'aquests, com ara l'exactitud
escindida i l'estabilitat. Finalment, en els Capítols 4 i 5 es de�neixen l'índex i l'aplicació exponencial
que, juntament amb el Teorema de Bott demostrat també al Capítol 5, permeten construir la successió
exacta cíclica de sis termes.

Addicionalment, en els Capítols 3, 4 i 5 s'inclouen seccions que, tot i no estar directament relacio-
nades amb l'obtenció de la successio exacta cíclica, informen sobre altres aspectes de la teoria K. Per
exemple, a la Secció 4.2 es compara l'índex de Fredholm amb l'índex de la teoria K, i a la Secció 5.4
s'utilitzen les anomenades dimension drop algebras per construir C∗-àlgebres tals que els seus grups
K0 i K1 siguin qualsevol parell de grups abelians �nitament generats. Aquest resultat és, de fet, el
primer pas per demostrar un teorema més general, que permet construir una C∗-àlgebra separable tal
que els seus K-grups associats siguin qualsevol parell de grups abelians numerables.

Cal destacar que, encara que l'estructura que es segueix és en gran mesura la utilitzada en la
majoria de llibres consultats, en el Capítol 3 s'introdueix la notació K ′n. Aquesta nova notació ens
permet, juntament amb resultats propis, demostrar les propietats dels functors Kn d'un sol cop, fet
que representa una millora respecte l'esquema de [9, 11], on es distingeixen els casos n = 0 i n = 1
abans de passar al cas general.

També és important ressaltar que, tret de menció explícita, les demostracions dels exemples i els
resultats del treball són pròpies. En particular, la majoria dels exemples són exercicis de [9].

Com acostuma a passar en matemàtiques, l'estructura proposada del treball és només una de les
moltes maneres de llegir-lo. Per exemple, es recomana a tots aquells lectors que ja estiguin familiaritzats
amb el concepte de C∗-àlgebra a començar la lectura pel Capítol 2 i redirigir-se al Capítol 1 només en
cas de dubte.

Si, en canvi, aquest és el primer contacte del lector amb les C∗-àlgebres, pot resultar molt il·lustratiu
començar a llegir des del Capítol 1 però ometent totes les demostracions del treball. En aquest cas es
recomana, més concretament, ometre les demostracions dels Teoremes 3.2.10, 4.1.6 i 5.2.1 que, tot i
ser instructives, poden resultar feixuges.



Capítol 1

Preàmbul

De cara a que el treball sigui autocontingut, en aquest primer capítol es fa esment de de�nicions i
resultats previs necessaris per la comprensió dels capítols posteriors. A més a més, es fa un resum
breu sobre el càlcul funcional en les C∗-àlgebres que, tot i que no s'utilitza en aquest treball, té una
importància cabdal en el seu estudi.

La majoria de les demostracions dels resultats llistats a continuació es poden trobar a [4, 7, 10].

1.1 Introducció a les C∗-àlgebres

De�nició 1.1.1. Sigui A una àlgebra de Banach sobre C amb una norma ‖ · ‖ i una involució ∗, anti-
multiplicativa i lineal conjugada. Direm que A és una C∗-àlgebra si es compleix la següent igualtat,
també coneguda com a C∗-igualtat:

‖aa∗‖ = ‖a‖2 per a tot a ∈ A

Anomenarem sub-C∗-àlgebres a les sub-àlgebres de A tancades per la norma i per la involució ∗, i ideal
de A a tot ideal bilateral tancat de A, com a àlgebra, tancat per la involució.

Exemples 1.1.2.

1. C és una C∗-àlgebra amb la norma usual i la conjugació com a involució.

2. Donat un espai de Hilbert H, l'àlgebra d'operadors acotats B(H) és una C∗-àlgebra amb la
norma i involució usuals.

3. De manera anàloga al cas anterior, es pot veure que l'idealK(H) format pels operadors compactes,
és a dir, els operadors que són límit d'operadors de rang �nit, és una C∗-àlgebra amb la norma
i involució de B(H).

4. Sigui A una C∗-àlgebra. Llavors, l'àlgebra de funcions contínues f : [0, 1]→ A, que denotem per
C([0, 1], A), és una C∗-àlgebra amb la norma del suprem i la involució punt a punt.

5. Donat un espai X localment compacte i Hausdor�, l'espai de funcions contínues f : X → C
que s'anul·len a l'in�nit1, que denotem per C0(X), és una C∗-àlgebra amb la involució i norma
anteriors.
Per exemple, si X = R, aquestes són les funcions tals que limx→±∞ f(x) = 0.

1Recordem que diem que una funció contínua f : X → C s'anul·la a l'in�nit si per tot ε > 0 es compleix que el conjunt
{x ∈ X | |f(x)| ≥ ε} és compacte.
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4 Capítol 1. Preàmbul

Com és d'esperar, direm que una aplicació φ entre dues C∗-àlgebres A i B és un *-mor�sme si és
un mor�sme de A a B com a àlgebres i, a més a més, en conserva la involució, és a dir, φ(a∗) = φ(a)∗

per a tot a ∈ A.

Una de les conseqüències més immediates, però no del tot trivial, de la C∗-igualtat és que tots els
*-mor�smes són decreixents en norma i, per tant, continus. En particular, tots els *-isomor�smes són
isomètrics.

Observem també que, de manera anàloga a les àlgebres de Banach, un *-mor�sme entre C∗-àlgebres
unitàries pot o no conservar la unitat. En cas de fer-ho, s'anomena *-mor�sme unitari. Tot i així,
quan el context sigui prou clar, ometrem l'adjectiu unitari.

Encara que la de�nició de C∗-àlgebra que s'utilitzarà durant tot aquest treball és la donada a la
De�nició 1.1.1, en molts casos és útil fer-ne servir una d'alternativa, que ve donada pel Teorema de
Gelfand-Naimark.

Teorema 1.1.3 (Gelfand-Naimark). Per a tota C∗-àlgebra A, existeix un espai de Hilbert H tal que
A és isomètricament isomorfa a una sub-C∗-àlgebra de B(H).

Exemple 1.1.4. Donada una C∗-àlgebra A i n ∈ N∗, podem considerar l'àlgebra de les matrius amb
entrades de A de mida n, que denotarem per Mn(A). De�nint de manera adequada una involució i
una norma sobre aquesta àlgebra, Mn(A) cobra l'estructura de C∗-àlgebra:

� Com a involució, prenem l'aplicació transposar i involucionar component a component per la
involució de A.

� D'altra banda, sabem pel darrer Teorema que existeix un espai de Hilbert H i un *-mor�sme
injectiu ϕ de A cap a B(H). De�nim la norma ‖a‖ de Mn(A) com la norma de ϕn(a) ∈ B(Hn)
on ϕn és el *-mor�sme que aplica ϕ component a component.

De�nició 1.1.5. Donat un ideal bilateral I de A, de�nim el quocient de A per I com

A/I = {a+ I | a ∈ A}

Amb aquesta de�nició, A/I és una C∗-àlgebra amb la norma �a�A/I := infx∈I �a+ x�A.

1.1.1 Uniti�cació

Com ja s'ha observat en algun dels exemples, és habitual que una C∗-àlgebra no tingui unitat. Tot
i així, existeix un procediment que ens permet estendre qualsevol C∗-àlgebra A, unitària o no, a una
C∗-àlgebra Ã que sempre té unitat.

Aquest procés s'anomena uniti�cació de A, explicitat a continuació:

De�nició 1.1.6. Donada una C∗-àlgebra A, de�nim sobre A× C la següent norma

‖(a, α)‖Ã = max

{
sup

x∈A,‖x‖=1

{‖ax+ αx‖A}, |α|

}

Llavors, amb les operacions suma i involució component a component i el producte (a, λ)(b, µ) =
(ab+ µa+ λb, λµ), A× C és una C∗-àlgebra unitària amb unitat 1Ã := (0, 1), que anomenarem Ã.

Escriurem els elements de Ã com a+ λ1Ã.

Un dels conceptes més importants del treball és el de successió exacta, de�nit a l'Apèndix C. En
aquest sentit, el primer resultat on apareix una successió exacta és el següent Lema.



1.2. Espectre i elements diferenciats 5

Lema 1.1.7. Sigui i la inclusió natural de A a Ã, π la projecció a C i λ(α) := α1Ã. La construcció
anterior fa que la successió

0 // A
i // Ã

π // C
λ
oo // 0

sigui escindidament exacta.

Així doncs, A és un ideal de Ã i tot element b ∈ Ã es pot escriure com a suma d'un element a ∈ A
i un element α ∈ C1Ã. En aquest darrer element se l'anomena part escalar de b, i es denota per
s(b) := λ ◦ π(b).

És també important destacar que si A ja tenia una unitat 1A, l'element p1 = 1A − 1Ã és una
projecció, tal i com es de�neix a 1.2.1, i podem escriure tot element de Ã com a + αp1 amb a ∈ A i
α ∈ C.

Usant aquest element, es pot també veure que h : Ã→ A⊕C de�nit per h(a+α1Ã) = (a+α1A, α)
és un *-isomor�sme.

De�nició 1.1.8. Siguin A i B dues C∗-àlgebres i ϕ un *-mor�sme entre elles. De�nim la uniti�cació
de ϕ com la següent aplicació:

ϕ̃ : Ã // B̃

a+ α1Ã
� // ϕ(a) + α1B̃

1.2 Espectre i elements diferenciats

Encara que els exemples de C i Mn(C) puguin semblar trivials, algunes de les tècniques utilitzades en
l'estudi de les C∗-àlgebres són, en certa mesura, generalitzacions de les tècniques d'estudi utilitzades
en aquests exemples tant coneguts. En particular, es té la següent de�nició:

De�nició 1.2.1. Sigui A una C∗-àlgebra i x un element de A. De�nim l'espectre de x, que denotarem
per sp(x), com el conjunt de tots els nombres complexos λ tals que x− λ1Ã no és invertible a Ã.

Molts dels elements diferenciats d'una C∗-àlgebra estan intrínsecament relacionats amb el seu
espectre i, en alguns casos, li deuen el seu nom. De cara al nostre estudi, diferenciarem els següents
elements:

Donada una C∗-àlgebra A i un element a ∈ A, diem que a és

� normal si aa∗ = a∗a.

� positiu si existeix x∈A tal que a = x∗x o, equivalentment, si sp(a) ⊆ R+∪{0} i a és normal.
Anomenarem A+ al conjunt dels elements positius de A.

� unitari si aa∗ = a∗a = 1 o, equivalentment, si sp(a) ⊆ T i a és normal. Anomenarem U(A) al
conjunt dels unitaris2 de A.

� una projecció si a = a∗ = a2 o, equivalentment, si sp(a) ⊆ {0, 1} i a és normal. Anomenarem
P (A) al conjunt de les projeccions de A.

� invertible si existeix un element a−1 tal que aa−1 = 1. Anomenarem GL(A) al conjunt dels
invertibles de A.

2Com és d'esperar, aquesta de�nició només té sentit si A és unitària.
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D'aquests elements, les projeccions i els unitaris tindran especial importància en la construcció de
K0(A) i K1(A) respectivament.

De�nició 1.2.2. Siguin A una C∗-àlgebra unitària i U(A) el conjunt dels elements unitaris de A.
Anomenem conjunt d'unitaris normalitzats, que denotarem per U+(A), al subconjunt d'elements de
U(A) que tenen part escalar de norma 1.

1.2.1 La relació homotòpica

Una de les relacions més usades en l'estudi de les C∗-àlgebres, i en la teoria K en particular, s'hereta
de l'estudi d'espais topològics: La relació homotòpica.

De�nició 1.2.3. Sigui A una C∗-àlgebra i B un subconjunt de A. Diem que dos elements x, y de
A estan relacionats homotòpicament a B, i escrivim x ∼h y , si existeix un camí continu, amb la
topologia de la norma de A, entre x i y a B.

En teoria K, la relació homotòpica és especialment important en la construcció de K1 mitjançant
unitaris. Un dels lemes recurrents en el tractament de K1 és el Lema de Whitehead, enunciat a
continuació:

Lema 1.2.4. Sigui A una C∗-àlgebra i u, v unitaris de Ã. Llavors, els següents elements són dos a
dos homotòpics a U(M2(Ã)):(

u 0
0 v

)
,

(
uv 0
0 1

)
,

(
vu 0
0 1

)
,

(
v 0
0 u

)
Donat el conjunt d'unitaris normalitzats, U+(A), destaquem que tota part escalar d'un element

unitari u d'una C∗-àlgebra unitària A pot ser normalitzat multiplicant-lo per π(u)−11A. El Lema
anterior ens assegura, en particular, que si u i v són unitaris normalitzats homotòpics, també podem
normalitzar les homotopies anteriors.

De�nició 1.2.5. Sigui A una C∗-àlgebra unitària. Denotem per U0(A) al conjunt d'elements unitaris
homotòpics a 1.

A més del Lema de Whitehead, també utilitzarem diversos resultats que es basen en les particula-
ritats d'alguns dels elements diferenciats de�nits anteriorment. Resumim aquests fets en forma de tres
lemes:

Lema 1.2.6 (Homotopia i projeccions). Sigui A una C∗-àlgebra unitària i p, q dues projeccions de
A. Llavors,

� si ‖p− q‖ < 1, tenim que p ∼h q a P (A).

� p i q estan relacionats homotòpicament si i només si existeix una homotopia d'unitaris ut tal que
u0 = 1 i p = u1qu

∗
1.

Lema 1.2.7 (Homotopia i unitaris). Sigui A una C∗-àlgebra unitària i u, v dos unitaris de A. Llavors,

� si ‖u− v‖ < 2, es té u ∼h v a U(A).

� si u ∼h v a GL(A), llavors u ∼h v a U(A).

A més a més, donada una altra C∗-àlgebra B i un mor�sme exhaustiu φ entre A i B, es compleix
que φ(U0(A)) = U0(B).
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Lema 1.2.8 (Homotopia i invertibles). Sigui A una C∗-àlgebra unitària i x, y dos elements de A. Si
x és invertible i y és tal que ‖x− y‖ < 1/‖x−1‖, llavors x+ t(y − x) són invertibles per tot t ∈ [0, 1].

En particular, x ∼h y a GL(A).

Destaquem també que la relació homotópica es pot estendre a *-mor�smes i C∗-àlgebres.

De�nició 1.2.9. Siguin ϕ0, ϕ1 dos *-mor�smes entre dues C∗-àlgebres A i B. Direm que ϕ0 està
relacionat homotòpicament amb ϕ1, i escrivim ϕ0 ∼h ϕ1, si existeix una assignació continua t 7−→ ϕt
de [0, 1] als *-mor�smes de A a B tal que per a tot element a ∈ A es té que t 7−→ ϕt(a) és una
homotopia entre ϕ0(a) i ϕ1(a).

Similarment, direm que dues C∗-àlgebres A i B estan relacionades homotòpicament, i ho denotem
A ∼h B, si existeixen dos *-mor�smes φ : A→ B i ϕ : B → A tals que φ ◦ ϕ ∼h idB i ϕ ◦ φ ∼h idA.

1.2.2 Càlcul funcional

Com ja s'ha comentat a la introducció d'aquest capítol, el càlcul funcional és una de les eines més
importants en l'estudi de les C∗-àlgebres. Aquest fet és en gran mesura degut als següents resultats:

Teorema 1.2.10. Sigui A una C∗-àlgebra, a ∈ Ã un element normal i C∗(a, 1) ⊂ Ã la sub-C∗-àlgebra
més petita que conté a i 1.

Llavors, existeix un isomor�sme isomètric γ entre C(sp(a)) i C∗(a, 1) tal que γ(z 7→ z) = a.

Comentari 1.2.11. Com a conseqüència del Teorema anterior, sorgeix la següent notació:

Sigui f(·) ∈ C(sp(a)). Denotarem per f(a) a la imatge per γ de f(·)

En particular, podem considerar els elements ea de Ã per a tot a normal i
√
b per a tot b positiu.

Teorema 1.2.12. Per tot element normal a d'una C∗-àlgebra A es té que sp(f(a)) = f(sp(a)) per a
tota funció contínua sobre sp(a).

Exemple 1.2.13. Sigui A una C∗-àlgebra. Llavors, si existeix un element normal a ∈ A d'espectre
no connex, tenim que A conté una projecció diferent de 0 i 1.

En efecte, sigui C ⊂ sp(a) una component connexa. Llavors, la funció χC de�nida com χC(z) = 1
si z ∈ C i 0 altrament és una aplicació contínua que pertany a C(sp(a)).

Observem, a més a més, que f2 = f̄ = f . Per tant, amb la notació del comentari anterior, tenim
que f(a) és una projecció.

És clar que aquesta no pot ser ni 0 ni 1, ja que aquests elements corresponen a les funcions constants
0 i 1 respectivament.
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Capítol 2

El grup de Grothendieck K0

Comencem fent un resum de relacions i propietats de les projeccions. A continuació, asignarem un
grup a cada C∗-àlgebra unitària A, que anomenarem K0(A), i un mor�sme de grups, K0(φ), a cada
C∗-mor�sme φ. Finalment, estudiarem el comportament functorial de K0 i el generalitzarem al cas no
unitari.

2.1 Projeccions

Com ja s'ha comentat a 1.2, les projeccions són d'especial importància en l'estudi de les C∗-àlgebres.
Per tractar-les, és convenient generalitzar relacions ja conegudes a Mn(C) a una C∗-àlgebra arbitrària
A.

Recordant que P (A) denota el conjunt de projeccions, de�nim dues relacions:

� Relació unitària: Siguin p, q ∈ P (A). Direm que p està relacionada unitàriament amb q, en
símbols p ∼u q, si existeix u ∈ U(Ã) tal que p = u∗qu.

� Relació de Murray-von Neumann: Donats p, q ∈ A, p i q compleixen la relació de Murray-von
Neumann, en símbols p ∼ q, si existeix v ∈ A tal que p = vv∗ i q = v∗v.

Anomenem isometries parcials als elements v ∈Mn(A) tals que v∗v és una projecció1.

Encara que la relació unitària pugui semblar molt natural en un principi, cal destacar que aquesta
relació utilitza, en el cas no unitari, elements que no són de la C∗-àlgebra que estem tractant.

En canvi, la relació de Murray-von Neumann utilitza sempre elements de A i, com es veurà a la
Subsecció 2.1.1, és més feble que la unitària.

Tot i així, es pot veure al Comentari 2.1.5 que aquestes dues relacions són equivalents a Mn(C).

Lema 2.1.1. Per a tota C∗-àlgebra unitària A, la relació unitària i de Murray-von Neumann són
d'equivalència.

Demostració. Només s'escriu la demostració per a la relació de Murray-von Neumann, doncs la relació
unitària és clarament una relació d'equivalència.

1El motiu per donar-li aquest nom a v es desenvolupa més endavant, a l'Exemple 2.2.12

9
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Siguin k ∈ N∗ i p, q dues projeccions deMk(A) tals que p = vv∗ i q = v∗v per a un cert v ∈Mk(A).
Llavors, de�nint t = v∗ , es tenen les següents igualtats:

p = p2 = p∗p = pp∗

p = t∗t , q = tt∗

del que se segueix que la relació de Murray-von Neumann és re�exiva i simètrica.
Sigui doncs r ∈ Pk(A) tal que r = w∗w i q = ww∗ per algun w ∈ Mk(A) i la projecció q anterior.

Comencem calculant z∗z on z = (1− vv∗)v :

z∗z = v∗(1− p)(1− p)v = q − v∗pv = q − q2 = 0

Per tant, v = vv∗v i, fent un argument anàleg per w, també tenim w = ww∗w.
Usant aquest resultat podem veure que p ∼ r per la isometria parcial vw i, en conseqüència, que

la relació de Murray-von Neumann és transitiva i, per tant, d'equivalència:

(vw)(vw)∗ = vww∗v∗ = vqv∗ = (vv∗v)v∗ = vv∗ = p

(vw)∗(vw) = w∗v∗vw = w∗qw = (w∗ww∗)w = w∗w = r

2.1.1 Propietats generals

Ja hem comentat que la relació unitària pot involucrar elements que no són de A. En el cas unitari
però, tenim la següent propietat:

Proposició 2.1.2. Sigui A una C∗-àlgebra unitària. Llavors, donats p, q ∈ P (A), p ∼u q si i només
si p = u∗qu amb u ∈ U(A).

