Design and simulation of an ELK-based logging
infrastructure

Josep Brugués 1 Pujolras

Abstract

En un mén on cada vegada els serveis al cloud, Internet, els sistemes automatizats, la Intelligencia
Artificial, els supercomputadors, etc. son una peca cada vegada més fonamental per a la vida dels éssers
humans, es fa necessari tenir una eina capa¢ d’analitzar tota 1’activitat registrada en els computadors.
Cal un sistema de gestié de logs.

Paraules clau Sistema de gestio de logs, Elasticsearch, Kibana, Logstash, ELK, Python

Abstract

In a world where cloud services, Internet, automatized systems, Artificial Intelligence, supercomputers,
etc. play a big role in the life of the human species, there is the necessity of having a tool capable
of analyzing all the activity registered on these computers. There is the need of a log management system.

Paraules clau Log Management System, Elasticsearch, Kibana, Logstash, ELK, Python

I. INTRODUCTION

24,689 petabytes. That is the quantity of
1 information that Cisco has predicted[1]

will be sent through Internet only this
year. Services based on the cloud are being
used more and more, and this has unimaginable
consequences on both processing and storage.
On the corporate level, this creates the necessity
of having an infrastructure capable of giving
service to all its users in real time. In 2017

e Contact email: bruguesjosep @outlook.com

e Bachelor’s Degree in Computer Engineering (Specialization in
Information Technologies)

e Project tutored by Angel Elbaz

e Course Year 2017-2018

only, Google processed almost 1,200 trillions of
searches, equivalent to 10 exabytes of information.

The increase stated above on the cloud services,
together with the boom of big data in the latest
years, has provoked the rise on the number of logs
—documentation produced automatically on each
relevant event on a particular system— produced
by the servers. These logs include information on
each operation that has been done in the systenﬂ
and they allow us to understand how complex
systems work, and that makes their analysis very

"Logs contain information on whether the operation has been
completed correctly or, on the contrary, there has been any error.
Additionally, they also include information about the operation:
timestamp, message, client, etc.

important. There’s only one problem: How can we
—as a medium-size company or a corporation—,
analyze that enormous quantity of logs? How
can we analyze them in an organized, fast and
effective way in order to detect errors or mis-
configurations? With a log management system.

A log management system gathers up all the
logs generated in the different components of the
system —DNS servers, web servers, mail servers
or the system itself— in order to analyze them,
extract information and display that information in
a simple —and understandable— way. Furthermore,
another important aspect is that log management
systems allow the correlation of information from
various sources so that new information can be
obtained, which could not be obtained from any
other way or it just would be hidden from us.
In that context, one of the most important log
management systems is ELK][2], acronym for
Elasticsearch[3], Logstash[4] i1 Kibana[5].

This project has been divided in two big
parts: the first stage will be an analysis of the
commercial and open source alternatives for a
log management system, as well as how they
work and how they can be configured. Apart from
that, the main focus will be on ELK, specially
on the more technical details about it, since it
will be the base for the second part, which will
be the implementation in Python of my own log
management system based on ELK. Furthermore,
I will explain the approach a small company
with a given network should take in order to
implement my management system, taking into
account that the log analysis will be centralized
in one computer, instead of doing the analysis on
the different components of the network.

II. STATE OF THE ART

Log management systems have been an
important tool to understand how complex
systems work and to find possible errors and
mis-configurations. Any management system
needs to be able to handle large amounts of logs,
normalize the information, be fast and precise,
as well as to be secure. Focusing on ELK, this

system is based in 3 modules that interact with
each other:

o Logstash is responsible for reading the logs
from different sources and normalize them.
That is, give them a common format.

 Elasticsearch is the log indexer, search engine
and analysis tool that lets the user to perform
searches and analyze big quantities of data in
a fast and efficient way.

e Kibana is the tool that visualizes the infor-
mation through a graphical interface. To do
so, Kibana performs searches with the API
provided by Elasticsearch.

