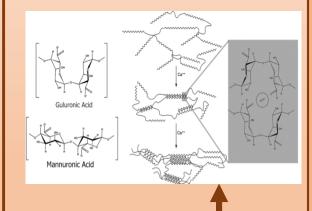

Reverse spherification vs. direct spherification

TYPE OF MECHANISM	TYPE OF FOOD	PRODUCTION PROCESS	PRODUCT OBTAINED
Direct spherification	Aqueous non-dairy and non-acidic liquids (Ph> 5)	 Liquid food + Alginate Calcium salt + Water Add drop by step 1 in step 2 Formation of calcium alginate 	Formation of gelled spheres in the interior.
Reverse spherification	Aqueous liquid	 Liquid food + Calcium salt Alginate + Water Add drop by step 1 in step 2 Formation of calcium alginate 	Formation of spheres encapsulating fat

Direct spherification


SA(1%) SA

Reverse spherification

Current uses:

- ➤ Food technology
- ➤ Biotechnology
- Medical and pharmaceutical sciences
- > Waste water treatment
- Immobilization of enzymes and their controlled release
- Covering of bad flavors of the ingredients
- ➤ Delivery of bioactive substances, drugs and food ingredients

Reasons why they are used: the lack of toxicity, relatively low cost, simple preparation, high compatibility and biodegradable capacity.

Alginate:

- It is randomly composed of two monomers: β-D-mannuronic acid (M-blocks) and α-L-guluronic acid (G-blocks), linked by glycosidic beta and alpha 1-4.
- ❖ Multivalent cations such as Ca² +, Ba² +, Zn² + can be combined with G-blocks replacing the hydrogen of the carboxyl group and forming calcium alginate (egg box structure).
- ❖ The resistance of the gel is correlated with the proportion and duration of the G-blocks.
- ❖ It is a polymer sensitive to changes in pH: it is only capable of gelling at pH between 5 and 7. Below 5 (acid solutions) or above 8 (basic solutions), gelation can not be carried out → In order to reduce acidity, sodium citrate (E-331) is used, since it dissolves easily and acts in an instantaneous manner.

A future project → Molecular Gastronomy meets 3D Printing: Layered Construction via Reverse Spherification

Ivet Martinez Garcia 20 de Juny 2018