Recordem que a 1.2.1 ja havíem de�nit la relació d'homotopia, ∼h, que també es pot aplicar a
P (A). Així doncs, tenim tres relacions sobre les projeccions de A i cal estudiar com interactuen entre
elles. En aquest sentit, es tenen les següents Proposicions:

Proposició 2.1.3. Siguin p, q dues projeccions d'una C∗-àlgebra A:

� Si p ∼h q llavors p ∼u q

� Si p ∼u q llavors p ∼ q

Proposició 2.1.4. Siguin p, q dues projeccions d'una C∗-àlgebra A:

� Si p ∼ q llavors
(
p 0
0 0

)
∼u
(
q 0
0 0

)

� Si p ∼u q llavors
(
p 0
0 0

)
∼h
(
q 0
0 0

)
Comentari 2.1.5. L'anterior proposició ens permet demostrar, en particular, que la relació de Murray-
von Neumann i la relació unitària són equivalents a Mn(C), com ja havíem dit abans.
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2.2 El grup K0(A) per a una C∗-àlgebra A unitària

2.2.1 El monoide D(A)

De�nició 2.2.1. Siguin Pn(A) = P (Mn(A)) i P∞(A) = ∪n∈NPn(A). De�nim sobre P∞(A) la següent
operació ⊕ i relació ∼0:

� p⊕ q = diag(p, q) per a tot p, q ∈ P∞(A)

� p ∼0 q ⇐⇒ p = vv∗, q = v∗v, on v és una matriu rectangular del tamany adequat.

Destaquem que la relació ∼0 no és la relació de Murray-von Neumann, sinó una generalització d'a-
questa, ja que en aquest cas p i q poden tenir mides diferents.

Comentari 2.2.2. Seguint un argument anàleg al Lema 2.1.1, es pot demostrar que la relació ∼0 és
una relació d'equivalència.

Com s'ha dit al començament, un dels objectius d'aquest capítol és construir per a tota C∗-àlgebra
unitària A un grup abelià K0(A). La següent proposició, la demostració de la qual és un exercici fàcil
a partir de les de�nicions, ens permet donar estructura a P∞(A)/∼0 i de�nir el monoide commutatiu
D(A).

Recordem abans la de�nició de monoide:

De�nició 2.2.3. Sigui S un conjunt i · una operació de S × S → S associativa. Diem que S és un
monoide amb · si existeix un element e ∈ S tal que e · x = x · e = x per a tot x ∈ S.

Si l'aplicació · també és commutativa, S s'anomena monoide commutatiu i escrivim la seva operació
com x · y =: x+ y denotant el neutre per 0.

Proposició 2.2.4. Sigui A una C∗-àlgebra i siguin p, q, p′, q′, r ∈ P∞(A) qualsevols. Llavors,

1. p⊕ 0n ∼0 p per a tot n ∈ N∗

2. Si p ∼0 p
′ i q ∼0 q

′, p⊕ q ∼0 p
′ ⊕ q′

3. p⊕ q ∼0 q ⊕ p

4. p⊕ (q ⊕ r) ∼0 (p⊕ q)⊕ r

5. Si p, q ∈ Pn(A) són ortogonals, p+ q ∈ P∞(A) i p+ q ∼0 p⊕ q

De�nició 2.2.5. Donada una C∗-àlgebra A, de�nim D(A) com el següent monoide commutatiu

D(A) := (P∞(A)/∼0,⊕)

Comentari 2.2.6. D(A) és un monoide commutatiu en virtut de la Proposició 2.2.4.

2.2.2 El grup K0(A)

De�nició 2.2.7. Sigui A una C∗-àlgebra unitària. De�nim K0(A) com el grup de Grothendieck de
D(A), és a dir,

K0(A) := G(D(A))

on G és la construcció de Grothendieck.
De�nim també [ ]0 := g ◦πD, on πD és la projecció de P∞(A) a D(A) i g és l'aplicació de Grothen-

dieck2.
2Veure Apèndix A per més informació sobre la construcció de Grothendieck.
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Cal destacar que, com a conseqüència de les Proposicions 2.1.4 i 2.2.4, les classes d'equivalència
∼h, ∼u i ∼ són les mateixes a K0(A). Aquest fet ens serà útil més endavant pel càlcul explícit de K0.

Com és d'esperar, el grup K0(A) hereta les propietats llistades a la Proposició 2.2.4, que utilitzarem
per donar una construcció explícita de K0(A).

Per aquest motiu, ometem la demostració del Lema següent.

Lema 2.2.8. Sigui A una C∗-àlgebra unitària i p, q dues projeccions de P∞(A). Llavors,

1. [p⊕ q]0 = [p]0 + [q]0

2. [0n] = 0 ∈ K0(A) per a tot n ∈ N

3. [p]0 + [q]0 = [q]0 + [p]0

4. Si p ∼h q, [p]0 = [q]0

5. Si pq = 0, [p+ q]0 = [p]0 + [q]0

Proposició 2.2.9. Donada una C∗-àlgebra unitària A, es té la següent igualtat:

K0(A) = {[p]0 − [q]0 | p, q ∈ P∞(A)}

A més, [p]0 = [q]0 si i només si existeix r ∈ P∞(A) tal que p⊕ r ∼0 q ⊕ r.

Demostració. La igualtat de l'enunciat prové de la construcció de Grothendieck. Per tant, només
demostrem la doble implicació:

La implicació cap a l'esquerra se segueix trivialment de la propietat 1 del Lema 2.2.8.
Suposem ara que [p]0 = [q]0. Com que [ ]0 = g ◦ πD, sabem també per la de�nició de g i la relació

∼G de l'Apèndix A que existeix r ∈ P∞(A) tal que πD(p)⊕πD(r) = πD(q)⊕πD(r), del que se segueix
que p⊕ r ∼0 q ⊕ r.

Comentari 2.2.10. A la relació p⊕ r ∼0 q ⊕ r se l'anomena relació d'estabilitat, que escrivim ∼s.
A més a més, si r ∈ Pn(A), es té que (1n − r) és una projecció ortogonal a r. Per tant, tenim la

següent equivalència

p⊕ 1n = p⊕ (1n − r + r) ∼0 (p⊕ r)⊕ (1n − r)
∼0 (q ⊕ r)⊕ (1n − r) ∼0 q ⊕ 1n

Un cop obtinguda la construcció explícita del grup K0 unitari, podem començar a calcular alguns
exemples. Encara que aquests siguin els primers, en el càlcul de K0(C) es pot entreveure que certs
mor�smes de P∞(C) a un grup G es poden estendre a mor�smes de K0(C) a G, resultat desenvolupat
amb més generalitat al Lema 2.2.13.

D'altra banda, el càlcul de K0(B(H)) l'utilitzarem per obtenir els K-grups de C∗-àlgebres més com-
plicades, com ara l'àlgebra de Calkin o la de Toeplitz, dels Exemples 5.3.3 i 5.3.4 respectivament.

Exemple 2.2.11. K0(C) ∼= Z
Per a tota projecció p ∈ Pn(C), sabem per àlgebra lineal que existeix un únic k natural i una matriu

unitària u ∈ Un(C) tal que upu∗ = 1k ⊕ 0n−k . De�nim doncs la següent aplicació:

dim : P∞(C) // N
p � // k

Per tant, per veure K0(C) ∼= Z, és su�cient demostrar que [p]0 = [q]0 si i només si dim(p) = dim(q).
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D'altra banda, sabem per la Proposició 2.2.9 que [p]0 = [q]0 si i només si existeix r ∈ P∞(C) tal
que p ⊕ r ∼0 q ⊕ r. Per la Proposició 2.1.4, aixó passa si i només si p ⊕ r ⊕ 0N ∼u q ⊕ r ⊕ 0M
per a N,M ∈ N adients. Ara bé, pel comentari fet al principi de l'exemple, dues projeccions estan
relacionades unitàriament si i només si la seva imatge per dim és la mateixa. Per tant, es té el següent:

dim(p⊕ r) = dim(p⊕ r ⊕ 0N ) = dim(q ⊕ r ⊕ 0M ) = dim(q ⊕ r)

Com que dim és trivialment additiva amb l'operació ⊕, se segueix que [p]0 = [q]0 si i només si
dim(p) = dim(q), fet que acaba la prova.

Cal destacar que podem reproduir l'argument anterior per a Mn(C) per a tot n ∈ N, així obtenint
K0(Mn(C)) ∼= Z . Aquest fet, com es veurà al Lema 3.1.14, no és casualitat.

Exemple 2.2.12. K0(B(H)) ∼= {0} per a tot espai de Hilbert H separable i de dimensió in�nita
Per demostrar l'anterior isomor�sme cal només veure que p ∼ q si i només si dim(p(H)) =

dim(q(H)).
En efecte, un cop vist aixó dos elements de p, q ∈ P∞(B(H)) es troben en la mateixa classe

d'equivalència a D(B(H)) si i només si p⊕ 0N ∼ q ⊕ 0M per alguns N,M ∈ N adients, fet que passa,
segons la doble implicació anterior, si i només si dim((p ⊕ 0N )(H)) = dim(p(H)) = dim(q(H)) =
dim((q⊕0M )(H)). Com que la dimensió és additiva, se segueix que D(B(H)) ∼= N∪{∞} iK0(B(H)) =
G(D(B(H))) ∼= 0.

Veiem doncs la doble implicació anterior:
Si p ∼ q, existeix una isometria parcial v tal que p = v∗v i q = vv∗. Prenent φ = v|p(H), és clar

que φ és un isomor�sme entre p(H) i q(H) i, en particular, dim(p(H)) = dim(q(H)). Per exemple, si
x = v∗v(y) és tal que φ(x) = 0, es té que 0 = v∗(v(x)) = p2(y) = p(y) i, en conseqüència, x = 0.

D'altra banda, si dim(p(H)) = dim(q(H)), la separabilitat de H ens assegura que existeix un
isomor�sme δ entre p(H) i q(H). Estenent δ a H trivialment de�nint v com v := δχp(H), és un càlcul
directe que v és la isometria parcial que busquem.

2.2.3 El functor K0 unitari

Ens interessa ara tractar de transformar els *-mor�smes φ : A→ B entre C∗-àlgebres a mor�smes de
grups K0(φ) : K0(A)→ K0(B). Per fer-ho, utilitzarem el següent resultat:

Lema 2.2.13. (Propietat universal de K0) Sigui A una C∗-àlgebra unitària i φ una aplicació additiva
per ⊕ de P∞(A) a un grup G tal que φ(0n) = 0 i φ(p) = φ(q) si p ∼h q. Llavors, existeix un únic
mor�sme δ : K0(A)→ G que fa el següent diagrama commutatiu:

P∞(A)

[ ]0

��

φ

%%
K0(A)

δ
// G

Demostració. Ja hem vist a la Proposició 2.2.9 que tot element de K0(A) es pot escriure com [p]0−[q]0.
Per tant, tot mor�sme sobre K0(A) queda unívocament determinat per les imatges dels elements [p]0.

Observem doncs que la commutativitat del diagrama ens diu que per a tot p ∈ P∞(A) es té que
δ([p]0) = φ(p), del que se segueix que, si δ és mor�sme, ha de ser únic. Comprovem que δ està ben
de�nit i és un mor�sme:

Siguin p, q ∈ P∞(A) tals que [p]0 = [q]0. Sabem, per la Proposició 2.1.4 i la Proposició 2.2.9, que
això passa si i només si p⊕ r ⊕ 0N ∼h q ⊕ r ⊕ 0M per a r ∈ P∞(A) i N,M ∈ N adequats.
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Com que φ porta a la mateixa imatge les projeccions homotòpiques, és additiva per ⊕ i porta els
zeros 0n al zero, tenim la següent igualtat:

δ([p]0) + φ(r) = φ(p⊕ r) = φ(p⊕ r) + 0 = φ(p⊕ r ⊕ 0N )

= φ(q ⊕ r ⊕ 0M ) = δ([q]0) + φ(r)

Com que G és un grup, es té que δ([p]0) = δ([q]0).
Se segueix de la commutativitat del diagrama que δ és mor�sme.

Observem que donat φ : A → B un *-mor�sme, aquest es pot estendre component a component
a un *-mor�sme de Mn(A) a Mn(B). A més a més, com que tot *-mor�sme porta projeccions a
projeccions, l'aplicació φ̄ : P∞(A)→ P∞(B) induïda per φ, que d'ara en endavant també anomenarem
φ per reduir la notació, està ben de�nida i és clarament additiva amb l'operació ⊕.

Per tant, podem de�nir l'aplicació additiva ϕ = [ ]0,B ◦φ i, per la propietat universal de K0, existeix
un únic mor�sme δ que fa el següent diagrama commutatiu:

P∞(A)
φ
//

[ ]0,A

��

P∞(B)

[ ]0,B

��

K0(A)
δ
// K0(B)

De�nició 2.2.14. Siguin A,B dues C∗-àlgebres unitàries i φ un *-mor�sme entre elles. De�nim K0(φ)
com a l'únic mor�sme δ entre K0(A) i K0(B) que fa que l'anterior diagrama commuti.

Tenim doncs un mètode per convertir C∗-àlgebres unitàries a grups abelians i mor�smes entre
C∗-àlgebres unitàries a mor�smes de grups abelians. Aquest fet, juntament amb el següent Lema, ens
permet de�nir K0 com un functor3.

Lema 2.2.15. Utilitzant la notació introduïda a l'Apèndix B, K0 és un functor covariant entre la
categoria de C∗-àlgebres unitàries i la de grups abelians que porta els zeros als zeros.

Demostració. És clar que K0(idA) = idK0(A) i K0(0A,B) = 0K0(A),K0(B) per a tota parella de C∗-
àlgebres unitàries A i B. Per tant, només queda comprovar que K0 preserva la composició.

Siguin doncs A, B i C tres C∗-àlgebres unitàries i ϕ : A → B, φ : B → C *-mor�smes. Llavors,
per a tot p ∈ P∞(A) es té la següent igualtat:

K0(φ ◦ ϕ)([p]0) = [φ ◦ ϕ(p)]0 = K0(φ)([ϕ(p)]0) = (K0(φ) ◦K0(ϕ))([p]0)

Per tant, com que tot mor�sme sobreK0(A) queda unívocament determinat per la imatge dels elements
[p]0, K0 preserva la composició.

Encara que no es fa servir en aquest treball, es denota per K00(A) la construcció anterior aplicada
a una C∗-àlgebra no unitària. Aquesta distinció es deu al fet que el functor K00 no és escindidament
exacte, propietat de gran utilitat en el càlcul explícit de K0.

Així doncs, cal rede�nir K0 en el cas d'una C∗-àlgebra arbitrària, conservant les propietats i
construcció estudiades anteriorment.

3Consultar Apèndix B per una breu introducció a la Teoria de Categories



2.3. El grup K0 per a una C∗-àlgebra general 15

2.3 El grup K0 per a una C∗-àlgebra general

Durant tot aquest apartat utilitzarem la notació introduïda a 1.1.1 per tractar la successió escindida
obtinguda quan uniti�quem una C∗-àlgebra.

0 // A
i // Ã

π // C
λ
oo // 0

El següent Lema ens permet generalitzar K0 i conservar, tal i com volíem, la construcció en el cas
unitari.

Lema 2.3.1. Sigui A una C∗-àlgebra unitària. La successió escindida obtinguda en adjuntar una
unitat indueix la següent successió escindida de grups

0 // K0(A)
K0(i)

// K0(Ã)
K0(π)

//
K0(C)

K0(λ)
oo // 0

Demostració. Recordem que a la Secció 1.1.1 havíem donat, en el cas unitari, un isomor�sme explícit
entre Ã i A⊕C, h(a+ α1Ã) := (a+ α1A, α). Així doncs, tenim el següent diagrama(no commutatiu):

0 // AOO

idA

��

i // ÃOO

h

��

π // COO

idC

��

λ
oo // 0

0 // A
iA //

A⊕ C
πA

oo

πC // C
iC

oo // 0

Per veure que la successió escindida d'uniti�cació induex a la successió escindida de l'enunciat,
utilitzarem que iA, iC i λ de l'anterior diagrama són seccions i aplicarem les propietats vistes al Lema
2.2.15:

1. K0(i) és injectiu: En efecte, doncs πA ◦ h ◦ i = idA i, com que K0 preserva la composició,
K0(πA) ◦K0(h) ◦K0(i) = idK0(A). Per tant, l'únic element x ∈ K0(A) tal que K0(i)(x) = 0 és
el zero.

2. Im(K0(i)) ⊂ Ker(K0(π)): Cal només observar que π ◦ i = 0 i aplicar que K0 és un functor que
envia els zeros al zero.

3. Ker(K0(π)) ⊂ Im(K0(i)): Seguint el diagrama anterior, es té que idÃ = i ◦ πA ◦ h+ h−1 ◦ iC ◦ π
amb i ◦ πA ◦ h ortogonal a h−1 ◦ iC ◦ π. Per tant, pel Lema 2.2.8 , idK0(Ã) = K0(i) ◦K0(πA) ◦
K0(h) + K0(h−1) ◦ K0(iC) ◦ K0(π). Així doncs, si x ∈ K0(Ã) és tal que K0(π)(x) = 0, tenim
x = K0(i)((K0(πA) ◦K0(h))(x)) ∈ Im(K0(i)).

4. K0(π) és exhaustiu i K0(λ) és una secció: Observem que π ◦ λ = idC i, en conseqüència, K0(π) ◦
K0(λ) = idK0(C). L'exhaustivitat de K0(π) ve de l'exhaustivitat de π.

Comentari 2.3.2. Destaquem que K0(π) està de�nit per a tota C∗-àlgebra A, ja que Ã i C són C∗-
àlgebres unitàries. Observem també que, com a corol·lari del Lema anterior, tenim que ker(K0(π)) ∼=
K0(A) quan A és unitària.

De�nició 2.3.3. Sigui A una C∗-àlgebra. Denotarem per K0(A) al nucli de l'aplicació K0(π).
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Com a conseqüència de les observacions del Comentari 2.3.2, aquesta de�nició de K0(A) compleix
totes les propietats que havíem imposat al �nal de la Subsecció 2.2.3. A més a més, observem que si
p és una projecció de Pn(A) es té que K0(π)([p]0) = [π(p)]0 = 0 , del que se segueix [p]0 ∈ K0(A).

De manera anàloga a la de�nició de K0 unitari, donem una representació estàndar del grup K0(A)
genèric.

Proposició 2.3.4. Donada una C∗-àlgebra A, es té la següent igualtat

K0(A) = {[p]0 − [s(p)]0 | p ∈ P∞(Ã)}

on s és l'aplicació escalar de�nida a 1.1.1.

Corol·lari 2.3.5. Per a tot element x no nul de K0(A) existeixen n ∈ N i p ∈ P2n(Ã) tals que
x = [p]0 − [1n ⊕ 0n]0.

Demostració. Sabem, per la Proposició 2.3.4, que tot element x no nul de K0(A) es pot escriure com
x = [q]0 − [s(q)]0 amb q ∈ Pm(Ã) per algun m ∈ N.

Com que s(q) ∈ Pm(C1Ã), sabem per resultats d'àlgebra lineal que s(q) ∼u 1k ⊕ 0m−k per a algun
k ∈ N. Per tant, prenent n > max{k,m− k}, es té la següent igualtat:

x = [q]0 − [s(q)]0

= [q]0 + [1n−k ⊕ 0n+k−m]0 − [1n−k ⊕ 0n+k−m]0 − [1k ⊕ 0m−k]0

= [q ⊕ 1n−k ⊕ 0n+k−m]0 − [1n ⊕ 0n]0

Prenent p = q ⊕ 1n−k ⊕ 0n+k−m, hem acabat.

Exemple 2.3.6. Si A és separable, K0(A) és numerable
Sigui k ∈ N �xat. Sabem pel Lema 1.2.6 que si dues projeccions p, q ∈ Pk(A) es troben a distància

inferior a 1, existeix una homotopia entre p i q. Per tant, considerem la base {B(p, 1)∩Pk(A)}p∈Pk(A)

de Pk(A) on B(p, 1) és la bola centrada en p de radi 1.
Com que A és un espai mètric, la propietat de separabilitat és equivalent a complir el segon axioma

de numerabilitat i, com que Pk(A) és un subespai topològic de A, Pk(A) també el veri�ca. Així doncs,
la base anteriorment de�nida té una sub-família numerable {B(pn,k, 1)∩Pk(A)}n∈N que continua essent
base de Pk(A).

Aplicant l'anterior raonament a Pm(A) per a totm i usant que {[x]0 | x ∈ B(p, 1)∩Pm(A)} = {[p]0}
per a tot p ∈ Pm(A), obtenim que K0(A) és numerable4, fet que acaba la prova.