Collect Search Visualize
& &
Transform Analyze Manage
@ L - — K
logstash elasticsearch kibana
Fig. 1. Interaction between ELK modules

Some log management systems, including
ELK, are designed with modularity in mind, and
they allow the user to expand capabilities with
plug-ins. Those plug-ins can be used in any of
the 3 modules, and can be either created by the
ELK developers or the community.

Over the past few years, and with the
momentum gained by Machine Learning,
companies have brought log management to the
next level, being able to predict, for example,
system performance and usage based on previous
statistics. That enables companies to improve their
scalability and reduce costs. It also allows the
prediction of anomalies in the system by making
a correspondence between the current system
status and events from the past.

ELK is not the only system out there, with
lots of alternatives —opensource and commercial—
available for both particulars and companies:

« Opensource: Graylog & Grafana

o Commercial: Scalyr & Splunk

All of them are also based on three modules
like ELK, being the only difference the extra

services that offer, such as cloud analysis and
custom support for companies.

I1I. METHODOLOGY AND DESIGN

The implementation of my own log management
system has been based on the structure and
methodology used in ELK, and has been written
in Python. Despite ELK being open source and
its modules available as packages in Python, I
decided not to use those packages. Instead, I made
the choice to start my implementation from scratch
based on ELK but without using parts of their
implementation, not only to have more freedom in
the design process but also for learning purposes.
In general terms, my implementation will comply
with all the objectives a log management system
has to do, although it will not implement any
Machine Learning characteristics.

In terms of the design, I took into the account
the modularity of ELK, and despite my design
not supporting plug-ins, it can be configured
in a dynamic way thanks to the use of JSON
configuration files, in which you can configure
different parameters, as will later be seen in this

paper.

A. Logstash

The Logstash module is in charge of both
collecting the logs from different sources in order
to centralize them into one place and normalize
the different log formats into a common and
easy-to-use format. In my implementation, I have
chosen JSON as the output format since it is
widely supported.

Another important aspect in my design is the
dynamic configuration, accomplished by using
a simple JSON file where the user can introduce
the logs that have to be scanned, as well as the
directory where those logs can be found. In Fig.
4 in the appendix the functionality of Logstash’s
dynamic configuration can be seen.

In terms of speed and reliability, I have
designed Logstash to take advantage of multi-
thread architectures, as each type of logs are

normalized in different threads. This ensures that
the normalization takes places almost in real-time.

For a generic type of log, this is the algorithm
used in the normalization process:

Algorithm 1 Logstash Normalizer
procedure NORMALIZER(directory)
normalizedLogs < newDict
logs < logFile
for log in logs do
parsedLog < parse(log)
normalizedLogs < mnormalizedLogs
+ parsedLog

copyToFile(normalizedLogs)

As of now, my implementation supports 3 types
of logs: HTTP, DNS and all application’s logs
that use the syslog format. In the first two cases
—HTTP and DNS— if used my own algorithm to
convert them to JSON format. For the syslog logs
I have used a third-party open-source parse that
is able to identify different syslog formats, so that
more applications can be supported. In Figures
5,6 & 7 it can be seen the different JSON format
used for the 3 types of log.

B. Elasticsearch

The Elasticsearch module performs two core
tasks: the indexation of the logs, and the
implementation of a Search API. The two
tasks are independent from each other, so any
client application can perform queries while the
indexation process is taking place.