De�nició 2.3.7. Siguin A,B dues C∗-àlgebres i ϕ un *-mor�sme entre elles. De�nim K0(ϕ) com la
següent aplicació

K0(ϕ) : K0(A) // K0(B)

[p]0 − [s(p)]0
� // [ϕ̃(p)]0 − [s(ϕ̃(p))]0

Lema 2.3.8. K0(ϕ) està ben de�nit i és l'únic mor�sme que fa el següent diagrama commutatiu

K0(A)
K0(iA)

//

K0(ϕ)

��

K0(Ã)
K0(π)

//

K0(ϕ̃)

��

K0(C)

idK0(C)

��

K0(B)
K0(iB)

// K0(B̃)
K0(π)

// K0(C)

on K0(iA) i K0(iB) són les inclusions de K0(A) i K0(B) a K0(Ã) i K0(B̃) com a subgrups.
4Ja que la unió numerable de conjunts numerables és numerable
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Demostració. Comencem destacant que el mor�sme s commuta amb ϕ̃, doncs per a tota projecció
p ∈ P∞(Ã) es té que ϕ̃(s(p)) = ϕ̃(π(p)1Ã) = π(p)1B̃ = s(ϕ̃(π(p)1Ã)) = s(ϕ̃(p)).

Així doncs, l'aplicació K0(ϕ) de�nida anteriorment és una restricció de K0(ϕ̃) sobre K0(A) i, com
que és clar que Im(K0(ϕ)) ⊂ K0(B), tenim que K0(ϕ) és un mor�sme ben de�nit.

Sigui doncs [p]0 − [s(p)]0 un element de K0(A) qualsevol. Llavors, per tal que el diagrama de
l'enunciat sigui commutatiu cal que es compleixi la següent igualtat:

K0(ϕ)([p]0 − [s(p)]0) = (K0(ϕ̃) ◦K0(iA))([p]0 − [s(p)]0) = [ϕ̃(p)]0 − [s(ϕ̃(p))]0

Per tant, K0(ϕ) és l'únic mor�sme que fa que el diagrama commuti.

Finalment, es torna a escriure el Lema 2.2.15 per a la construcció generalitzada de K0.

Lema 2.3.9. K0 és un functor covariant entre la categoria de C∗-àlgebres i grups abelians que porta
els zeros als zeros.
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Capítol 3

Els K-functors d'ordre superior

En aquest capítol s'estudien les propietats functorials del functor suspensió S i es construeixen els
functors Kn d'ordre superior basant-se en la construcció de K1. Es veu també el primer dels dos
resultats principals d'isomor�a d'aquest treball, K1

∼= K0 ◦ S, que s'utilitza per obtenir les propietats
functorials de Kn.

3.1 El functor suspensió

De�nició 3.1.1. Donada una C∗-àlgebra A, de�nim el seu con, CA, i la seva suspensió, SA, com les
següents C∗-àlgebres:

CA = {f ∈ C([0, 1], A) | f(0) = 0}
SA = {f ∈ C([0, 1], A) | f(0) = f(1) = 0}

Observem que donat un *-mor�sme φ entre dues C∗-àlgebres A i B, podem de�nir un altre *-mor�sme,
Sφ, entre SA i SB:

Sφ : SA // SB

f � // φ ◦ f

Lema 3.1.2. S és un functor covariant que porta els zeros als zeros.

Un cop de�nit el functor S, ens centrem ara en les seves propietats functorials. Més en particular,
volem veure que S és un functor exacte. Per demostrar-ho però, cal un Lema previ.

Lema 3.1.3. Siguin A una C∗-àlgebra i X un espai topològic localment compacte i Hausdor�. Llavors,
el conjunt FA generat per combinacions lineals de les funcions f · a, de�nides per (f · a)(x) = f(x)a
amb f ∈ C0(X) i a ∈ A, és dens a C0(X,A).

Demostració. Seguim la demostració del Lema 10.1.1 de [9]:
Sigui X+ = X ∪ {∞} la compacti�cació de X, f una funció de C0(X,A) i ε un real positiu.

Llavors, per la compacitat de X+, sabem que existeix un recobriment obert U1, · · · , Un de X+ tal que
‖f(x)− f(x′)‖ ≤ ε si x, x′ ∈ Ui per algun i.

Prenem ara uns elements xj ∈ Uj tals que xj = ∞ si ∞ ∈ Uj . Llavors, donada una partició de la
unitat hj subordinada a Uj , tenim que

‖f(x)−
n∑
j=1

f(xj)hj(x)‖ ≤
n∑
j=1

hj(x)‖f(x)− f(xj)‖ ≤ ε
n∑
j=1

hj(x) = ε

19
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Així doncs, com que f(xj) = 0 quan ∞ ∈ Uj , el sumatori
∑n
j=1 f(xj)hj(x) és una combinació lineal

on els termes no nuls f(xj)hj(x) compleixen que hj ∈ C0(X,A).
Per tant,

∑n
j=1 f(xj)hj(x) pertany al conjunt FA i, en conseqüència, aquest és dens a C0(X,A).

Lema 3.1.4. S preserva l'exactitud de les següents successions:

0 // I
i // A

π // A/I // 0

on i és la inclusió natural i π el pas al quocient.

Demostració. Tal i com també s'observa a la Proposició 10.1.2 de [9], l'única part no trivial d'aquesta
demostració consisteix en comprovar que Sπ és exhaustiva. Per veure-ho, recordem que qualsevol
mor�sme de C∗-àlgebres és, en particular, continu.

Per tant, cal només veure que la imatge de Sπ conté un conjunt dens de S(A/I).
Així doncs, sigui F (A/I) el conjunt dens de S(A/I) de�nit al Lema 3.1.3 i f · b un element de

F (A/I) amb b ∈ A/I qualsevol. Llavors, sabem per l'exhaustivitat de π que existeix un element a ∈ A
tal que π(a) = b i, en conseqüència, que Sπ(f · a) = f · b.

Com que els elements de F (A/I) són combinacions lineals d'elements de la forma f · b, se segueix
que la imatge de Sπ conté F (A/I) i, en conseqüència, que Sπ és exacte.

3.1.1 Els grups K
′
n

Atès que K0 i S són functors, té sentit considerar la família (K0 ◦ Sn)n∈N, amb el conveni S0 = Id i
on Sn es de�neix recursivament com Sn = S ◦ Sn−1. La següent de�nició no és estàndard i només és
per facilitar la notació.

De�nició 3.1.5. Sigui n ∈ N. Denotarem per K
′

n al functor K0 ◦ Sn.

Ens disposem ara a estudiar les propietats dels functors K
′

n, doncs seran les mateixes que els
functors Kn. D'aquestes, destaquem la Proposició 3.1.12 (exactitud escindida), un dels motius pels
quals no hem adoptat el functor K00 com a K0 genèric.

Comentari 3.1.6. Observem que SA ∼= {f ∈ C(T, A) | f(1) = 0}, fet que ens permet interpretar els
elements de SA com deformacions contínues del cercle unitat que passen pel 0.

Aquesta nova interpretació s'utilitzarà en les proves d'algunes propietats de K
′

n, i ens serà molt
útil per a la demostració del Teorema 3.2.10.

Proposició 3.1.7. Siguin A,B dues C∗-àlgebres i ϕ0, ϕ1 dos *-mor�smes entre elles. Si ϕ0 ∼h ϕ1,
llavors K

′

n(ϕ0) = K
′

n(ϕ1) per a tot n ∈ N.

Demostració. Com a conseqüència del Comentari 3.1.6, i un abús de notació, escriurem

SA = {f ∈ C(T, A) | f(1) = 0}

durant tota la prova.
Siguin n ∈ N �x i q ∈ P∞(S̃nA). Veurem que es compleix la següent igualtat

K0(S̃nϕ0)([q]0) = K0(S̃nϕ1)([q]0)

Sigui doncs t 7→ ϕt l'homotopia entre ϕ0 i ϕ1. De�nim

qt := S̃nϕt(q)
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Com que per a tot t ∈ [0, 1] tenim que Snϕt i S̃nϕt són mor�smes, se segueix que qt ∈ P∞(S̃nB) per a
tot t. Així doncs, ens cal només comprovar que l'assignació t 7→ qt és contínua, ja que llavors tindrem
[q0]0 = [q1]0, que és la igualtat que voliem demostrar.

Recordem de la Secció 1.1.1 que podem escriure q = p+ α1
S̃nA,k

amb p ∈ Mk(SnA) i α ∈ Mk(C)

per a un cert k ∈ N. Per tant, de�nint pt := Snϕt(p), tenim la següent expressió per qt

qt = S̃nϕt(p+ α1
S̃nA,k

) = Snϕt(p) + α1
S̃nB,k

= pt + α1
S̃nB,k

D'aquesta expressió se segueix que t 7→ qt és contínua si i només si t 7→ pt ho és, ja que α és constant
per a tot t. Veiem doncs que pt és contínua:

Sigui δp la següent aplicació

δp : [0, 1]× Tn // A

(t, (z1, · · · , zn))
� // pt(z1) · · · (zn)

Observem que per a tota parella (t1, ξ1), (t2, ξ2) ∈ [0, 1]× Tn es té la següent desigualtat

‖δp(t1, ξ1)− δp(t2, ξ2)‖ = ‖δp(t1, ξ1)− δp(t2, ξ1) + δp(t2, ξ1)− δp(t2, ξ2)‖
≤ ‖ϕt1(p(ξ1))− ϕt2(p(ξ1))‖+ ‖ϕt2(p(ξ1)− p(ξ2))‖
≤ ‖ϕt1(p(ξ1))− ϕt2(p(ξ1))‖+ ‖p(ξ1)− p(ξ2)‖

Per tant, com que p és contínua i t 7→ qt és una homotopia, se segueix de l'anterior desigualtat que δp
és contínua i, com que té suport compacte, és uniformement contínua.

Així doncs, t 7→ pt és contínua i t 7→ qt també, fet que implica que K0(S̃nϕ0) = K0(S̃nϕ1) i, com
que K0(Snϕ0) i K0(Snϕ1) són restriccions dels anteriors mor�smes, tenim K0(Snϕ0) = K0(Snϕ1), fet
que acaba la prova.

Corol·lari 3.1.8. Si dues C∗-àlgebres A i B estan relacionades homotòpicament, llavors K
′

n(A) ∼=
K
′

n(B) per a tot n ∈ N. En particular, si existeix algun nombre natural m tal que K
′

m(A) � K
′

m(B),
es té que A � B.

L'anterior Proposició és molt natural en el sentit que tota la construcció de K0 ha estat mòdul
homotopia. Per tant, era d'esperar que dues C∗-àlgebres homotòpiques tinguessin els mateixos K-
grups.

En particular, podem utilitzar aquest fet en espais ja coneguts, com ara en el següent exemple.

Exemple 3.1.9. Per a tot espai topològic X, de�nim C(X) com l'àlgebra de les funcions contínues
entre X i C. Llavors, es té que

K
′

0(C(X)) ∼= Z

K
′

1(C(X)) ∼= K
′

1(C)

per a tot espai X compacte1, Hausdor� i contràctil.
En efecte, pel Corol·lari anterior i l'Exemple 2.2.11, és su�cient comprovar que C(X) està ho-

motòpicament relacionat amb C. Ho veiem utilitzant el mateix argument que a l'Exemple 3.3.6 de
[9]:

Recordem que un espai X compacte i Hausdor� és contràctil si es pot contraure de manera contínua
a un punt, és a dir, si existeix un punt x0 i una aplicació contínua c : X× [0, 1]→ X tal que c(x, 0) = x
i c(x, 1) = x0 per a tot x ∈ X.

1Notem que X és compacte si i només si C(X) = C0(X).
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Observem doncs que la família de mor�smes γt : C(X) → C(X) tals que γt(f)(x) = f(c(x, t))
formen una homotopia t 7→ γt entre γ0(f) = idC(X) i γ1(f) = f(x0). Això és degut al fet que c i f són
contínues per a tot f i, en consequència, que es tingui f(c(x, t)) ∼h f(x).

Per tant, el parell d'aplicacions següents són una homotopia entre C(X) i C

C(X) // C // C(X)

f
� // f(x0)

z � // z1C(X)

del que se segueix que K
′

0(C(X)) ∼= Z i K
′

1(C(X)) ∼= K
′

1(C).

Un cop vist que els functors K
′

n transformen homotopies en igualtats, donem un Lema tècnic que
ens permetrà reduir, tant en notació com en di�cultat, les proves de les propietats d'exactitud de K

′

n.
Més concretament, el Lema ens permet reduir-nos a l'estudi del comportament de K0 amb succes-

sions exactes que només involucren ideals i quocients d'una C∗-àlgebra.

Lema 3.1.10. Les següents a�rmacions són equivalents:

1. Per a tota successió exacta 0 −→ I
ϕ−→ A

φ−→ B −→ 0 i per tot n ∈ N, la successió K
′

n(I)
K
′
n(ϕ)−−−−→

K
′

n(A)
K
′
n(φ)−−−−→ K

′

n(B) és exacta.

2. Per a tota C∗-àlgebra A i tot ideal I ⊂ A, la successió K0(I)
K0(i)−−−→ K0(A)

K0(π)−−−−→ K0(A/I) és
exacta.

Demostració. L'a�rmació 1 implica trivialment l'a�rmació 2. Veiem la implicació contrària:
Comencem observant que el següent diagrama té totes les �les exactes i que és commutatiu per a

tot n ∈ N

0 // Sn(I)
OO

��

Sn(ϕ)
// Sn(A)
OO

idSn(A)

��

Sn(φ)
// Sn(B)
OO

��

// 0

0 // Sn(Im(ϕ))
OO

��

Sn(i0)
// Sn(A)
OO

idSn(A)

��

Sn(π0)
// Sn(A/Im(ϕ))

OO

��

// 0

0 // Im(Sn(i0))
in // Sn(A)

πn // Sn(A)/Im(Sn(i0)) // 0

on in i πn són les inclusions naturals i passos al quocient corresponents en cada cas.
En efecte, és clar per n = 0 que la primera �la commuta amb la segona, que els elements de cada

columna són isomorfs entre ells i que les dues �les són exactes. A més a més, la segona i tercera �la
són iguals en aquest cas.

Per n > 0, la functorialitat i l'exactitud de S del Lema 3.1.4 ens asseguren que la primera i segona
�la commuten i que aquesta última és exacta. Per tant, la primera �la també és exacta i, aplicant la
commutativitat i exactitud vistes per n = 0, tenim que la segona i tercera �la també són exactes i
commuten.
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Així doncs, com que K0 és un functor covariant i l'anterior diagrama és commutatiu, tenim el
següent diagrama commutatiu

K
′

n(I)
OO

��

K
′
n(ϕ) // K

′

n(A)
OO

id
K
′
n(A)

��

K
′
n(φ) // K

′

n(B)
OO

��

K0(Im(Sn(i0))
K0(in)

// K0(Sn(A))
K0(πn)

// K0(Sn(A)/Im(Sn(i0))

Per tant, demostrar l'exactitud de la primera �la del diagrama anterior és equivalent a demostrar la
de la segona, que sabem que és exacta per hipòtesi.

Proposició 3.1.11. Tota successió exacta curta

0 // I
ϕ
// A

φ
// B // 0

de C∗-àlgebres indueix per cada n∈ N la següent successió exacta

K
′

n(I)
K
′
n(ϕ)// K

′

n(A)
K
′
n(φ) // K

′

n(B)

Demostració. Seguim, un cop feta la reducció, la demostració del Teorema 6.3.2 de [11]:
Sabem pel Lema 3.1.10 que és su�cient demostrar el resultat sota les hipòtesis llistades a continu-

ació:

1. I és un ideal de A i ϕ = i on i és la inclusió natural.

2. B és el quocient A/I i φ = π on π és el pas al quocient.

3. n = 0

Per tant, cal només comprovar que ker(K0(π)) ⊂ Im(K0(i)), ja que l'altra inclusió és clara. Per
veure-ho, adaptem l'argument del Teorema 6.3.2. de [11].

Sigui doncs q = [p]0 − [s(p)]0 ∈ ker(K0(π)) amb p ∈ Pm(Ã). Sabem pel Comentari 2.2.10 i la
Proposició 2.1.4 que es té la següent igualtat:

u(π̃(p)⊕ 1n ⊕ 0k)u∗ = π̃(s(p))⊕ 1n ⊕ 0k = s(p)⊕ 1n ⊕ 0k

per a u ∈ UN (Ã/I) amb N = k + n+m i k, n ∈ N adequats.
Pels Lemes 1.2.4 i 1.2.7, existeix un lift w ∈ U0(M2N (Ã)) de u ⊕ u∗. Així doncs podem de�nir la

següent projecció:
r = w(p⊕ 1n ⊕ 0k+N )w∗ ∈ P∞(Ã)

A més a més, sabem per construcció que π̃(r) ∈ M∞(C1A) i, en conseqüència, r ∈ M∞(Ĩ). Per tant,
com que [r]0 − [s(r)]0 ∈ Im(K0(i)) i r ∼u p⊕ 1n ⊕ 0k, tenim que [p]0 − [s(p)]0 ∈ Im(K0(i)):

[p]0 − [s(p)]0 = [p⊕ 1n ⊕ 0k]0 − [s(p)⊕ 1n ⊕ 0k]0

= [r]0 − [s(r)]0 ∈ Im(K0(i))



24 Capítol 3. Els K-functors d'ordre superior

Proposició 3.1.12. Tota successió escindidament exacta

0 // I
ϕ
// A

φ
//
B

λ
oo // 0

de C∗-àlgebres indueix per cada n∈ N la següent successió escindidament exacta

0 // K
′

n(I)
K
′
n(ϕ)// K

′

n(A)
K
′
n(φ) //

K
′

n(B)
K
′
n(λ)

oo // 0

Demostració. Sigui A una C∗-àlgebra i I un ideal de A. Es pot veure, fent una prova anàloga a la
del Lema 3.1.10, que per demostrar la Proposició és su�cient veure que les següents successions són
escindidament exactes:

0 // K0(I)
K0(i)

// K0(A)
K0(π)

//
K0(A/I)

K0(λ)
oo // 0

on i és la inclusió natural, π és el pas al quocient i λ és una secció.
La part restant de la prova és una adaptació de la Proposició 4.3.3. de [9].
Comencem observant que, per la functorialitat de K0, es dóna la següent igualtat:

idK0(A/I) = K0(π ◦ λ) = K0(π) ◦K0(λ)

Així doncs,K0(π) és exhaustiva iK0(λ) n'és una secció. Veiem queK0(i) és injectiva o, equivalentment,
que ker(K0(i)) = {0}:

Sigui [p]0 − [s(p)]0 ∈ ker(K0(i)). Pel Comentari 2.2.10 i la Proposició 2.1.4, sabem que existeixen
n,m ∈ N tals que es compleix la següent relació

p⊕ 1n ⊕ 0m ∼u s(p)⊕ 1n ⊕ 0m = s(p⊕ 1n ⊕ 0m)

Per tant, de�nint p′ = p⊕ 1n ⊕ 0m, podem trobar un unitari u ∈ U∞(Ã) tal que up′u∗ = s(p′).

Sigui v = λ̃ ◦ π̃(u∗)u. Observem, de manera anàloga a la demostració de la Proposició 3.1.11, que
es dóna la següent igualtat:

π̃(v) = ((π̃ ◦ λ̃) ◦ π̃(u∗))π̃(u) = π̃(u∗u) = 1 ∈M∞(C1Ã)

Així doncs, v ∈ M∞(Ĩ) i és un càlcul directe que vp′v∗ = s(p′), del que se segueix que p′ ∼u s(p′)
a M∞(Ĩ) i, en conseqüència, [p]0 − [s(p)]0 = 0 a K0(I).

Finalment, l'exactitud a K0(A) prové de la Proposició 3.1.11.

Lema 3.1.13. Donades dues C∗-àlgebres A i B, la següent igualtat es compleix per a tot n natural

K
′

n(A⊕B) ∼= K
′

n(A)⊕K
′

n(B)

Demostració. Per a tot parell de C∗-àlgebres A i B es té que la següent successió és escindidament
exacta

0 // A
iA // A⊕B

πB //
B

iB
oo // 0
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Per tant, per la Proposició 3.1.12, tenim que la següent successió de grups abelians també és escindi-
dament exacta

0 // K
′

n(A)
K
′
n(iA)
// K
′

n(A⊕B)
K
′
n(πB)
//
K
′

n(B)
K
′
n(iB)

oo // 0

Així doncs, usant la Proposició 4.3. de [6], també coneguda com a Lema d'escisió, tenim que K
′

n(A⊕
B) ∼= K

′

n(A)⊕K ′n(B), tal i com voliem veure.

A la Secció 1.1.1 hem vist que Ã ∼= A⊕ C quan A és unitària. Per tant, el Lema anterior implica
que per calcular K

′

n(Ã) cal només calcular K
′

n(A) i K
′

n(C):

K
′

n(Ã) ∼= K
′

n(A)⊕K
′

n(C)

En particular, sabem per l'Exemple 2.2.11 que K0(Ã) ∼= K0(A)⊕ Z.

Lema 3.1.14. Per a tota C∗-àlgebra A es compleix K
′

n(Mm(A)) ∼= K
′

n(A) per a tot n,m ∈ N.

3.2 Els grups Kn

3.2.1 El grup de Whitehead K1

En certs aspectes, la construcció de K1 és més simple que la de K0, ja que no es requereix la construcció
de Grothendieck ni la distinció del cas unitari i no unitari. Tot i així, caldrà donar importància a certs
matisos que s'usaran amb freqüència a partir d'ara, com per exemple el Comentari 3.2.5.

De�nició 3.2.1. Sigui A una C∗-àlgebra unitària i U∞(A) = ∪n∈NUn(A). De�nim sobre U∞(A) la
següent operació i relació:

� u⊕ v = diag(u, v)

� Per a u ∈ Un(A) i v ∈ Um(A), escrivim u ∼1 v si i només si existeix N ≥ n,m tal que
u⊕ 1N−n ∼h v ⊕ 1N−m a UN (A).

De manera anàloga a la construcció de K0, denotarem per [u]1 a les classes de U∞(Ã)/ ∼1.

Lema 3.2.2. Per a tota C∗-àlgebra A, el quocient U∞(Ã)/ ∼1 té estructura de grup abelià amb la
suma [u]1 + [v]1 = [u⊕ v]1 i neutre [1]1.

Demostració. Comencem observant que, per la de�nició de ∼1, [1]1 és el neutre de U∞(Ã)/ ∼1.
Demostrem les altres propietats en un format breu:

1. + està ben de�nida i és abeliana: Siguin u ∈ Un(A) i v ∈ Um(A) tals que [u]1 = [v]1, és a dir,
que existeix N ∈ N tal que u⊕ 1N−n ∼h v⊕ 1N−m. Llavors, per a tot w ∈ U∞(Ã), tenim les següents
igualtats:

[u]1 + [w]1 = [u⊕ w]1 = [u⊕ w]1 + [1N−n]1 = [w ⊕ u]1 + [1N−n]1 = [w ⊕ u⊕ 1N−n]1

[v]1 + [w]1 = [v ⊕ w]1 = [v ⊕ w]1 + [1N−m]1 = [w ⊕ v]1 + [1N−m]1 = [w ⊕ v ⊕ 1N−m]1

on la penúltima igualtat de cada �la és conseqüència del Lema 1.2.4.
Per tant, com que u⊕ 1N−n ∼h v ⊕ 1N−m, també es té que w ⊕ u⊕ 1N−n ∼h w ⊕ v ⊕ 1N−m i, en

conseqüència, [u]1 + [w]1 = [v]1 + [w]1 = [w]1 + [v]1.
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2. Tot element [u]1 ∈ U∞(Ã)/ ∼1 té un invers: Tornant a utilitzar el Lema 1.2.4, sabem que
u⊕ u∗ ∼h 1M amb M ∈ N adequat. Per tant, [u]1 + [u∗]1 = [1M ]1 = 0.

3. + és associativa: Com que [1k]1 = 0 per a tot k ∈ N, per a tota tupla ([u]1, [v]1, [w]1) d'elements
de U∞(Ã)/ ∼1 podem suposar que els seus representants tenen la mateixa mida. Aplicant altre cop el
Lema 1.2.4, és clar que + és associativa.

De�nició 3.2.3. Donada una C∗-àlgebra A, anomenem K1(A) al grup abelià (U∞(Ã)/∼1,+).

Tal i com hem fet després de de�nir el grup K0(A), comencem fent el càlcul del grup K1 de C i
B(H).

Exemple 3.2.4. K1(C) ∼= 0 i K1(B(H)) ∼= 0 amb H un espai de Hilbert de dimensió in�nita i
separable

Sabem per un exercici de l'assignatura Equacions Diferencials I que per a tota matriu complexa
B ∈ Mn(C) amb det(B) 6= 0, existeix una matriu A ∈ Mn(C) tal que eA = B. A més a més, si B és
unitària, podem escollir A = iH amb H una matriu hermítica. Així doncs, per a tot element unitari
u ∈ Mn(C) existeix una funció contínua δu : t 7−→ etAu tal que δu(1) = u i δu(0) = Idn. Per tant,
U∞(C)/ ∼1= {Id} i K1(C) ∼= 0, tal i com voliem veure.

Aquesta demostració també es podria haver fet usant l'isomor�sme de C(sp(u)) a C∗(u, 1) i obser-
vant que tot element unitari u amb sp(u) 6= T està relacionat homotòpicament amb 1. Per veure'n els
detalls, consultar [9].

Utilitzant aquest últim fet, i altres resultats que se'n deriven, es pot veure que tot element de B(H)
és homotòpic a 1 i, en conseqüència, que K1(B(H)) ∼= 0.

Comentari 3.2.5. Destaquem que per a tot element x ∈ K1(A) existeix n ∈ N i u ∈ U+
n (Ã) tal que x

es pot escriure com x = [u]1, on U+
n (Ã) és el conjunt d'unitaris normalitzats de la De�nició 1.2.2.

En efecte, com que la projecció π de Ã cap a C és un ∗-mor�sme, tenim que π(x) ∈ Un(C) i, per
l'exemple anterior, sabem que existeix una homotopia unitària φ(t) de π(x) a 1n.

De�nint u com φ(0)∗x = π(x)∗x, és clar que x ∼h u amb π(u) = π(φ(0)∗x) = π(x)∗π(x) = 1n.

En particular, com a conseqüència del Lema 1.2.4, per a tot element x de K1(A) es pot trobar un
representant u ∈ U+

n (Ã) i un unitari v ∈ U+
k (Ã) tal que x = [u]1 i u⊕ v ∼h 1n+k a Un+k(Ã).

Lema 3.2.6. (Propietat universal de K1) Sigui A una C∗-àlgebra, G un grup abelià i φ una aplicació
additiva de U∞(Ã) a G tal que φ([1n]1) = 0 i φ(u) = φ(v) si u ∼h v. Llavors, existeix un únic
mor�sme δ tal que el següent diagrama és commutatiu:

U∞(Ã)

[ ]1

��

φ

$$
K1(A)

δ
// G

Demostració. Cal només observar que, donat δ que compleixi les condicions de l'enunciat, la commu-
tativitat del diagrama implica δ([u]1) = φ(u) per a tot u ∈ U∞(Ã) i, per tant, δ és únic sempre i quan
estigui ben de�nit.

Per veure que δ està ben de�nit, s'utilitza un argument anàleg a la Proposició 2.2.13.
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Aquest fet ens porta, tal i com també s'ha fet a la construcció de K0, a donar la següent de�nició:

De�nició 3.2.7. Siguin A i B dues C∗-àlgebres i ϕ un *-mor�sme entre elles. Denotem per K1(ϕ)
l'únic mor�sme entre K1(A) i K1(B) que fa que el següent diagrama commuti:

U∞(Ã)
ϕ̃

//

[ ]1,A

��

U∞(B̃)

[ ]1,B

��

K1(A)
K1(ϕ)

// K1(B)

Lema 3.2.8. K1 és un functor covariant de la categoria de C∗-àlgebres a la categoria de grups abelians
que porta els zeros als zeros.

Ens disposem ara a demostrar el primer dels dos teoremes d'isomor�a d'aquest treball. Abans peró,
cal demostrar el següent Lema, que també ens sera útil més endavant.

Lema 3.2.9. Sigui A una C∗-àlgebra i y una homotopia a U+
2n(Ã) que commuta amb 1n⊕0n. Llavors,

y = a⊕ b amb a i b homotopies a U+
n (Ã).

En particular, si y és una homotopia constant, és a dir, un element de U+
2n(Ã), podem escriure

y = a⊕ b amb a, b ∈ U+
n (Ã).

Demostració. Comencem escrivint y en forma matricial

y : t 7→ yt =

(
at ct
dt bt

)
on at, bt, ct, dt ∈Mn(Ã) per tot t.

Com que y commuta amb 1n ⊕ 0n, es compleix la següent igualtat per tot t ∈ [0, 1](
0 0
0 0

)
= (1n ⊕ 0n)yt − yt(1n ⊕ 0n)

=

(
1 0
0 0

)(
at ct
dt bt

)
−
(
at ct
dt bt

)(
1 0
0 0

)
=

(
0 ct
dt 0

)
del que se segueix que c ≡ 0 i d ≡ 0.

Per tant, com que per a tot t ∈ [0, 1] sabem que yt és un element unitari amb part escalar 12n,
tenim que y = a⊕ b on at, bt ∈ U+

n (Ã).
Recordant que la norma de M2n(Ã) ve donada per la norma de B(H2n) per algun espai de Hilbert

H, és clar que a ⊕ 0n i 0n ⊕ b són assignacions contínues, ja que y ho és i la norma de B(H2n) és la
norma del suprem.

Així doncs, a i b també són contínues, fet que acaba la prova.

Teorema 3.2.10. Per a tota C∗-àlgebra A existeix un isomor�sme θA natural entre K0(SA) i K1(A),
és a dir, tal que per a tot *-mor�sme ϕ : A→ B el següent diagrama és commutatiu:

K1(A)
K1(ϕ)

//

θA

��

K1(B)

θB

��

K0(SA)
K
′
1(ϕ)

// K0(SB)
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Demostració. Comencem deduint, de forma heurística, una de�nició de θA:

Sigui u ∈ U+
n (Ã). Sabem, per la Proposició 2.3.4, que s'ha de tenir la següent igualtat:

θA([u]1) = [p̂]0 − [s(p̂)]0

per algun p̂ ∈ Pn(S̃A).

En particular, si u ∈ U0(Ã), cal que θA([u]1) = 0 i sabem pel Lema 2.1.4 que existeix w ∈ U+
2n(S̃A)

tal que wpw∗ = s(p) on p := p̂⊕ 0n. Així doncs, si u ∈ U0(Ã), hem de poder escriure θA([u]1) com

θA([u]1) = [wpw∗]0 − [s(p)]0 on p = p̂⊕ 0n, p̂ ∈ Pn(S̃A), w ∈ U+
2n(S̃A)

Ens interessa doncs relaxar les hipòtesis sobre w o p per tal d'obtenir, per a tot [u]1 ∈ K1(A), una
expressió de θA([u]1) similar a l'anterior:

Recordant que w ∈ U+
2n(S̃A) si i només si w : t 7→ wt és una homotopia a Ã tal que πC(wt) = 12n

i w0 = w1 = 12n, prenem w tal que w1 6= 12n. D'aquesta manera, p �u s(p) i l'expressió heurística no
serà identicament nul·la.

Per tant, com que volem que θA sigui un isomor�sme, volem escollir una homotopia w a Ã tal que
w0 = 12n i que sigui diferent per a cada u. Així doncs, és natural escollir w com a una homotopia
entre 12n i u⊕u∗, que sabem que existeix i que compleix totes les propietats anteriorment mencionades
pel Lema 1.2.4.

Finalment, com que genèricament es tindrà w /∈ U+
2n(S̃A) i volem wpw∗ ∈ M2n(S̃A), cal imposar

la següent igualtat:

p̂0 ⊕ 0n = p0 = w0p0w
∗
0 = w1p1w

∗
1

= (u⊕ u∗)(p̂0 ⊕ 0n)(u⊕ u∗)∗ = (up̂0u
∗)⊕ 0n

Per tant, prenem p ≡ 1n ⊕ 0n =: pn, que és la projecció més simple que compleix la igualtat anterior.

De�nim, per a tot u ∈ U+
n (Ã), l'aplicació θA

θA([u]1) = [wpnw
∗]0 − [pn]0

on w és una homotopia unitària entre 12n i u⊕ u∗.2
Cal doncs veure que θA està ben de�nida, que és mor�mse i que és bijectiva, atès que és clar que

fa que el diagrama de l'enunciat sigui commutatiu.
La part restant de demostració és una versió adaptada del Teorema 7.2.5 de [11]:

1. θA està ben de�nida: Siguin u ∈ Un(Ã) i v ∈ Um(Ã). Siguin també w i r homotopies de 12n i
12m a u⊕ u∗ i v ⊕ v∗ respectivament. Denotarem per uN = u⊕ 1N i vM = v ⊕ 1M .

Si [u]1 = [v]1 o, equivalentment, uN ∼h vM per a uns certs N,M ∈ N tals que n + N = m + M ,
existeix una homotopia α : t 7→ αt a U

+
n+N (Ã) tal que α0 = uN i α1 = vM .

Comencem observant que, tal i com passa a Mn(C), existeixen matrius unitàries que permuten
�les i columnes. En particular, existeixen matrius unitàries Pu, Pv ∈ U∞(C) tals que es compleixen les
següents igualtats:

Pu (u⊕ u∗ ⊕ 1N ⊕ 1N )P ∗u = (u⊕ 1N )⊕ (u∗ ⊕ 1N ) = uN ⊕ u∗N
Pv (v ⊕ v∗ ⊕ 1M ⊕ 1M )P ∗v = (v ⊕ 1M )⊕ (v∗ ⊕ 1M ) = vM ⊕ v∗M

Siguin doncs wN = Pu (w ⊕ 12N )P ∗u i rM = Pv (r ⊕ 12M )P ∗v . És clar que aquestes aplicacions són
homotopies a U+

2(n+N)(Ã) de 12(N+n) a uN ⊕ u∗N i vM ⊕ v∗M respectivament.

2Aquesta de�nició de θA és molt natural si ja es coneixia l'aplicació índex, tractada al Capítol 4.
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A més a més, com que sabem per l'Exemple 3.2.4 que es té Pu ∼h Id i Pv ∼h Id, tenim el següent
resultat:

wNpn+Nw
∗
N ∼h (w ⊕ 12N ) (P ∗upn+NPu) (w∗ ⊕ 12N )

= (w ⊕ 12N ) (pn ⊕ pN ) (w∗ ⊕ 12N ) = (wpnw
∗)⊕ pN

rMpm+Mr
∗
M ∼h (r ⊕ 12M ) (P ∗v pm+MPv) (r∗ ⊕ 12M )

= (r ⊕ 12M ) (pm ⊕ pM ) (r∗ ⊕ 12M ) = (rpmr
∗)⊕ pM

Per tant, per veure θA([u]1) = [wpnw
∗]0 − [pn]0 = [rpmr

∗]0 − [pm]0 = θA([v]1) cal només comprovar
wNpn+Nw

∗
N ∼ rMpm+Mr

∗
M , on n+N = m+N :

Sigui X := wN (u∗Nα ⊕ uNα∗)r∗M . Llavors, si Xt, wN,t, rM,t denoten el valor de X,wN , rM en un
instant t ∈ [0, 1] respectivament, observem que X compleix les següents propietats:

X0 = wN,0(u∗Nα0 ⊕ uNα∗0)r∗M,0

= 12(N+n)(u
∗
NuN ⊕ uNu∗N )12(N+n) = 12(N+n)

X1 = wN,1(u∗Nα1 ⊕ uNα∗1)r∗M,1

= (uN ⊕ u∗N )(u∗NvM ⊕ uNv∗M )(v∗M ⊕ vM ) = 12(N+n)

πC(Xt) = 12(N+n)

Per tant, X ∈ U+
2(N+n)(S̃A) i tenim la següent igualtat a P∞(S̃A)

X(rMpm+Mr
∗
M )X∗ = wN (u∗Nα⊕ uNα∗)pn+N (uNα

∗ ⊕ u∗Nα)w∗N

= wNpn+Nw
∗
N

Així doncs, wNpn+Nw∗N ∼u rMpm+Mr
∗
M i, en conseqüència, es té θA([u]1) = θA([v]1).

2. θA és mor�sme: Donats u, v ∈ U+
∞(Ã), volem veure que θA([u⊕ v]1]) = θA([u]1) + θA([v]1).

De fet, sabem pel punt 1. que és su�cient veure l'anterior igualtat per u, v unitaris de la mateixa
mida, que anomenarem n.

Per tant, siguin w, r homotopies de u⊕ u∗ i v ⊕ v∗ a 12n respectivament.
Utilitzant el mateix argument que a l'apartat anterior, existeix una matriu P ∈M4n(C1Ã) tal que

P ((u⊕ u∗)⊕ (v ⊕ v∗))P ∗ = (u⊕ v)⊕ (u∗ ⊕ v∗)

Per tant, s := P (w ⊕ r)P ∗ és una homotopia de (u⊕ v)⊕ (u∗ ⊕ v∗) a 14n.
També sabem, tal i com s'ha comentat a l'apartat 1., que P ∼h 14n, del que se segueix la següent

relació

sp2ns
∗ ∼h (w ⊕ r)P ∗p2nP (w∗ ⊕ r∗)

= (w ⊕ r)(pn ⊕ pn)(w∗ ⊕ r∗) = (wpnw
∗)⊕ (rpnr

∗)

Utilitzant aquesta homotopia és clar que θA és un mor�sme.

3. θA és injectiva: Siguin u, v ∈ U+
n (Ã) tals que θA([u]1) = θA([v]1). Seguint amb la notació del

primer apartat, es té la següent igualtat:

[wpnw
∗]0 = [rpnr

∗]0

Per tant, usant la Proposició 2.1.3, sabem que wpnw∗ ⊕ 1k ∼u rpnr∗ ⊕ 1k per a algun k ∈ N.
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Ara bé, hem vist abans que també es tenen les següents relacions

wNpn+Nw
∗
N ∼h (wpnw

∗)⊕ pN
rNpn+Nr

∗
N ∼h (rpnr

∗)⊕ pN

per a tot N ∈ N, del que se segueix que wkpn+kw∗k ∼u rkpn+kr∗k.
Sigui doncs x ∈ U+

2(n+k)(S̃A) tal que

xwkpn+kw
∗
kx
∗ = rkpn+kr

∗
k

o, equivalentment, tal que pn+k (w∗kx
∗rk) = (w∗kx

∗rk) pn+k.
De�nint y = w∗kx

∗rk, podem aplicar el Lema 3.2.9 per obtenir que y = a⊕b on a : t 7→ at i b : t 7→ bt
són homotopies a U+

n+k(Ã).
Observem a més que x0 = x1 = 12(n+k) i que els valors de y en t = 0 i t = 1 són els següents

y0 = w∗k,0x
∗
0r
∗
k,0 = 12(n+k) = 1n+k ⊕ 1n+k

y1 = w∗k,1x
∗
1rk,1 = (u∗k ⊕ uk) 12(n+k) (vk ⊕ v∗k) = (u∗v ⊕ 1k)⊕ (uv∗ ⊕ 1k)

Per tant, a0 = 1n+k i a1 = u∗v⊕1k i, en conseqüència, es té que (u⊕1k)a és una homotopia a U+
n+k(Ã)

entre u⊕ 1k i v ⊕ 1k. Per la construcció de K1(A) tenim [u]1 = [v]1.
Així doncs, si u, v ∈ U∞(Ã) tals que θA([u]1) = θA([v]1), podem ampliar tant u com v afegint 1's

a les seves diagonals per tal que u i v tinguin la mateixa mida i, com que ja hem vist que θA està ben
de�nida, que tinguin la mateixa imatge.

Utilitzant el resultat per a unitaris amb la mateixa mida n, tenim que [u]1 = [v1], del que se segueix
que θA és injectiva.

4. θA és exhaustiva: Sigui x ∈ K0(SA). Sabem pel Corol·lari 2.3.5 que existeixen n ∈ N i
q ∈ P2n(S̃A) tal que x = [q]0 − [pn]0.

Com ja s'ha comentat a l'obtenció heurística de θA, tenim que q ∈ P2n(S̃A) si i només si q : t 7→ qt
és una homotopia a P2n(Ã) tal que q0 = q1 ∈ M2n(C) i πC(qt) és constant per tot t. En particular,
com que πC(q) = pn, sabem que qt ∼h pn per a tot t ∈ [0, 1] i, per la Proposició 2.1.3, es compleix, per
a cada t, la següent igualtat:

qt = wtpnw
∗
t

on w : t 7→ wt és una homotopia a U+
2n(Ã) amb w0 = 12n donada pel Lema 1.2.6.