The main task of the indexer is to put each log
into its correct index. The name of each index is
a time-stamp, so each index will contain only the
logs generated on that particular day. In addition,
the indexer has to make sure that any index is
not older than 30 days. The process takes place
both before and after the indexation task. For more
detail on the operation of the indexer task, the
algorithm works as follows:

Zhttps://gist.github.com/leandrosilva/3651640

Algorithm 2 Indexer Controller
1: procedure INDEXCONTROLLER(directory)
2: while True do
check-if-old-indexes(directory)
index-all-logs(directory)
wait

AN

In more detail, we can see how the process of
indexing all the logs works:

Algorithm 3 Log Indexer
procedure INDEXER(directory)

2: while True do > Keep indexing
timestamps < timestampsF'ile

4: logs < logFile
newlT'vmestamps <— newList

6: timestampM ap < newDict
newTimestamps < False

8: for 1og in logs do

logTimestamp —
log[Timestamp]
10: if logTimestamp is in

timestamps then
if logTimestamp is in
timestampMapKeys then

12: data < indexLogs
data < data + log
14: map(timestamp| < data
else > Create new Index

16: newT'imestamps < True
if logTivmestamp mnot in
timestampMapKeys then
18: data —
map(timestamp)| + log
map(timestamp| < data

20: updateIndexes()

The Search API is implemented independently
of Kibana’s graphic interface, so that the API can
be used by any client application.

In its current state, the search API supports 3
types of queries, very similar to those found in
SQL:

o COUNT queries obtain the number of logs
that comply the requirements specified in the

query.

« GROUP queries group (by a value of a
particular field) the logs that comply with
requirements specified in the query, so that
we can obtain the number of logs for each
value of the field selected.

« GROUP queries order the logs by a
value of a particular field and, at the same
time, they obtain information on another field.

The queries follow the following structure:

index type_logs field value [field value]
OPERATION [field]

The components of the query mean:

o Index: Indexes, separated by a comma, where
we want to perform the query. If the search
has to be done in all indexes, the keyword all
can be used.

o Logs: Types of logs we want to search. As
we seen before, the implementation supports
HTTP, syslog and DNS. If we want to perform
the query in all of them, the keyword all can
be used.

o Field: It can be any of the fields of the
types of logs that are being searched. For
instance, in HTTP, that can be textitclientIP,
identity, username, request, status_code, si-
ze_response, url and useragent.

o Value: Value of the field that is being searc-
hed. Note that multiple pairs of field-value can
be searched in the same query

o Operation: Operation that wants to be
performed in the query. Currently, the
implementation supports COUNT, GROUP
and ORDER.

As it has been stated before, the API is
independent from the user interface, so it can be
used by any client application. In order to do so,
the API gives the results in JSON format. I will
use a set of examples —in Fig. 8 in the Appendix
it can be seen the logs used for this— to show
how it works:

For the count query "27052018 http clientlP
11.234.205.99 sizeresponse all COUNT", the
API returns the result "’http-2°: ’clientlP’:

'11.234.205.99°, ’sizeresponse’: '5034°". As it
can be seen, it just returns the logs that match
the query —in JSON format— but only with the
fields specified by the user. With that information,
any application can display the result as they wish.

For the group query
clientlP all GROUP", the
result "’130.109.141.177°: 1,
1, ’11.234.205.99’: 1,

1, '188.228.2.144°: 1,

1, °23.59.179.134°: 1, ’160.11.63.101’: 1,
'91.245.28.250°: 1, °38.122.225.45’: 1". That
is, it counts the different occurrences of each
clientIlP value found in the HTTP logs. With
that information, any client application can, for
instance, create a bar plot to visualize the result.
Again, the result comes in JSON format, where
the keys are the different clientIPs and the values
are the number of times they appear.

"27052018 http
APl returns the
'26.130.80.179°:
'110.112.114.234°;
'243.177.243.74°:

For the order query "27052018 http clientlP
all sizeresponse all ORDER clientlP", the API
returns the result "’130.109.141.177’: ’count’: 1,
'sizeresponse’: 4992, ’26.130.80.179°: ’count’: 1,
'sizeresponse’: 4946, '11.234.205.99°: ’count’: 1,
'sizeresponse’: 5034, '110.112.114.234°: ’count’:
1, ’sizeresponse’: 4941, *188.228.2.144°: ’count’:

1, ’sizeresponse’: 5002, '243.177.243.74°: "count’:
1, ’sizeresponse’: 5092, ’23.59.179.134°: ’count’:
1, ’sizeresponse’: 5050, ’160.11.63.101: ’count’:
1, ’sizeresponse’: 4948, ’91.245.28.250’: ’count’:
1, ’sizeresponse’: 4955, '38.122.225.45°: ’count’:
1, ’sizeresponse’: 5072". That is, it orders —in a

descendant way— the logs for the number of time
they appear. The keys are the values of the field
that has been asked to order in the query, while
the values are a dictionary with information on
the occurrences and other fields introduced in the

query.

C. Kibana

For the development of Kibana’s Graphic
Interface 1 have wused Tkinter[6] framework
—already included in Python’s installation— since
it is easy to use and includes different layout

managersﬂ that facilitate the design. Throughout
the development, I have used the following:

o Grid Layout: This manager distributes the
components of the Ul in rows and columns.
Moreover, for each component, it can specify
if the component is going to be small or
large. That allows, for example, the obtention
of a column larger than the other one. The
manager has been used in the main view,
formed by 2 rows and 2 columns:

— Search Bar: occupies all the columns in
the first row. The bar is used to perform
searches using Elasticsearch’s API.

— Left panel: occupies the first column
of the last row, and the size is set to
be small. It shows the user the indexes
available for search.

— Right panel: occupies the second
column of the last row and, at the same
time, it contains a frame that has a grid
layout too —1 column and 2 rows—,
with 2 components:

* Graphic: occupies the first rows, and
displays a graphic with the results of
the query.

*x Log List: occupies the second row,
and displays all the logs that are a
match with the query performed.

o Pack Layout: This manager enables the
internal distribution of the components in
their parent and has facilitated the alignment
of the components inside their parents.

The resulting Ul can be seen in Fig. 9 in
the appendix. It is a simple but intuitive and
easy-to-use interface.

Finally, I will describe the methodology used in
the module to display results to the user, following
the 3 examples used in the previous subsection.

3Software components that have the ability to control interface’s
graphic elements in a smart way and without using distance units,
such as pixels.

For the count queries, I just count the number
of elements in the JSON response and display it
in a bar plot. The result can be seen in Fig. 10 in
the appendix.

For the group queries, I have decided to use a
bar plot in which the labels in the X axis are the
keys in the JSON response —that is the different
clientIP values— and the values in the Y axis are
the number of appearances.

For the order queries, I again user a bar plot,
in which the labels in the X axis are the keys
in the JSON response, while the left Y axis is
the number of occurrences. If there is a second
pair of field-value in the query —such as in the
example—, I create a second Y axis, on the right,
where the labels are dynamic, depending on the
values.

The graphics result of these previous 3 examples
are in the Appendix as Fig. 10, 11 & 12.

Moreover, in all cases I print all the logs that
are a match with the query, so users can have
more perspective and additional information.

D. File and directory structure

In order to accomplish all the work and to
achieve communication between the 3 modules,
the project follows a strict folder structure that
cannot be changed —if done, the functionality of
the whole system would be broken—.

In the following diagram it can be observed the
relationship between the modules, while on Fig.
13 in the Appendix there is the whole file and
directory scheme:

Kibana needs to know Elastic’s
directory in order to know the
available indexes

Logstash needls to know Elastic’s
directory in order to know where
to save all the logs

Logstash —— Elasticsearch ¢——— Kibana

[

Logs

Logstash needs to know the
location of all the logs, in order
to import them, normalize them
and save them in Elastic's
directory

Fig. 2. Relationship between the modules

IV. INSTALLATION AND
CONFIGURATION

The installation and configuration of my
log management system is quite easy, since it
only requires Python 3.6 and certain packagef]
installed in the machine that will perform all the
operations.