Observem que de l'anterior igualtat se segueix que pnw1 = q1w1 = w1pn i, tornant a utilitzar el
Lema 3.2.9, tenim que w1 = u⊕ v amb u, v ∈ U+

n (Ã).
Sigui r una homotopia a U+

2n(Ã) entre 12n a u ⊕ u∗ tal que θA([u]1) = [rpnr
∗]0 − [pn]0. Veurem

que es compleix la següent relació:
q ∼0 rpnr

∗

Sigui doncs W = w ⊕ w∗ i a : t 7→ at una homotopia a U+
3n(Ã) de 13n a v∗ ⊕ 1n ⊕ v, que sabem que

existeix pel Lema 1.2.4 i l'existència de matrius que permuten �les i columnes.
Com que es compleix pn ⊕ 02n = (1n ⊕ a)(pn ⊕ 02n)(1n ⊕ a∗), tenim la següent igualtat:

q ⊕ 02n = W (pn ⊕ 02n)W ∗ = W (1n ⊕ a)(pn ⊕ 02n)(1n ⊕ a∗)W ∗

= W (1n ⊕ a)(r∗ ⊕ 12n)(rpnr
∗ ⊕ 02n)(r ⊕ 12n)(1n ⊕ a∗)W ∗

De�nint Y := W (1n ⊕ a)(r∗ ⊕ 12n) és una comprovació directa que Y ∈ U+
4n(S̃A), del que se segueix

que q ⊕ 02n ∼u rpnr∗ ⊕ 02n i, en conseqüència, es té que q ∼0 rpnr
∗, fet que acaba la prova.
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Donada una C∗-àlgebra A, és usual utilitzar la de�nició de K1, i no pas l'isomor�sme donat al
Teorema anterior, per calcular explícitament K1(A). Tot i així, existeixen situacions on utilitzar
aquest isomor�sme pot ser pro�tós:

Exemple 3.2.11. K0(C0(0, 1)) ∼= 0
Cal només observar que C0((0, 1)) = SC i aplicar el Teorema 3.2.10 i l'Exemple 3.2.4.

3.2.2 Els functors Kn

De�nició 3.2.12. Per a tota C∗-àlgebra A, de�nim

Kn(A) := K1(Sn−1A)

Teorema 3.2.13. Kn(A) ∼= K
′

n(A) per a tot n ∈ N amb n > 0.

Demostració. Recordem que Kn(A) = K1(Sn−1A) i que K
′

n = K0(SnA) = K0(S(Sn−1A)) per a tot
n ≥ 1.

Per tant, sabem pel Teorema 3.2.10 que existeix un isomor�sme entre K1(Sn−1A) i K0(S(Sn−1A)).

Com ja s'ha comentat al principi d'aquest Capítol, la de�nició dels functors K
′

n no és estàndar.
Tot i així, aquesta de�nició ens ha permés demostrar, gràcies al Lema 3.1.10 i el Teorema 3.2.10, les
propietats de Kn comprovant, únicament, les de K0.

Si, per altra banda, haguessim primer donat la de�nició de Kn, hagués fet falta demostrar les
propietats de K0 i K1 per separat, tal i com es fa als Capítols 7 i 8 de [11] i de [9] respectivament.

Resumim doncs les propietats de Kn sense donar cap demostració, ja que són una conseqüència
directa de la naturalitat de l'aplicació θA del Teorema 3.2.10 i dels isomor�smes del Teorema 3.2.13.

Proposició 3.2.14. Siguin A i B C∗-àlgebres. Llavors,

1. Si ϕ0 i ϕ1 són dos *-mor�smes tals que ϕ0 ∼h ϕ1, Kn(ϕ0) = Kn(ϕ1).

2. Kn és mig exacte

3. Kn és escindidament exacte

4. Kn(A⊕B) ∼= Kn(A)⊕Kn(B)

5. Kn(Mm(A)) ∼= Kn(A) per a tot n,m ∈ N

Finalment, acabem aquesta Subsecció calculant tots els K-grups de la C∗-àlgebra TnA. Més endavant,
quan haguem demostrat la periodicitat de Bott, tornarem a visitar aquest Exemple per donar una
millor expressió de K1(TnA).

També farem servir aquest resultat, juntament amb els càlculs dels K-grups de B(H), per la
obtenció dels K-grups de l'àlgebra de Toeplitz.

Exemple 3.2.15. Km(TnA) on TB = C(T, B) per a tota C∗-àlgebra B
Sigui i : S(A) → TA la inclusió natural, ev1 : TA → A l'avaluació en el 1 i c : A → TA la inclusió

constant. Per a tota C∗-àlgebra A i tot n ∈ N, la successió

0 // S(Tn−1A)
i // TnA

ev1 // Tn−1A
c

oo // 0

és escindidament exacta.
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Per tant, per la propietat 3 de la Proposició 3.2.14, es té que la següent successió és escindidament
exacta

0 // Km(S(Tn−1A)) // Km(TnA)
//
Km(Tn−1A)oo // 0

Atés que els K-grups són abelians, sabem pel Lema d'escisió i el Teorema 3.2.10 que es compleixen els
següents isomor�smes

Km(TnA) ∼= Km(Tn−1A)⊕Km(S(Tn−1A)) ∼= Km(Tn−1A)⊕Km+1(Tn−1A)

De cara a reduir la notació, de�nim NA :=
⊕N

n=1A per a tot grup, C∗-àlgebra i N ∈ N. Comencem
calculant Km(T2A) :

Km(T2A) ∼= Km(TA)⊕Km+1(TA)
∼= Km(A)⊕Km+1(A)⊕Km+1(A)⊕Km+2(A)

Usant la propietat 4 de la Proposició 3.2.14, tenim la següent igualtat

Km(T2A) ∼= Km(A)⊕ 2Km+1(A)⊕Km+2(A)
∼= Km(A)⊕Km+1(2A)⊕Km+2(A)

Se segueix d'un argument per inducció, i un abús de notació, que Km(TnA) es pot calcular utilitzant
una fórmula ja coneguda:

xm(1 + x)n =

n∑
i=0

(
n

i

)
xi+m, x ∈ R

Km(TnA) ∼=
n⊕
i=0

(
n

i

)
Km+i(A) ∼=

n⊕
i=0

Km+i

((
n

i

)
A

)

En particular, per A = C, n = 1 i m = 0, obtenim

K0(C(T)) ∼= K0(C)⊕K1(C) ∼= Z

3.3 Continuïtat de K0 i K1

En aquesta secció, de caire informatiu, resumim els resultats més importants que es deriven de la
continuïtat dels functors K0 i K1.

Proposició 3.3.1. Sigui

A1
ϕ1 // A2

ϕ2 // A3
ϕ3 // · · ·

una successió de C∗-àlgebres.

Llavors, tenim que K0(lim
→
Ai) ∼= lim

→
K0(Ai) i K1(lim

→
Ai) ∼= lim

→
K1(Ai) on lim

→
Ai és el límit inductiu

del sistema, de�nit a l'Apèndix D.
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3.3.1 AF -àlgebres

Un dels resultats clàssics de la teoria K per C∗-àlgebres és la classi�cació d'Elliott de les anomenades
AF -àlgebres. Encara que aquesta classi�cació utilitza conceptes no de�nits en aquest treball, com per
exemple el de grup ordenat, l'anterior Proposició ens permet dur a terme el primer pas: Calcular-ne
el grup K0.

Per més informació sobre la classi�cació d'Elliott i les proves d'aquesta Subsecció, es pot consultar
el Capítol 7 de [9] o l'article original [2].

Teorema 3.3.2 (Proposició 7.1.5. de [9]). Sigui A una C∗-àlgebra de dimensió �nita com a C-espai
vectorial. Llavors, A és ∗-isomorfa a

Mn1(C)⊕ · · · ⊕Mnr (C)

De�nició 3.3.3. Sigui A una C∗-àlgebra. Diem que A és AF (aproximadament �nit-dimensional) si
és el límit inductiu d'una successió de C∗-àlgebres de dimensió �nita.

Lema 3.3.4. Donada una AF -àlgebra A, el seu grup K0(A) associat és el límit inductiu d'una successió

Zn1
δ1 // Zn2

δ2 // Zn3
δ3 // · · ·

Aquests límits s'anomenen grups de dimensió3.

3.3.2 Àlgebres de rotació irracional

Un altre exemple on s'observa la importància de la continuïtat de K0 i K1 és en el càlcul de les àlgebres
de rotació irracional, una família de C∗-àlgebres simples i separables que no són AF .

Encara que existeixen diverses de�nicions equivalents d'àlgebra de rotació irracional, a continuació
en donem una de les més simples.

Altres de�nicions es poden trobar a la Secció 12.3 de [11].

De�nició 3.3.5. Sigui B una C∗-àlgebra unitària i u, v ∈ U(B) tals que vu = e2iπθuv amb θ ∈ (0, 1)
un nombre irracional. Anomenem àlgebra de rotació irracional, i la denotem per Aθ, a la C∗-àlgebra
generada per u i v, és a dir, a C∗(u, v).

Usualment, els K-grups de Aθ s'acostumen a calcular utilitzant l'anomenada successió de Pimsner-
Voiculescu, com per exemple es fa a la mateixa secció de [11].

Tot i així, Elliott i Evans van demostrar a [3] que tota àlgebra de rotació irracional és límit inductiu
d'una successió de les anomenades circle algebras.

De�nició 3.3.6. Diem que una C∗-àlgebra A és una circle algebra si és ∗-isomorfa a una C∗-àlgebra
de la forma ⊕rj=1Mnj

(C(T)).

Més en particular, el que es demostra a [3] és que Aθ és límit inductiu d'un sistema que té per blocs
Ai = Mni,1

(C(T))⊕Mni,2
(C(T)).

Per tant, com a conseqüència dels Exemples 3.2.15 i 5.2.16, tenim que K0(Aθ) ∼= K1(Aθ) ∼= Z⊕ Z
per tot irracional θ ∈ (0, 1).

3Formalment, tant els grups de dimensió com el seu sistema associat estan ordenats. Tot i així, com que en aquest
treball no hem de�nit aquesta noció, la ometem.
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Capítol 4

Índex i la successió exacta llarga de la
teoria K

Com s'ha comentat a la introducció, un dels objectius principals d'aquest treball és determinar una
successió cíclica i exacta de sis termes per a cada successió exacta curta de C∗-àlgebres.

0 // I
ϕ
// A

φ
// B // 0

Un dels resultats centrals per la construcció d'aquesta successió és determinar un mor�sme δ1 tal que
la següent successió sigui exacta:

K1(I)
K1(ϕ)

// K1(A)
K1(φ)

// K1(B)

δ1

��

K0(B) K0(A)
K0(φ)
oo K0(I)

K0(ϕ)
oo

Aquesta aplicació s'anomena índex i es construeix a continuació.

4.1 Índex

Recordem que, tal i com hem fet a la demostració del Lema 3.1.10, en tota successió exacta i curta
podem suposar que el primer terme és un ideal del segon i el tercer el quocient dels dos anteriors.

0 // I
i // A

π // A/I // 0

Així doncs, d'ara en endavant treballarem sota aquestes hipótesis, ja que ens permetran donar una
de�nició de l'índex més concisa que les comentades al Lema 4.1.5.

Comentari 4.1.1. Com a conseqüència del Lema 1.2.7 i el Comentari 3.2.5, per a tot element [u]1 ∈
K1(A/I) amb u ∈ U+

n (Ã/I) podem trobar unitaris v ∈ U+
k (Ã/I) i w ∈ U0(Mn+k(Ã)) tals que π̃(w) =

u⊕ v.
En particular, es pot pendre u∗ com a v.

35
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De�nició 4.1.2. Siguin [u]1 ∈ K1(A/I) amb u ∈ U+
n (Ã/I) i v ∈ U+

k (Ã/I) tals que u ⊕ v ∼h 1n+k.
De�nim l'índex com l'aplicació δ1 : K1(A/I)→ K0(I) tal que

δ1([u]1) = [w(1n ⊕ 0k)w∗]0 − [1n ⊕ 0k]0

on w és un lift unitari de u⊕ v.

Comentari 4.1.3. Sigui 0 −→ I
ϕ−→ A

φ−→ B −→ 0 una successió exacta i ρI : Im(ϕ)→ I i ρB : B →
A/Im(ϕ) isomor�smes. Quan només estiguem interessats en les propietats de δ1 com a aplicació (sense
utilitzar-ne la de�nició explícita), anomenarem δ1 a K0(ρI) ◦ δ1 ◦K1(ρB).

Lema 4.1.4. Per a tota successió exacta 0 −→ I
i−→ A

π−→ A/I −→ 0, δ1 és un mor�sme de grups
ben de�nit.

Demostració. Recordem que, per l'exactitud de la successió d'uniti�cació, una projecció x és de P∞(Ĩ)

si i només si π̃(x) ∈ P∞(C). Per tant, com que per a tot u ∈ U+
k (Ã/I) es tenen les següents igualtats

π̃(w(1n ⊕ 0k)w∗) = π̃(w)(1n ⊕ 0k)π̃(w)∗

= (u⊕ v)(1n ⊕ 0k)(u∗ ⊕ v∗) = uu∗ = 1n

s(w(1n ⊕ 0k)w∗) = s(w)s(1n ⊕ 0k)s(w)∗

= 1n+k(1n ⊕ 0k)1n+k = 1n ⊕ 0k

tenim que [w(1n ⊕ 0k)w∗]0 ∈ K0(Ĩ) i δ1([u]1) ∈ K0(I).
La demostració que δ1 no depèn de w, de les mides n, k i l'elecció de u i v és anàloga a la del

Teorema 3.2.10.1

Encara que la de�nició de δ1 serà su�cient per construir la successió exacta i cíclica de sis termes, és
important destacar que aquesta aplicació es pot també de�nir de dues maneres diferents sense suposar
que I és un ideal de A.

Enunciem a continuació el Lema que resumeix aquestes de�nicions sense donar-ne una demostració,
que es pot trobar al Capítol 9 de [9].

Lema 4.1.5. Sigui 0 −→ I
ϕ−→ A

φ−→ B −→ 0 una successió exacta i sigui u ∈ Un(B̃). Tenim les
següents igualtats:

� δ1([u]1) = [p]0 − [s(p)]0 on p ∈ P2n(Ĩ) tal que ϕ̃(p) = v(1n ⊕ 0n)v∗ i v una isometria parcial tal
que φ̃(v) = u⊕ u∗.

� δ1([u]1) = [p]0 − [q]0 on p, q ∈ Pm(Ĩ) tal que ϕ̃(p) = 1m − vv∗, ϕ̃(q) = 1m − v∗v i v ∈ Um(Ã) tal
que φ̃(v) = u⊕ 0m−n.

Teorema 4.1.6. Per a tota successió exacta 0 −→ I
i−→ A

π−→ A/I −→ 0 , la successió

K1(I)
K1(i)

// K1(A)
K1(π)

// K1(A/I)

δ1

��

K0(A/I) K0(A)
K0(π)
oo K0(I)

K0(i)
oo

és exacta.
1Per veure la prova en detall consultar [11].
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Demostració. Seguim la demostració del Teorema 8.2.1. de [11]:
Comencem destacant que, per la Proposició 3.2.14, cal només provar l'exactitud a K0(I) i K1(A/I)

o, equivalentment, demostrar les següents inclusions:

1. Im(δ1) ⊂ ker(K0(i))

2. Im(K1(π)) ⊂ ker(δ1)

3. ker(δ1) ⊂ Im(K1(π))

4. ker(K0(i)) ⊂ Im(δ1)

Les demostrem en l'ordre anterior:

1. Sigui y = δ1([v]1) amb [v]1 ∈ K1(A/I). Per la de�nició de δ1 tenim la següent igualtat

y = [w(1n ⊕ 0k)w∗]0 − [1n ⊕ 0k]0

on w és un lift unitari de v ⊕ s ∼h 1n+k per a s i k adequats.
En particular, w ∈ U+

n+k(Ã) i, en conseqüència, w(1n ⊕ 0k)w∗ ∼u 1n ⊕ 0k a U+
n+k(Ã). Per tant,

tenim K0(i)(y) = 0.

2. Sigui x = [π̃(u)]1 on u ∈ U+
n (Ã). Observem que w = u⊕u∗ és un lift per π̃ de π̃(u)⊕π̃(u)∗ ∼ 12n.

Així doncs, aplicant δ1 a x obtenim que δ1(x) = 0. En efecte:

δ1(x) = [w(1n ⊕ 0n)w∗]0 − [1n ⊕ 0n]0 = [uu∗ ⊕ 0n]0 − [1n ⊕ 0n]0 = 0

3. Sigui u ∈ U+
m(Ã/I) tal que [u]1 ∈ ker(δ1) i w ∈ U+

2m(Ã) un lift de u⊕u∗. Com que δ1([u]1) = 0,
tenim la següent igualtat a K0(I):

[q]0 − [1m ⊕ 0m]0 = 0

on q = w(1m ⊕ 0m)w∗.
Per tant, per la Proposició 2.1.4, existeix k ∈ N tal que es compleix la relació

qk := q ⊕ 1k ⊕ 0n ∼u (1m ⊕ 0m)⊕ (1k ⊕ 0n) =: sk

on n = k + 2m.
Com és d'esperar, la relació unitària es conserva per pas a l'ortogonal, és a dir, es té 12n − qk ∼u

12n− sk. Així doncs, sabem, per la Proposició 2.1.3, que existeix una isometria parcial v ∈M2n(Ĩ) tal
que es compleixen les següents igualtats:

vv∗ = 12n − qk
v∗v = 12n − sk

A més a més, utilitzant la igualtat vv∗v = v demostrada al Lema 2.1.1, també es tenen les següents
propietats sobre π̃(v):

π̃(v) = π̃(v)π̃(v∗v) =: π̃(v)(0m ⊕ r1)

π̃(v) = π̃(vv∗)π̃(v) = π̃((12m − q)⊕ (0k ⊕ 1n))π̃(v)

= ((12m − uu∗ ⊕ 0m)⊕ (0k ⊕ 1n))π̃(v)

=: (0m ⊕ r2)π̃(v)

on r1, r2 ∈ P2n−m(C1Ã).
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Fent servir aquestes dues últimes igualtats és clar que π̃(v) = 0m ⊕X on X ∈M2n−m(C1Ã).
Per tant, de�nint W := qw⊕v ∈ U2(n+m)(Ã), existeix una matriu complexa U de mida (2n+m) ×

(2n+m) tal que π̃(W ) = u⊕ U . Ho veiem:

π̃(W ) = π̃(qw)⊕ π̃(v) = (u⊕ u∗)(1m ⊕ 0m)⊕ (0m ⊕X)

= u⊕ (0m ⊕ 0m ⊕X) =: u⊕ U

D'aquest darrer fet se segueix la següent igualtat a K1(A/I):

K1(π)([W ]1) = [u]1 + [U ]1

Ara bé, com que U∞(C) ⊂ U∞(Ã/I), sabem per l'exemple 3.2.4 que U ∼h 12n+m a U∞(Ã/I). Per
tant, tenim que K1(π)([W ]1) = [u]1 i, en conseqüència, que [u]1 ∈ Im(K1(π)).

4. Sigui x = [p]0 − [1n ⊕ 0n]0 amb p ∈ P2n(Ĩ) un element de ker(K0(i)). Per la Proposició 2.1.4,
existeix k ∈ N tal que es compleixen les següents relacions a P∞(Ã)

p⊕ 1k ∼ (1n ⊕ 0n)⊕ 1k

pk := p⊕ 1k ⊕ 0m ∼ (1n ⊕ 0n)⊕ 1k ⊕ 0m =: sk

on m = 3(2n+ k).
Tal i com també hem fet al Teorema 3.2.10, prenem una matriu complexa P ∈ M3(2n+k)(C) que

commuti les �les i les columnes de sk, és a dir, tal que

PskP
∗ = 1n+k ⊕ 0n+m

Així doncs, de�nint q := PpkP
∗, tenim que q ∼h 1n+k ⊕ 0n+m i, per la Proposició 2.1.3, existeix

w ∈ U+
∞(Ã) tal que

w∗qw = 1n+k ⊕ 0n+m

A més a més, observem que π̃(w) commuta amb 1n+k ⊕ 0n+m. En efecte:

π̃(w)(1n+k ⊕ 0n+m)π̃(w∗) = π̃(q) = π̃(P )π̃(pk)π̃(P ∗)

= PskP
∗ = 1n+k ⊕ 0n+m

del que se segueix, pel Lema 3.2.9, que π̃(w) = a⊕ b amb a ∈ U+
n+k(Ã).

Observem també que a ⊕ b ∼h1n+k ⊕ 0n+m i que w és un lift unitari de a ⊕ b, del que se segueix
la següent igualtat

δ1(π̃(a)) = [w(1n+k ⊕ 0n+m)w∗]0 − [1n+k ⊕ 0n+m]0 = [q]0 − [1n+k ⊕ 0n+m]0 = x

Per tant, x ∈ Im(δ1), fet que acaba la demostració d'aquest apartat i tota la prova.

Comentari 4.1.7. Donada una successió exacta 0 −→ I
ϕ−→ A

φ−→ B −→ 0, les propietats functorials
de K0 i K1 impliquen que, utilitzant la notació per δ1 del Comentari 4.1.3, la successió

K1(I)
K1(ϕ)

// K1(A)
K1(φ)

// K1(B)

δ1

��

K0(B) K0(A)
K0(φ)
oo K0(I)

K0(ϕ)
oo

és exacta.
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Gràcies al Comentari anterior, podem ara relacionar les successions exactes induïdes per K0 i K1, que
en un principi podien semblar independents l'una de l'altra.

Encara que la utilitat d'aquest fet no es pot comparar amb la de la successió exacta i cíclica de sis
termes de�nida a la Secció 5.3, comencem a poder calcular K-grups amb més facilitat que abans.

Exemple 4.1.8. K0(C0(R2)) ∼= K1(C(T))
Sigui i : C0(D\T)→ C(D) la inclusió natural i r : C(D)→ C(T) l'aplicació restricció. És clar que

la successió

0 // C0(D\T)
i // C(D)

r // C(T) // 0

és exacta.
Per tant, com a conseqüència del Teorema 4.1.6, es té que l'aplicació δ1 : K1(C(T))→ K0(C0(D\T))

compleix les següents igualtats:

ker(δ1) = Im(K1(r))

Im(δ1) = ker(K0(i))

Ara bé, usant que D és contràctil i l'Exemple 3.1.9, sabem que K1(C(D)) = 0. D'aquest fet es segueix
que ker(δ1) = 0.

També sabem que K0(C(D)) ∼= Z i recordem que a l'Exemple 3.2.15 ja havíem vist que K0(C(T)) ∼=
Z. Per tant, tenim que K0(r) és injectiu i, en conseqüència, que ker(K0(i)) = K0(C0(D\T)).

Així doncs, δ1 és un isomor�sme i K1(C(T)) ∼= K0(C0(D\T)). Usant que C0(D\T) ∼= C0(R2), tenim
el resultat que buscàvem.

4.2 Índex de Fredholm

Recordem del Teorema 1.1.3 que tota C∗-àlgebra és isomètricament isomorfa a una sub-C∗-àlgebra
de B(H) per algun espai de Hilbert H convenient. En particular, podem calcular a certs elements de
B(H) el seu índex de Fredholm, més conegut en la teoria d'equacions integrals.

L'objectiu d'aquesta secció és resumir els resultats que permeten veure que, de fet, l'índex de la
teoria K generalitza l'índex de Fredholm. A més a més, també de�nim dues C∗-àlgebres relacionades
amb aquest índex, l'àlgebra de Calkin i la de Toeplitz, de les que calcularem els seus K-grups més
endavant, a la Secció 5.3.

De cara a que el treball sigui autocontingut però, comencem donant la de�nició d'operador de
Fredholm i l'enunciat del Teorema d'Atkinson.

Les de�nicions i resultats no relacionats amb la teoria K són de [8], mentre que la demostració de
la Proposició 4.2.5 es pot trobar a la Proposició 9.4.2 de [9].

De�nició 4.2.1. Sigui H un espai de Hilbert de dimensió in�nita i separable. Direm que un operador
T ∈ B(H) és de Fredholm si T (H) és tancat, dim(ker(T )) <∞ i dim(ker(T ∗)) <∞.

De�nim també l'índex de Fredholm de T , que denotarem per index(T ), com la diferència

dim(ker(T ))− dim(ker(T ∗))

Per tal de reduir la notació, d'ara en endavant H serà sempre un espai de Hilbert, de dimensió
in�nita i separable, i K serà l'àlgebra d'operadors compactes de�nida als Exemples 1.1.2. Notem que
K és un ideal tancat de B(H).
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De�nició 4.2.2. De�nim l'àlgebra de Calkin de H, que denotarem per Q(H), com el quocient Q(H) =
B(H)/K.

Comentari 4.2.3. De manera anàloga al càlcul de l'Exemple 2.2.11, es pot comprovar que l'aplicació
K0(Tr) : K0(K)→ Z de�nida per K0(Tr)([T ]0) = dim(T (H)) és un isomor�sme.

A més a més, com a conseqüència del Lema 3.2.14 i del fet, no trivial, que K és límit inductiu de
matrius sobre C, també sabem que K1(K) ∼= K1(C) ∼= {0}.

Teorema 4.2.4 (Atkinson). Sigui T un operador de B(H). Llavors, les següents condicions són
equivalents:

� T és un operador de Fredholm.

� La classe de T a Q(H) és invertible.

� Existeix un operador S ∈ B(H) tal que 1− TS ∈ K i 1− ST ∈ K.

Proposició 4.2.5. Per a tot operador de Fredholm T , tenim la següent igualtat

index(T ) = (K0(Tr) ◦ δ1)([π(T )]1)

on π és la projecció de B(H) a Q(H), [π(T )]1 = [U ]1 amb U unitari tal que U ∼h π(T ) i δ1és l'índex
associat a la successió exacta següent

0→ K i−→ B(H)
π−→ Q(H)→ 0

Acabem aquest apartat de�nint l'àlgebra de Toeplitz i provant-ne una propietat que, tal i com ja
s'observa a [9], és de gran importància pel càlcul dels seus K-grups.

De�nició 4.2.6. Sigui S : l2(N)→ l2(N) l'operador de decalatge sobre l2(N) de�nit per

S(x1, x2, x3, · · · ) = (0, x1, x2, · · · )

Anomenarem àlgebra de Toeplitz, que denotarem per T , a la sub-C∗-àlgebra més petita de B(l2(N))
que conté S.

Comentari 4.2.7. De la de�nició de S, és clar que S∗(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ).
Destaquem també que K és un ideal de T . Aquest fet és conseqüència del Teorema 3.3.3. de [8].

Lema 4.2.8. Sigui S l'operador de decalatge. Llavors, C∗([S]) = T /K ∼= C(T) on K és l'espai
d'operadors compactes de l2(N).

Demostració. Seguim la demostració de l'Exemple 9.4.4 de [9]:
Sigui x = (x1, x2, x3, · · · ) ∈ l2(N). Comencem observant la següent igualtat

(x1, 0, 0, · · · ) = (x1, x2, x3, · · · )− S((x2, x3, x4 · · · )) = x− SS∗x

Per tant, I−SS∗ és l'operador que projecta tot element a la seva primera coordenada i, en conseqüència,
tenim que I − SS∗ ∈ K.

En particular, la classe [I −SS∗] és zero a Q(l2(N)) i [I] = [S][S]∗, del que se segueix que [S] és un
element unitari de Q(H).

Així doncs, si demostrem que sp([S]) = T haurem acabat, ja que C∗(S) = T i sabem pel Teorema
1.1.3 que C∗(1, S) = C∗(S) ∼= C(sp(S)). Ho veiem:

Notem que S és un operador de Fredholm, ja que S(l2(N)) és tancat, ker(S) = {0} i ker(S∗) = 〈e1〉,
on e1 és el primer vector de la base de l2(N). Per tant, index(S) = −1 i π(S) = [S] no pots ser nul, ja
que en cas de ser-ho tindriem index(S) = 0 per la Proposició 4.2.5.

Utilitzant, com a l'Exemple 3.2.4, que tot element unitari no homotòpic a la identitat té espectre
T, hem acabat.
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4.3 La successió exacta llarga de la teoria K

De manera anàloga a la teoria K algebraica, tota successió exacta i curta de C∗-àlgebres indueix una
successió exacta llarga de K-grups.

Encara que la periodicitat de Bott, demostrada al capítol 5, ens estalvia l'ús d'aquestes successions,
en aquest apartat construim per a tot n ∈ N una successió exacta que utilitza els functors K0, · · · ,Kn,
ja que aquesta ens permet, en alguns casos, entreveure l'isomor�sme K0

∼= K1 ◦ S.

De�nició 4.3.1. Sigui 0 −→ I
ϕ−→ A

φ−→ B −→ 0 una successió exacta de C∗-àlgebres i δ
′

n l'índex
associat a la successió

0 // Sn−1I
Sn−1ϕ

// Sn−1A
Sn−1φ

// Sn−1B // 0

De�nim δn := θ−1I ◦δ
′

n on θI és l'isomor�sme de Kn(I) a K
′

n(I) establert al Teorema 3.2.13.

Proposició 4.3.2. Sigui 0 −→ I
ϕ−→ A

φ−→ B −→ 0 una successió exacta de C∗-àlgebres. Llavors, la
següent successió és exacta

Kn(I)
Kn(ϕ)

// Kn(A)
Kn(φ)

// Kn(B)

δn��

Kn−1(B)
δn−1

��

Kn−1(A)
Kn−1(φ)
oo Kn−1(I)

Kn−1(ϕ)
oo

· · · · · · · · ·
δ1��

K0(B) K0(A)
K0(φ)

oo K0(I)
K0(ϕ)

oo

Demostració. Se segueix de la de�nició de δn i del Teorema 4.1.6.
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Capítol 5

La periodicitat de Bott i la successió
exacta cíclica de sis termes

En el treball es demostren tres resultats centrals, essent el primer el Teorema 3.2.10, K0 ◦S ∼= K1. En
aquest últim capítol es demostren els dos restants.

Aquests resultats són la periodicitat de Bott, K1 ◦ S ∼= K0, i la construcció d'una successió exacta
i cíclica per a tota successió exacta de C∗-àlgebres mitjançant l'aplicació exponencial, també de�nida
en aquest capítol.

5.1 L'aplicació de Bott

La demostració de la periodicitat de Bott que es dóna en aquest capítol és l'original donada per Atiyah,
tal i com es fa en els llibres [9, 11].

Com també es comenta a [1], aquest resultat és vàlid per àlgebres de Banach locals.

De cara a construir i treballar amb l'aplicació de Bott, és convenient donar una de�nició alternativa
de Mn(S̃A), explicitada en el següent Lema.

Com que el resultat és clar fent servir les de�nicions d'uniti�cació i suspensió, ometem la seva
demostració.

Lema 5.1.1. Donada una C∗-àlgebra A, es té el següent isomor�sme

Mn(S̃A) ∼= {f ∈ C(T,Mn(Ã)) | f(1) ∈Mn(C1Ã)}

Si A és unitària, també tenim Mn(S̃A) ∼= {f ∈ C(T,Mn(A)) | f(1) ∈Mn(C1A)}.

Comentari 5.1.2. D'ara en endavant treballarem amb la nova de�nició de Mn(S̃A). En particular,
tenim

Un(S̃A) = {f ∈ C(T, Un(Ã)) | f(1) ∈Mn(C1Ã)}

i l'anàleg corresponent quan A és unitària.

De�nició 5.1.3. Sigui A una C∗-àlgebra unitària i p una projecció de Pn(A). De�nim el llaç de la
projecció p, que denotem fp : T→ A, com

fp(z) = zp+ (1n − p)

43
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Comentari 5.1.4. Amb la de�nició de Un(S̃A), és clar que fp ∈ Un(S̃A) per a tot p ∈ Pn(A).

Així doncs, tenim ara una aplicació de Pn(A) a Un(S̃A) i ens agradaria que aquesta induís una
aplicació de K0(A) a K1(SA). Per veure-ho, utilitzarem la Propietat Universal de K0(A) de�nida al
Lema 2.2.13.

Proposició 5.1.5. Per a tota C∗-àlgebra unitària A, l'aplicació βA : K0(A) → K1(SA) donada per
βA([p]0) = [fp]1 està ben de�nida i és un mor�sme.

Demostració. Sigui γA : P∞(A)→ K1(A) de�nida per γA(p) = [fp]1. Comencem observant que γA(p)⊕
γA(q) = γA(p⊕ q). En efecte, si p ∈ Pn(A) i q ∈ Pm(A), tenim la següent igualtat:

(γA(p)⊕ γA(q)) (z) = (fp ⊕ fq) (z) = (zp+ (1n − p))⊕ (zq + (1n − q))
= z(p⊕ q) + (12n − p⊕ q) = fp⊕q(z) = γA(p⊕ q)(z)

A més a més, donades dues projeccions p, q de Pn(A), és clar que si tenim p ∼h q a Pn(A), llavors
fp ∼h fq a Un(S̃A), és a dir, [fp]1 = [fq]1 a K1(SA).

Per tant, com que f0 = 1, sabem per la Proposició 2.2.13 que βA és un mor�sme de grups ben
de�nit de K0(A) a K1(SA).

Comentari 5.1.6. Sigui [p]0 − [q]0 un element qualsevol de K0(A). Llavors, la seva imatge per βA és

βA([p]0 − [q]0) = βA([p]0)− βA([q]0) = [fp]1 − [fq]1

= [fp]1 + [f∗q ]1 = [fp ⊕ f∗q ]1

Utilitzant el Lema 1.2.4, deduïm que

βA([p]0 − [q]0) = [fp ⊕ f∗q ]1 = [fpf
∗
q ]1

on fpf∗q és la funció producte.

De�nició 5.1.7. Donada una C∗-àlgebra A, anomenem aplicació de Bott, que denotem per βA, al
mor�sme de�nit a l'anterior Proposició.

Un cop de�nida l'aplicació de Bott, comencem observant que βA és natural. Aquest fet ens perme-
trà, com a conseqüència del Comentari 5.1.9, reduir-nos al cas unitari.

Lema 5.1.8. Siguin A i B dues C∗-àlgebres unitàries i ϕ : A→ B un ∗-mor�sme entre elles. Llavors,
el següent diagrama és commutatitu

K0(A)

βA

��

K0(ϕ)
// K0(B)

βB

��

K1(SA)
K1(Sϕ)

// K1(SB)

Demostració. Sigui p una projecció de Pn(A). Cal només comprovar que les imatges de [p]0 per
βB ◦K0(ϕ) i K1(Sϕ) ◦ βA són iguals:

(βB ◦K0(ϕ)) ([p]0) = βB([ϕ(p)]0) = [fϕ(p)]1

(K1(Sϕ) ◦ βA) ([p]0) = K1(Sϕ)([fp]1) = [S̃ϕ(fp)]1 = [fϕ̃(p)]1

Per tant, el diagrama és commutatiu.
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Comentari 5.1.9. Donada una C∗-àlgebra A, no necessariament unitària, es pot fer un raonament
anàleg al del Lema 2.3.8 per demostrar que l'aplicació βA : K0(A)→ K1(SA) de�nida per

βA([p]0 − [s(p)]0) = [fpf
∗
s(p)]1

és l'únic mor�sme tal que el següent diagrama és commutatiu

0 // K0(A) //

βA

��

K0(Ã)
//

βÃ

��

K0(C)oo

βC

��

// 0

0 // K1(SA) // K1(SÃ)
//
K1(SC)oo // 0

Per aquest motiu, anomenarem aplicació de Bott al mor�sme βA de�nit anteriorment quan A no sigui
unitària.

5.2 El Teorema de periodicitat de Bott

En aquest apartat ens disposem a demostrar el Teorema de la periodicitat de Bott, enunciat a conti-
nuació.

Teorema 5.2.1. Per a tota C∗-àlgebra A, els grups K0(A) i K1(SA) = K2(A) són isomorfs i l'apli-
cació de Bott βA n'és un isomor�sme.

Com a primera observació, destaquem que, com a conseqüència del Comentari 5.1.9 i el Lema dels
Cinc, ens podem reduir al cas A unitari i, per tant, a la de�nició de βA per aquest cas.

Com ja hem comentat anteriorment, el resultat i la prova d'aquest Teorema són vàlids en casos més
generals que C∗-àlgebres. En particular, no es treballa a Un(S̃A), sinó al conjunt Inv0(n).

De�nició 5.2.2. Sigui A una C∗-àlgebra unitària. Per a cada n ∈ N de�nim

Invn0 := C(T,GL0(MnA))

on GL0(MnA) és el subconjunt de MnA que té per elements les matrius invertibles homotòpiques a
1n.

Com que la prova que es dona de la periodicitat de Bott es basa en igualtats mòdul homotopia a
Invn0 , cal primer comprovar que quan es treballa a Un(S̃A) les homotopies que obtindrem es poden
passar a homotopies d'unitaris. Aquest fet ens l'assegura el següent Lema:

Lema 5.2.3. Sigui A una C∗-àlgebra unitària i f, g ∈ Un(S̃A). Tenim:

� Un(S̃A) ⊂ Invn0

� Si f ∼h g a Invn0 , llavors f ∼h g a Un(S̃A)

Demostració. Comencem demostrant la inclusió Un(S̃A) ⊂ Invn0

Un(S̃A) = {f ∈ C(T, Un(A)) | f(1) ∈ Un(C1A)} ⊂ {f ∈ C(T, Un(A)) | f(1) ∼h 1n}
⊂ {f ∈ C(T, GL(Mn(A))) | f(1) ∼h 1n} = {f ∈ C(T, GL(Mn(A))) | f(z) ∼h 1n}
= Invn0
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on el segon pas és conseqüència de l'Exemple 3.2.4.
Per veure el segon punt, veiem primer, utilitzant el mateix argument que el Lema 11.2.2 de [9], que

si f ∼h g a Invn0 , llavors f ∼h g a GL(Mn(S̃A)).
En efecte, sigui t 7→ ft la homotopia a Invn0 on f0 = f i f1 = g, i sigui també t 7→ at la homotopia

entre a0 = f(1) ∈ Mn(C1A) i a1 = g(1) ∈ Mn(C1A) a GL(Mn(C1A)) donada per l'Exemple 3.2.4.
Considerem la següent aplicació:

t 7→ gt(z) := atft(1)−1ft(z)

Observem que per a tot t tenim que g(1) = at ∈Mn(C1A) i, en conseqüència, que gt és deGL(Mn(S̃A)).
A més a més, com que ft i at són assignacions contínues, gt també ho és.

Per tant, gt és una homotopia entre g0 = f i g1 = g a GL(Mn(S̃A)).
Finalment, sabem pel Lema 1.2.7 que si f ∼h g a GL(Mn(S̃A)), llavors f ∼h g a Un(S̃A), fet que

acaba la prova.

A més de treballar sobre Invn0 , també utilitzarem la notació de [9] per fer referència als següents
conjunts:

De�nició 5.2.4. Donada una C∗-àlgebra unitària A, anomenem

� Llaços polinomials de grau m sobre matrius de mida n:

Polnm := {f ∈ Invn0 | f(z) =

m∑
i=0

aiz
i on a0, · · · , am ∈Mn(A)}

� Llaços trigonomètrics de grau m sobre matrius de mida n:

Trignm := {f ∈ Invn0 | f(z) =

m∑
i=−m

aiz
i on a−m, · · · , am ∈Mn(A)}

� Llaços de projeccions de mida n:

Projn := {fp | p ∈ Pn(A)}

Comentari 5.2.5. Com que Polnm, Trignm i Projn són subconjunts de Invn0 , sabem pel Lema 5.2.3
que totes les homotopies entre unitaris que puguem construir en aquests es podran transformar en
homotopies a Un(S̃A).

5.2.1 Exhaustivitat de l'aplicació de Bott

Tant en aquesta Subsecció com en la següent, on seguim l'estructura i les demostracions del Capítol 9
de [11], A serà una C∗-àlgebra unitària.

Lema 5.2.6. Siguin n, k ∈ N tals que k ≤ n i pk = 1k⊕0n−k. Llavors, fpk ∼h zk ·1⊕1n−1 a Un(S̃A).

Demostració. Comencem observant que f1 = z · 1 i que f0 = 1. Per tant, tenim que

fpk = (f1 ⊕ · · · ⊕ f1)⊕ f0n−k
= (z · 1⊕ · · · ⊕ z · 1)⊕ 1n−k

Com que z ∈ T, sabem que z · 1 ∈ U(S̃A). Així doncs, aplicant el Lema de Whitehead obtenim la
homotopia z ⊕ z ∼h z2 ⊕ 1 a U2(S̃A).
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Utilitzant aquest fet iterativament, deduïm que

fpk = (z · 1⊕ · · · ⊕ z · 1)⊕ 1n−k ∼h (z · 1⊕ · · · ⊕ z · 1⊕ z2 · 1)⊕ 1n+1−k

∼h · · · ∼h zk ⊕ 1n−1

on les homotopies són a Un(S̃A).

Lema 5.2.7. Per tot n ∈ N i tot llaç f ∈ Invn0 existeix un natural m(n) ∈ N i un llaç trigonomètrica
h ∈ Trignm(n) tal que h aproxima uniformement f i, a més a més, f ∼h h.
Demostració. Sigui n ∈ N �xat, f ∈ Invn0 i ε un real positiu. Comencem observant que els oberts
O(a) = {z ∈ T | supT ‖f(z)− a‖ < ε} són un recobriment de T per a tot ε > 0.

Com que T és compacte, existeixen un nombre �nit d'elements a1, · · · , am ∈ A tals que T = ∪iO(ai).
A més a més, com que T també és una subvarietat de C, sabem que existeix una partició de la unitat
{ρi}mi=1 subordinada al recobriment anterior1.

Utilitzant ara el Teorema de Weiestrass, sabem que per cada i ∈ {1, · · · ,m} existeix una successió
de funcions trigonomètriques {δik}k∈N tals que aproximen uniformement a ρi.

Per tant, de�nint la funció hk :=
∑m
i=1 aiδ

i
k, que pertany clarament a Trignm, tenim les següents

desigualtats per a un k ∈ N su�cientment gran:

‖f(z)−
m∑
i=1

aiδ
i
k(z)‖ = ‖

(
m∑
i=1

ρi(z)

)
f(z)−

m∑
i=1

aiδ
i
k(z)‖

≤ ‖

(
m∑
i=1

ρi(z)

)
f(z)−

m∑
i=1

aiρi(z)‖+ ‖
m∑
i=1

aiρi(z)−
m∑
i=1

aiδ
i
k(z)‖

≤ ‖
m∑
i=1

ρi(z)(f(z)− ai)‖+

m∑
i=1

‖ai‖|ρi(z)− δik(z)| < 2ε

per tot z ∈ T.
En efecte, el primer terme de la suma és menor que ε perquè cada terme del sumatori és o bé 0 o

bé menor que ρi(z)ε per la construcció de O(a).
D'altra banda, podem fer el segon terme de la suma tant petit com vulguem ja que {δik}k∈N

aproximen uniformement a ρi.
Aplicant el Lema 1.2.8 per un ε prou petit, hem acabat.

Lema 5.2.8. Per tots n,m ∈ N existeix una funció contínua

µnm : Polnm → Polmn+n1

tal que µnm(f) ∼h f ⊕ 1mn a Polmn+nk per tot polinomi f ∈ Polnk amb k ≤ m.

Demostració. La prova que s'escriu a continuació és la corresponent al Lema 11.2.5 de [9]:
Sigui f ∈ Polnm tal que f(z) =

∑m
i=0 aiz

i. Llavors, de�nim µnm(f) de la següent manera

µnm(f)(z) :=



a0 a1 a2 · · · am−1 am
−z1n 1n 0 · · · 0 0

0 −z1n 1n · · · 0 0
... 0

...
...

...
...

...
... 0 0

0 0 0 · · · −z1n 1n


∈Mm+1(Mn(A)) ∼= Mmn+n(A)

1Recordem que això vol dir que suport(ρi) ⊂ O(ai) i que
∑

i ρi(z) = 1 per tot z ∈ T.
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A més a més, donats dos llaços polinomials f, f ′ ∈ Polnm, podem utilitzar la de�nició de la norma de
Mn(A) per obtenir una cota per ‖µnm(f)(z)− µnm(f ′)(z)‖ és

‖µnm(f)(z)− µnm(f ′)(z)‖ ≤
m∑
i=0

‖ai − a′i‖

En particular, µnm és contínua.
Per tant, queda només comprovar que µnm(f)(1) ∼h 1nm+n, que µnm(f)(z) ∈ GLnm+n(A) i que

µnm(f) ∼h f ⊕ 1mn. Per fer-ho, comencem de�nint la successió gk(z) =
∑m
j=k ajz

j−k per k ≤ m i les
dues matrius

G =


1n −g1 −g2 · · · −gm
0 1n 0 · · · 0
0 0 1n · · · 0
...

...
...

...
0 0 0 · · · 1n

 , H(z) =


1n 0 0 · · · 0
z1n 1n 0 · · · 0
z21n z1n 1n · · · 0
...

...
...

...
zm1n zm−11n zm−21n · · · 1n


Fent ara el producte de matrius, un pot comprovar que

Gµnm(f)H =


f 0 · · · 0
0 1n · · · 0
...

...
...

0 0 · · · 1n

 = f ⊕ 1mn

D'altra banda, és fàcilment demostrable per inducció que G i H(z) són invertibles i que G,H(z) ∼h
1nm+n a Polmn+nm per tot z.

Així doncs, com que f(z)⊕1mn també és invertible per tot z, se segueix que µnm(f)(z) ∈ GLnm+n(A)
i que

f ⊕ 1mn = Gµnm(f)H ∼h µnm(f)

fet que acaba la prova.

Lema 5.2.9. Per a tot llaç lineal f ∈ Poln1 existeix un llaç de projeccions γ(f) ∈ Projn tal que
γ(f) ∼h f a Poln1 . A més a més, l'assignació f 7→ γ(f) és contínua i γ(fp) = fp per tot p ∈ Pn(A).

Demostració. Recordem que donada una projecció p ∈ Pn(A), el seu llaç és

fp(z) = 1n + p(z − 1)

Sigui f ∈ Poln1 un llaç lineal de la forma f(z) = a+ bz on a, b ∈Mn(A). Pel recordatori anterior, ens
interessa trobar una homotopia entre f i un llaç de la forma 1n + c(z − 1) amb c ∈Mn(A) homòtop a
una projecció.

Per fer-ho, comencem observant que f(1) = a + b ∼h 1n a GLn(A). Per tant, tenim les següents
igualtats

f−1(1)f(z) = f−1(1)(a+ bz) = f−1(1)(f(1) + b(z − 1))

= 1n + (f−1b)(z − 1) =: 1n + c(z − 1) =: g(z)

i, a més a més, que f ∼h g.
Fent servir eines de càlcul funcional que no hem tractat en aquest treball, es pot veure que c ∼h p

amb p ∈ Pn(A). D'aquest fet es segueix, d'una manera no trivial, que fp ∼h f a Poln1 .
Tota la prova en detall es pot trobar al Lema 9.2.7 de [11].
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Proposició 5.2.10. L'aplicació de Bott és exhaustiva.

Demostració. La prova es basa en utilitzar totes les homotopies que hem vist anteriorment:
Sigui n ∈ N �xat i [f ]1 ∈ K1(SA) tal que f ∈ Un(SA). Pel Lema 5.2.7, sabem que existeix un llaç

trigonomètric h tal que
f ∼h h a Invn0

Recordem que en el Lema 5.2.6 havíem vist que zN ⊕ 1M ∼h fpN per a tot N ≤M i, en conseqüència,
que z−N ⊕ 1M ∼h f∗pN .

De�nint g = hzN on −N és el coe�cient de grau menor de h, tenim que g és un llaç polinomial i
podem aplicar el l'anterior observació per obtenir que

gz−N ⊕ 1M = (g ⊕ 1M )
(
z−N ⊕ 1M

)
∼h (g ⊕ 1M )

(
f∗pN

)
= (g ⊕ 1M )f∗pN

on M és tal que N ≤M i PN = 1N ⊕ 0M−N .
A més a més, utilitzant ara els Lemes 5.2.8 i 5.2.9, tenim la següent homotopia a Invn0 :

g ⊕ 1mn ∼h µnm(g) ∼h γ(µnm(g)) = fp

per a una certa projecció p.
Així doncs, com que fp ⊕ 1M = fp ⊕ f0M = fp⊕0M per tot M ∈ N, tenim la següent cadena

d'homotopies a Invn0

f ⊕ 1M ′ ∼h gz−N ⊕ 1M ′ ∼h (g ⊕ 1M ′)f
∗
pN ∼h (fp ⊕ 1M )f∗pN = fp⊕0M f

∗
pN

on M ′ = M +mn.
Per tant, utilitzant el Lema 5.2.3, se segueix que tot element de K1(SA) té antiimatge. En efecte,

βA([p]0 − [pN ]0) = [fpf
∗
pN ]1 = [f ⊕ 1M ]1 = [f ]1

5.2.2 Injectivitat de l'aplicació de Bott i alguns exemples

La injectivitat de l'aplicació de Bott és molt més curta de provar que la seva exhaustivitat, ja que tenim
a la nostra disposició tots les eines desenvolupades a l'apartat anterior. Per poder fer la demostració,
només ens fan falta una de�nició i dos lemes.

Lema 5.2.11. L'aplicació π : Projn → Pn(A) de�nida per π(fp) = p és contínua per tot n ∈ N.

Demostració. Siguin n ∈ N �xat i p, q ∈ Pn(A). Llavors, tenim la següent igualtat

‖fp − fq‖ = sup
z∈T
‖1n + p(z − 1)− 1n − q(z − 1)‖ = sup

z∈T
‖(p− q)(z − 1)‖ = 2‖p− q‖

Per tant, π és contínua.

De�nició 5.2.12. Sigui B una C∗-àlgebra i γ : t 7→ γt una homotopia de B. Diem que γ és poligonal
si és lineal en t a trossos.

Lema 5.2.13. Sigui A una C∗-àlgebra i x : t 7→ xt una homotopia a Invn0 . Llavors, x es pot aproximar
uniformement per una homotopia poligonal y : t 7→ yt amb yt ∈ TrignN per un cert N .

En particular, si x0, x1 ∈ TrignN , es té que y0 = x0 i y1 = x1.
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Demostració. Comencem observant que x és uniformement contínua. Per tant, donat un nombre
positiu ε que acotarem més endavant, existeix un nombre M ∈ N tal que es compleix la següent
implicació

|t− t′| < 1

M
=⇒ ‖xt − xt′‖ <

ε

2

Així doncs, donats tm = m
M , sabem pel Lema 5.2.7 que existeixen un nombre N ∈ N prou gran i

hm ∈ TrignN tals que ‖xtm − hm‖ < ε
2 per tot m.

En cas que x0, x1 ∈ TrignN , prenem h0 = x0 i hM = x1.
D'altra banda, observem que els camins σ 7→ (1 − σ)hm−1 + σhm són clarament homotopies de

hm−1 a hm. Per tant, de�nim l'homotopia poligonal y com la concatenació dels camins anteriors.
En particular, observem que (1− σ)hm−1(1) + σhm(1) ∼h 1n per tot σ i m.
Finalment, cal només observar que, per ε prou petit, ys és de TrignN per tot s ∈ [0, 1]. En efecte,

prenent ε < mint
1

‖x−1
t ‖

i donat s tal que ys = (1−σ)hm−1 +σhm per un certs σ i m, tenim la següent

desigualtat:

‖ys − xtm‖ = ‖(1− σ)hm−1 + σhm + (1− σ + σ)xtm‖
≤ (1− σ)‖hm−1 − xtm‖+ σ‖hm − xtm‖

≤ (1− σ)(‖hm−1 − xtm−1
‖+ ‖xtm−1

− xtm‖) + σ
ε

2

≤ (1− σ)ε+ σ
ε

2
≤ ε ≤ 1

‖x−1tm ‖

del que se segueix, pel Lema 1.2.8, que ys és invertible.
Com que és clar que (1−σ)hm−1+σhm és sempre un llaç trigonomètric, deduïm que ys ∈ TrignN .

Proposició 5.2.14. L'aplicació de Bott és injectiva.

Demostració. Siguin p, q ∈ Pn(A) tal que βA([p]0 − [q]0) = 0, és a dir, tals que [fpf
∗
q ]1 = 0. Llavors,

possiblement afegint uns quants zeros diagonalment a p i q, tenim que fp ∼h fq i, pel Lema anterior,
que existeix una homotopia yt ∈ TrignN tal que

fp = y0 ∼h y1 = fq

Multiplicant per zN , la homotopia anterior passa a ser de llaços polinòmics. Per tant, utilitzant el
Lema 5.2.6, tenim que

fp⊕pN ∼h zNfp ∼h zNfq ∼h fq⊕pN

on totes les homotopies continuen sent de llaços polinòmics. Així doncs, podem aplicar ara el Lema
5.2.8 per deduir que hi ha una homotopia de llaços lineals entre fp⊕pN i fq⊕pN .

Utilitzant l'aplicació γ del Lema 5.2.9, deduïm que hi ha una homotopia t 7→ fpt de f0 = fp⊕pN
a f1 = fq⊕pN . Com que sabem pel Lema 5.2.11 que l'assignació fp 7→ p és contínua, la homotopia
anterior passa a ser una homotopia entre les projeccions p⊕ pN i q ⊕ pN .

Per tant, tenim que [p ⊕ pN ]0 = [q ⊕ pN ]0 i, en conseqüència, que [p]0 = [q]0, fet que acaba la
prova.

Aquesta última Proposició acaba la demostració de la periodicitat de Bott. Aquesta ens permet,
en particular, donar millors expressions a K-grups que havíem calculat de forma recursiva, com ara el
grup K1 de SC i els K-grups de TnA.
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Exemple 5.2.15. El grup K1 de SC
Tal i com ja s'ha vist a l'Exemple 3.2.11, tenim que C0(0, 1) = SC. Per tant, utilitzant el que ja

havíem vist i el Teorema 5.2.1, podem calcular K0 i K1 de SC:

K0(C0(0, 1)) = K0(SC) ∼= K1(SC) = 0

K1(C0(0, 1)) = K1(SC) = K2(C) ∼= K0(C) ∼= Z

Exemple 5.2.16. Els K-grups de TnA
A l'Exemple 3.2.15 hem obtingut la següent família d'isomor�smes

Km(TnA) ∼=
n⊕
i=0

(
n

i

)
Km+i(A) ∼=

n⊕
i=0

Km+i

((
n

i

)
A

)

on la notació sKm+i(A) amb s ∈ N indica la suma directa de s còpies deKm+i(A), és a dir, sKm+i(A) ∼=
(Km+i(A))

s.
Utilitzant el Teorema 5.2.1 obtenim, per a tot m ∈ N, les següents fórmules

K2m(TnA) ∼= K0(TnA)∼=

 ⊕
i≤n,senar

(
n

i

)
K1(A)

⊕
 ⊕
i≤n,parell

(
n

i

)
K0(A)


K2m+1(TnA) ∼= K1(TnA)∼=

 ⊕
i≤n,parell

(
n

i

)
K1(A)

⊕
 ⊕
i≤n,senar

(
n

i

)
K0(A)


Com que sabem que

∑
i≤n,senar

(
n
i

)
= 2n−1 i que

∑
i≤n,parell

(
n
i

)
= 2n−1, obtenim una expressió per

K0(TnA) i K1(TnA)

K0(TnA) ∼=
(
2n−1K0(A)

)
⊕
(
2n−1K1(A)

)
K1(TnA) ∼=

(
2n−1K0(A)

)
⊕
(
2n−1K1(A)

) ∼= K0(TnA)

Finalment, si A = C, es té que K0(TnC) ∼= K1(TnC) ∼= Z2n−1

.

5.3 L'aplicació exponencial i la successió exacta cíclica de sis
termes

Sigui 0 −→ I
ϕ−→ A

φ−→ B −→ 0 una successió exacta de C∗-àlgebres. Recordem que a la Secció 4.3
havíem construït la successió exacta i llarga

K2(B)

δ2��

· · ·
K2(φ)

oo · · ·

K1(I)
K1(ϕ)

// K1(A)
K1(φ)

// K1(B)

δ1��

K0(B) K0(A)
K0(φ)
oo K0(I)

K0(ϕ)
oo
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Utilitzant ara l'isomor�sme βB : K0(B) → K2(B) donat pel Teorema 5.2.1, podem tancar aquest
diagrama

K2(B)

δ2��

K1(I)
K1(ϕ)

// K1(A)
K1(φ)

// K1(B)

δ1��

K0(B)

βB

<<

K0(A)
K0(φ)
oo K0(I)

K0(ϕ)
oo

De�nició 5.3.1. Anomenem aplicació exponencial, que denotarem per δ0, a la composició δ2 ◦ βB :
K0(B)→ K1(I).

Teorema 5.3.2. Per a tota successió exacta 0 −→ I
ϕ−→ A

φ−→ B −→ 0, la successió cíclica

K1(I)
K1(ϕ)

// K1(A)
K1(φ)

// K1(B)

δ1��

K0(B)

δ0

OO

K0(A)
K0(φ)
oo K0(I)

K0(ϕ)
oo

és exacta.

Demostració. Com és usual, ens reduïm, sense pèrdua de generalitat, al cas on B = A/I amb φ = π
el pas al quocient i I és un ideal de A amb ϕ = i la inclusió natural.

Pel Teorema 4.1.6, cal només comprovar l'exactitud a K0(A/I) i K1(I). Per fer-ho, observem que,
pel Lema 5.1.8 i el Teorema 3.2.10, el següent diagrama és commutatiu

K0(A)
K0(π)

//
OO

βA

��

K0(A/I)
δ0 //

OO

βA/I

��

K1(I)
K1(i)

//
OO

θI

��

K1(A)
OO

θA

��

K1(SA)
K1(Sπ)

// K1(S(A/I))
δ1 // K0(SI)

K0(Si)
// K0(SA)

Com que les aplicacions de les columnes són totes isomor�smes i la segona �la és exacta pel Teorema
4.1.6, la primera �la també ho és.

Exemple 5.3.3. L'àlgebra de Calkin d'un espai de Hilbert H de dimensió in�nita i separable
Recordem que l'algebra de Calkin es de�neix com Q(H) = B(H)/K on K és l'àlgebra d'operadors

compactes de B(H). Per tant, tenim la següent successió exacta

0 // K i // B(H)
π // Q(H) // 0

Pel Teorema 5.3.2, l'anterior successió indueix a la successió exacta cíclica

K1(K)
K1(i)

// K1(B(H))
K1(π)

// K1(Q(H))

δ1��

K0(Q(H))

δ0

OO

K0(B(H))
K0(π)
oo K0(K)

K0(i)
oo

Com que sabem pels Exemples 2.2.12 i 3.2.4 que K0(B(H)) ∼= {0} i K1(B(H)) ∼= {0}, les aplicacions
δ0 i δ1 són isomor�smes.

Utilitzant ara els resultatsK0(K) ∼= Z iK1(K) ∼= {0} del Comentari 4.2.3, deduïm queK0(Q(H)) ∼=
0 i K1(Q(H)) ∼= Z.
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Exemple 5.3.4. L'àlgebra de Toeplitz
Sabem pel Lema 4.2.8 que T /K ∼= C(T). Llavors, donat π : T → T /K el pas al quocient i φ

l'isomor�sme entre T /K i C(T), tenim la successió exacta

0 // K i // T
ϕ
// C(T) // 0

on ϕ = φ ◦ π.
Tornant a utilitzar el Teorema 5.3.2, sabem pel Comentari 4.2.3 i l'Exemple 5.2.16 que tenim la

successió cíclia següent

0
K1(i)

// K1(T )
K1(ϕ)

// Z
δ1
��

Z
δ0

OO

K0(T )
K0(ϕ)
oo Z

K0(i)
oo

on les aplicacions estan escrites mòdul composar amb isomor�smes.
En particular, observem que K1(ϕ) és injectiva i K0(ϕ) és exhaustiva.
D'altra banda, sabem pel Lema 4.1.5 que

δ1([ϕ(S)]1) = [I − SS∗]0 − [I − SS∗]0 = −[I − SS∗]0

Per tant, com que sabem pel Lema 4.2.8 que K0(Tr)(−[I − SS∗]0) = −1 i −1 genera Z, també tenim
que δ1 és bijectiva.

En conseqüència, ker(K0(i)) = Z i Im(K0(i)) = 0. Com que la successió és exacta a K0(T ), se
segueix que K0(ϕ) és també injectiva i K0(T ) ∼= Z.

Finalment, com que δ1 és injectiva, tenim que Im(K1(ϕ)) = 0 però, com que K1(ϕ) és injectiva,
això passa si i només si K1(T ) ∼= 0.

A continuació enunciem una Proposició que justi�ca el nom d'aplicació exponencial. Com que la
prova, que es pot trobar a la Proposició 12.2.2 de [9], utilitza eines de càlcul funcional que no hem
tractat en aquest treball, la ometem.

Proposició 5.3.5. Sigui

0 // I
ϕ
// A

φ
// B // 0

una successió exacta. Llavors, donat un element [p]0 − [s(p)]0 ∈ K0(B) amb p ∈ Pn(B̃), existeix un
element autoadjunt a ∈Mn(Ã) tal que φ̃(a) = p.

Prenent u ∈ Un(Ĩ) l'únic element tal que ϕ̃(u) = e2πia, tenim que δ0([p]0 − [s(p)]0) = [u]1.

Comentari 5.3.6. Recordem que hem de�nit l'exponencial d'un element autoadjunt a la Subsecció
1.2.2.

5.4 Grups abelians �nitament generats i dimension drop alge-

bras

En aquesta última secció del treball veurem que és possible construir per a tot parell de grups abelians
�nitament generats, G0 i G1, una C∗-àlgebra A tal que K0(A) ∼= G0 i K1(A) ∼= G1.

Aquest resultat és el primer pas per demostrar un Teorema més general, que permet construir
una C∗-àlgebra separable tal que els seus K-grups associats siguin qualsevol parell de grups abelians
numerables.

Tot i així, per motius d'extensió del treball, ometem la demostració d'aquest darrer Teorema, que
es pot trobar al Capítol 13 de [9].
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5.4.1 Blocs lliures

De cara a construir una C∗-àlgebra amb les propietats anteriors, comencem recordant el Teorema de
classi�cació de grups abelians �nitament generats, que correspon al Teorema 2.1. de [5].

Teorema 5.4.1. Sigui G un grup abelià �nitament generat. Llavors, existeixen constants enteres
n, k > 0 i n1, · · · , nk tals que

G ∼= Zn ⊕ (Z/n1Z)⊕ · · · ⊕ (Z/nkZ)

on Zn i (Z/n1)⊕ · · · ⊕ (Z/nk) s'anomenen la part lliure i la part de torsió de G respectivament.

Prenem ara G0 i G1 grups abelians �nitament generats amb parts lliure i de torsió GL0 , G
T
0 i GL1 , G

T
1

respectivament.
Llavors, com a conseqüència de l'anterior Teorema i les propietats de K0 i K1 llistades a la Pro-

posició 3.2.14, per construir una C∗-àlgebra A amb K0(A) ∼= G0 i K1(A) ∼= G1 serà su�cient trobar
quatre C∗-àlgebres, que anomenarem blocs, tals que

Ki(A
L
i ) ∼= GLi , Ki(A

T
i ) ∼= GTi

i tots els seus altres K-grups siguin isomorfs a {0}.
En efecte, de�nint A com A = AL0 ⊕AL1 ⊕AT0 ⊕AT1 , tindrem que

K0(A) ∼= K0

(
AL0
)
⊕K0

(
AL1
)
⊕K0

(
AT0
)
⊕K0

(
AT1
)

∼= GL0 ⊕ {0} ⊕GT0 ⊕ {0} ∼= G0

K1(A) ∼= K1

(
AL0
)
⊕K1

(
AL1
)
⊕K1

(
AT0
)
⊕K1

(
AT1
)

∼= {0} ⊕GL1 ⊕ {0} ⊕GT1 ∼= G1

D'altra banda, recordem que ja havíem vist als Exemples 2.2.11 i 3.2.4 que K0(C) ∼= Z i K1(C) ∼= {0}.
Per tant, si GL0 = Zn0 i GL1 = Zn1 , de�nim els blocs lliures AL0 i AL1 com

AL0 = C⊕ n0· · · ⊕C

AL1 = SC⊕ n1· · · ⊕SC

5.4.2 Blocs de torsió

Un cop construits els blocs lliures, ens cal ara trobar una família de C∗-àlgebres Dn tals que K0(Dn) ∼=
{0} i K1(Dn) ∼= Z/nZ. Encara que es coneixen varies famílies amb aquesta propietat, com ara les
àlgebres de Cuntz de�nides al Capítol 12 de [11], prenem la família de les dimension drop algebras,
de�nides a continuació.

De�nició 5.4.2. Per a tot n ∈ N − {0, 1}, de�nim Dn com la C∗-àlgebra formada per les funcions
contínues f ∈ C([0, 1],Mn(C)) tals que f(0) = 0 i f(1) ∈ C1n.

Comentari 5.4.3. Observem que S(Mn(C)) és un ideal de Dn. Per tant, es té la següent successió
exacta

0 // SMn(C)
i // Dn

ev1 // C // 0

on i és la inclusió natural i ev1 és l'avaluació en el 1.



Així doncs, com a conseqüència del Teorema 5.3.2, la successió

K0(SMn(C))
K0(i)

// K0(Dn)
K0(ev1)

// K0(C)

δ0

��

K1(C)

δ1

OO

K1(Dn)
K1(ev1)

oo K1(SMn(C))
K1(i)
oo

també és exacta.

Proposició 5.4.4. Per a cada n ∈ N − {0, 1}, els grups K0(Dn) i K1(Dn) són isomorfs a 0 i Z/nZ
respectivament.

Demostració. Donarem la idea de la demostració, ometent algun detall que es pot trobar a la Secció
13.1 de [9].

Utilitzant l'Observació anterior i els Exemples 2.2.11 i 3.2.4, es té la següent successió exacta

0 // K0(Dn)
K0(π)

// K0(C)
δ0 // K1(SMn(C))

K1(i)
// K1(Dn) // 0

Per tant, com que sabem que K0(C) i K1(SMn(C)) són isomorfs a Z, cal només provar que δ0 amb
aquesta identi�cació és l'aplicació multiplicar per n:

Donada p una projecció unidimensional de Mn(C), sabem que [p]0 és un generador de K0(Mn(C)).

Llavors, de�nint els elements un, vn ∈ U( ˜S(Mn(C))) com

un(t) = e2πit1n

vn(t) = e2πitp+ (1n − p)

es pot veure que n[vn]1 = [un]1.
Finalment, utilitzant la fórmula de la Proposició 5.3.5, es dedueix que δ0([1C]0) = −[un]1 = −n[vn]1

i, en conseqüència, que δ0 és injectiva i que és la multiplicació per n.
Per tant, K0(Dn) = 0 i K1(Dn) ∼= Z/nZ.

Concloem aquesta Secció enunciant el Teorema que resumeix els resultats anteriors:

Teorema 5.4.5. Siguin G0 i G1 dos grups abelians �nitament generats i {ni,0}ki=0, {nj,1}mj=0 ⊂ N tals
que

G0
∼= Zn0,0 ⊕ (Z/n1,0Z)⊕ · · · ⊕ (Z/nk,0Z)

G1
∼= Zn0,1 ⊕ (Z/n1,1Z)⊕ · · · ⊕ (Z/nm,1Z)

Llavors, de�nint la C∗-àlgebra A = AL0 ⊕AL1 ⊕AT0 ⊕AT1 amb

AL0 = C⊕
n0,0· · · ⊕C , AL1 = SC⊕

n0,1· · · ⊕SC
AT0 = SDn1,0

⊕ · · · ⊕SDnk,0
, AT1 = Dn1,1

⊕ · · · ⊕Dnm,1

tenim que K0(A) ∼= G0 i K1(A) ∼= G1.

55



56



Bibliogra�a

[1] B. Blackadar. K-Theory for Operator Algebras. Mathematical Sciences Research Institute, 1986.

[2] G.A. Elliott. On the Classi�cation of Inductive Limits of Sequences of Semisimple Finite-
Dimensional Algebras. Journal of Algebra, 38(1):29�44, 1976.

[3] G.A. Elliott and D.E. Evans. The Structure of the Irrational Rotation C∗-Algebra. Annals of
Mathematics, 138(3):477�501, 1993.

[4] K.R. Goodearl. Notes on Real and Complex C∗-Algebras. Shiva Mathematics. Birkhäuser Boston,
1980.

[5] T.W. Hungerford. Algebra. Number 73 in Graduate Texts in Mathematics. Springer, 1996.

[6] S. Mac Lane. Homology. Classics in Mathematics. Springer, 1963.

[7] G. J. Murphy. C∗-Algebras and Operator Theory. Academic Press, 1990.

[8] G.K. Pedersen. Analysis Now. 118. Springer-Verlag New York, 1989.

[9] M. Rørdam, F. Larsen, and N. Laustsen. An Introduction to K-Theory for C*-Algebras. Cambridge
University Press, 2000.

[10] K. Strung. An Invitation to C∗-algebras. Per aparèixer a Advanced Courses in Mathematics,
CRM Barcelona. Birkhäuser, 2018.

[11] N.E. Wegge-Olsen. K-Theory and C*-Algebras: A Friendly Approach. Oxford University Press,
1993.

57



58



Apèndix A

Construcció de Grothendieck

Donat un monoide commutatiu S, ens interessa construir un grup abelià G(S) que reprodueixi algunes
de les propietats que es poden observar en el cas N ⊂ Z. Més concretament, volem que es compleixin
les següents propietats:

1. Existeix un mor�sme de monoides commutatius g : S → G(S), és a dir, que G(S) contingui, en
cert sentit, a S.

2. Per a tot mor�sme f : S → P amb P un grup abelià, existeix un únic mor�sme de grups
f ′ : G(S)→ P tal que f ′ ◦ g = f .

El grup G(S) sempre existeix i s'anomena el grup de Grothendieck de S:

De�nició. Sigui S un monoide commutatiu. De�nim la relació de Grothendieck, en símbols ∼G, com
la següent relació sobre S × S:

(x1, y1) ∼G (x2, y2) si i només si existeix z ∈ S tal que x1 + y2 + z = x2 + y1 + z

Lema. La relació de Grothendieck és d'equivalència.

Demostració. En comprovem les propietats:

1. Re�exiva: Donat x ∈ S i z ∈ S qualssevol, x+ x+ z = x+ x+ z. Per tant, (x, x) ∼G (x, x).

2. Simètrica: Com que S és un monoide commutatiu, per tot parell x, y ∈ S i z ∈ S es compleix
que x+ y + z = y + x+ z. Per tant, (x, y) ∼G (y, x).

3. Transitiva: Suposem (x1, y1) ∼G (x2, y2) i (x2, y2) ∼G (x3, y3). Llavors, existeixen elements z1 i
z2 tals que es compleixen les següents igualtats

x1 + y2 + z1 = x2 + y1 + z1

x2 + y3 + z2 = x3 + y2 + z2

Sumant-les, s'obté

x1 + y3 + (x2 + y2 + z1 + z2) = x3 + y1 + (x2 + y2 + z1 + z2)

del que se segueix que (x1, y1) ∼G (x3, y3).
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De�nició. Sigui S un monoide commutatiu. De�nim el grup de Grothendieck de S, que denotarem
G(S), com el quocient S × S/ ∼G.

Escriurem, momentàniament, els elements de G(S) com [x, y]G

Lema. Per a tot S monoide abelià amb operació +, el grup de Grothendieck és un grup abelià amb
l'operació + component a component.

Demostració. Comencem veient que l'operació està ben de�nida.
Siguin x, y, x′, y′ ∈ S tals que [x, y]G = [x′, y′]G i [a, b]G qualsevol. Llavors, existeix z ∈ S tal que

es compleix la següent igualtat
x+ y′ + z = y + x′ + z

Sumant a+ b als dos costats tenim

(x+ a) + (y′ + b) + z = (y + b) + (x′ + a) + z

i, en conseqüència, que [x+ a, y + b]G = [x′ + a, y′ + b]G.
A més a més, donat un element [x, y]G ∈ G(S), es pot veure que [y, x]G + [x, y]G = [0, 0]G. Per

tant, tot element de G(S) té un invers i és clar que [0, 0]G és l'únic element neutre d'aquesta operació.
Les altres propietats de grup s'hereten de S.

Comentari. Com a conseqüència del Lema anterior, escriurem 0 en comptes de [0, 0]G i denotarem les
altres classes d'equivalència [x, y]G com x− y.

Comencem comprovant que es compleix la propietat 1. de les dues llistades al començament d'aquest
apèndix:

De�nició. Sigui S un monoide commutatiu i G(S) el seu grup de Grothendieck. Anomenarem apli-
cació de Grothendieck al mor�sme g : S → G(S) tal que g(x) = [x+y, y], on y és un element qualsevol
de S.

Comentari. Amb la notació anterior, g és independent de l'elecció de y i, si S és cancel·latiu, tenim
que g(x) = [x+ y, y] = (x+ y)− y = x per a tot x ∈ S. Per tant, g és injectiva si S és cancel·latiu1.

Amb aquesta de�nició, podem veure que també es compleix la propietat 2.

Proposició. Donat S un monoide, A un grup abelià i f : S → A un mor�sme, existeix un únic
mor�sme de grups f ′ : G(S)→ A tal que f ′ ◦ g = f on g és l'aplicació de Grothendieck.

Demostració. De�nint f ′(x− y) = f(x)− f(y), la demostració és anàloga a la de la Proposició 2.2.13.

1De fet, g és injectiva si i només si S és cancel·latiu.



Apèndix B

Categories i functors

En aquest apèndix es fa una breu i informal introducció a la teoria de categories. Per una introducció
més detallada, es pot consultar [5].

De�nició. Una categoria C consta de dues classes, juntament amb una família de funcions:

1. Ob(C ): Una classe d'elements que anomenem objectes.

2. Mor(C ): Una classe de conjunts disjunts, un per cada parella d'elements A,B de Ob(C ). A
aquests conjunts els denotem per Mor(A,B) i anomenem mor�smes de A a B als seus elements.

A més a més, per tot triplet d'objectes (A,B,C), existeix una correspondència associativa

c : Mor(B,C)×Mor(A,B) // Mor(A,C)

que anomenarem composició i escriurem c(g, f) =: g ◦ f .
Per cada objecte A també es demana que existeixi un mor�sme idA ∈ Mor(A,A) tal que per a tot

parell d'objectes (B,C) i tots els mor�smes g ∈ Mor(A,B) i f ∈ Mor(C,A) es compleixi g ◦ idA = g i
idA ◦ f = f .

Exemples.

1. Set és una categoria que té com a objectes els conjunts, com a mor�smes les aplicacions entre
conjunts i la composició usual.

2. Les categories Gr i Ab, que tenen com a objectes els grups i els grups abelians respectivament i
els mor�smes de grups com a mor�smes.

3. La categoria C∗ − alg, amb les C∗-àlgebres com a objectes, els ∗-mor�smes com a mor�smes i la
composició usual.

De�nició. Donada una categoria C , direm que C ′ és una subcategoria de C si C ′ és una categoria
tal que tots els objectes i mor�smes de C ′ són objectes i mor�smes de C , i la composició a C ′ és la
mateixa que la de C .

Exemple. Ab i C∗-alg són subcategories de Gr.

Una vegada de�nit el que són les categories, ens interessa estudiar les relacions entre elles. Per
fer-ho, es de�neix el concepte de functor covariant.
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62 Apèndix B. Categories i functors

De�nició. Siguin C i D dues categories. Un functor covariant F està format per un parell de corres-
pondències, que també denotem per F :

1. Una correspondència de Ob(C ) a Ob(D) que porta cada objecte A de C a un objecte F (A) de
D .

2. Una correspondència tal que, per a tot parell d'objectes A,B de C , porta els mor�smes g de
Mor(A,B) a mor�smes F (g) de Mor(F (A), F (B)) i que, a més a més, compleix les següents
propietats:

(a) F (idA) = idA per a tot A objecte de C .

(b) F (f ◦ g) = F (f) ◦ F (g) per a tot parell de mor�smes que es puguin composar.

Comentari. Si a la de�nició anterior es canvia la propietat 2 de manera que F porta mor�smes de
Mor(A,B) a Mor(F (B), F (A)) i que F (f ◦ g) = F (g) ◦ F (f), diem que F és un functor contravariant.

De�nició. Siguin C i D subcategories de Ab. Diem que un functor covariant F de C a D porta els
zeros als zeros si per a tot parell d'objectes A,B de C es compleix que F (0A,B) = 0F (A),F (B) on 0A,B
és l'aplicació que porta tot element de A al zero de B.

De manera anàloga, diem que un functor contravariant porta els zeros als zeros si F (0A,B) =
0F (B),F (A).



Apèndix C

Successions exactes

Encara que el concepte de successió exacta es pot de�nir en categories més generals, com ara la de
mòduls [5], ens centrem en de�nir successions exactes sobre les estructures tractades en aquest treball.

De�nició. Siguin {Ai}i∈Z una família de C∗-àlgebres (resp. de grups abelians) i {ϕi : Ai−1 → Ai}i∈Z
∗-mor�smes entre elles (resp. mor�smes de grups).

Diem que la successió

· · ·
ϕk−1

// Ak−1
ϕk // Ak

ϕk+1
// Ak+1

ϕk+2
// · · ·

és exacta a Ak si ker(ϕk+1) = Im(ϕk).
Diem que la successió és exacta si ho és a Ak per tot k ∈ Z.

Comentari. En el cas que existeixi k ∈ N tal que Am = {0} per a tot m > k i m < 0, escriurem
l'anterior successió com

0 // A0
ϕ1 // A1

ϕ2 // · · ·
ϕk−1

// Ak−1
ϕk // Ak // 0

Observem que aquesta és exacta a A0 si i només si ϕ1 és injectiva i que és exacta a Ak si i només si
ϕk és exhaustiva.

De�nició. Direm que una successió exacta és curta si té la forma 0→ A→ B → C → 0.

Exemple. Sigui ϕ1 : Z/2→ Z/4 de�nida per ϕ1(1) = 2 i sigui ϕ2 : Z/4→ Z/2 de�nida per ϕ2(1) = 1.
Llavors, la successió

0 // Z/2
ϕ1 // Z/4

ϕ2 // Z/2 // 0

és exacta i curta.

De�nició. Direm que una successió exacta curta 0 → A → B
h−→ C → 0 és escindida si existeix un

mor�sme secció s : C → B, és a dir, si existeix un mor�sme s tal que h ◦ s = idC .

Exemple. Siguin A i B dues C∗-àlgebres o dos grups abelians i siguin iA : A→ A⊕B i πB : A⊕B → B
els *-mor�smes inclusió de A i projecció en B respectivament. Llavors, la successió

0 // A
iA // A⊕B

πB //
B

iB
oo // 0

és escindidament exacta.
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Apèndix D

Límits inductius i C∗-àlgebres

Donada una successió d'anells i mor�smes

R1
ϕ1 // R2

ϕ2 // R3
ϕ3 // · · ·

volem fabricar un anell �límit� R.
Més en particular, de�nint els mor�smes ϕj,i := ϕj ◦ · · · ◦ ϕi per j ≥ i, ens interessa construir un

anell R i mor�smes ϕi,∞ : Ri → R tals que el següent diagrama sigui commutatiu

Ri

ϕi,∞
  

ϕj,i
// Rj

ϕj,∞

��

R

per a tot i, j ∈ N amb j ≥ i.
A més a més, també estem interessats en que R sigui universal. És a dir, si S és un anell i tenim

mor�smes φi,∞ : Ri → S tals que φj,∞ ◦ϕj,i = φi,∞ si j ≥ i, llavors volem un únic mor�sme τ : R→ S
tal que el diagrama

Ri

ϕi,∞

��

φi,∞

  

R
τ
// S

sigui commutatiu per a tot i ∈ N.

Proposició. L'anell R, que anomenem límit inductiu (o colímit) del sistema (Ri, ϕi), sempre existeix.

Demostració. Sigui R′ = t∞i=1Ri la unió disjunta dels Ri's. De�nim sobre R′ la relació ∼ següent:
Donats r, s ∈ R′ amb r ∈ Ri i s ∈ Rj , escrivim r ∼ s si existeix k ≥ max{i, j} tal que ϕk,i(r) =

ϕk,j(s).
De�nint R := R′/∼, deixem com a exercici pel lector comprovar que aquest anell compleix les dues

propietats que volíem.

Comentari. Canviant anells per grups abelians a les anteriors propietats, es pot veure de manera
anàloga a l'anterior demostració que sempre existeix el límit inductiu G d'un sistema (Gi, ϕi), on Gi
són grups abelians i ϕi són mor�smes de grups.

Tant per anells com per grups, escriurem R = lim
→
Ri i G = lim

→
Gi.
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Un cop de�nit el límit inductiu per anells i grups abelians, volem de�nir el mateix concepte per
C∗-àlgebres. Sigui doncs

A1
ϕ1 // A2

ϕ2 // A3
ϕ3 // · · ·

una successió de C∗-àlgebres i A0 el límit del sistema (Ai, ϕi) com a anells, també conegut com a límit
algebraic.

Comentari. El límit algebraic A0 és una ∗-àlgebra.

Proposició (Proposició 16.2. de [4]). Sobre el conjunt A0 de�nim la seminorma

‖x̄‖ = inf{‖ϕij(x)‖ | j ≥ i}, x ∈ Ai

Llavors, prenent l'ideal bilateral N = {x ∈ A | ‖x‖ = 0}, tenim que A0/N és una ∗-àlgebra normada.

De�nició. Anomenem límit inductiu, o C∗-àlgebra límit, del sistema (Ai, ϕi) a la compleció de la
∗-àlgebra normada A0/N .

Escriurem lim
→
Ai per fer referència a aquesta C∗-àlgebra.
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