Let’s suppose that a corporation that has the
network from Fig. 2 wants to implement my de-
velopment in their systems:

|
W File Server
- 3

Workstations

Firewall
Intemet

L)

< > W

— Switch Router
_)
r —

Log management

Web Server
system

DNS Server

Fig. 3. Network Diagram

In order to centralize all the log management
into the machine ’Log Management System’ from
Fig. 2, we first need to send all the logs from the
different components —Web Server, for the HTTP
logs; DNS Server, for the DNS logs; Workstations,
for the logs from applications using the syslog
format— to that computer. In order to do so, we
can either configure a syslog server using UDP
over a VLAN or create a custom mechanism
to send the logs to the desired machine. If
we use the latter, that can be achieved, for
instance, using Pythorﬁ4]. That mechanism can
be configured as a one-time sender or a permanent
sender, so logs can be indexed in a permanent way.

4threading, queue, json, pyparsing, time, datetime, os, abc, tkin-
ter, numpy, matplotlib and sys.

>The configuration of the VLAN is necessary since the syslog
server sends the logs using UDP without any type of encryption.
That means anyone could read the logs if a VLAN is not used.

®The implementation would be based on sockets. In each mac-
hine, we would need to open an UDP connection with the central
machine and send all the logs that we read from the log file.

Once we have the log configuration ready, it
is time to configure the management system. In
order to do so, we need to have the 3 folders
with the Logstash, FElasticsearch and Kibana
implementations on the desired directory. After
that, we need to configure the 3 services with
their respective JSON configuration files, and run
the services:

For the Logstash service, there is only one
script to run: ’indexerpy’. If the configuration
is correct, the service will start normalizing the
desired logs and send them to the Elasticsearch
module.

For the Elasticsearch service, again there is
only one script to run: ’indexerpy’. The script
will both index all the already normalized logs
and keep the indexes maintained —that is, remove
the old indexes from the system, as per 30 day
policy—. The search API does not need to be run,
since it acts as a module that will be imported by
my Kibana implementation or any other 3rd party
client.

For the Kibana service, only ’kibana_ui.py’
need to run. As the name implies, it is just the Ul
that enables the user to perform queries using the
search API.

V. RESULTS AND CONCLUSIONS

First of all, in the examples I have performed
along this paper, I have used a small sample of
10 logs HTTP, generated on the same day —so that
all of them are in the same index—. The number
of indexes does not matter in the execution time,
it is the number of logs that matter. Despite that,
and with current microprocessors, a query takes,
at least for the purposes of my project, less than
a second. Despite that, if a large number of logs
is analyzed —circa 1M logs and beyond—, if
multiple queries at once are required, then several
instances of the UI are needed, since as of now
my implementation of Kibana cannot handle
multiple queries.

Secondly, as it can be seen in the examples,
the results obtained —and its display in the

Kibana interface— are quite simple, and no more
complex queries are available due to the limits of
the search API. Despite that, I don’t think that
the fact the the results are too simple mean that
my work is bad, not even close: I think that this
will push me into working more in it. Moreover,
I don’t think that simple results mean useless
results, since big part of the job is know what you
are looking for.

In the next lines I expose the conclusions
to which I have arrived by developing the log
management system and analyzing its behavior:

e On the one hand, I think that with this log
management system —and taking into account
that it has not been developed by a full team,
full-time— important —but basic— informa-
tion can be found in a small company or a
particular. The results obtain throughout this
development have been quite positive on this
aspect.

e On the other hand, and with the experience
not only with the development, but also
understanding how other log management
systems work -ELK, for instance—, I
have understood not only the importance
of this tools, but their most important
characteristics. Creating a good service from
scratch in a tight period of time is hard, and
that’s why my software will be incomplete
and might have some bugs. Despite that,
in my opinion, the most important thing
will be that my design will be able to be
improved over time without changing its core.

VI. FUTURE IMPROVEMENTS

My log management system is okay for
simple and specific queries configured in a small
environment, but as I stated before, it would
not perform quite well in big environments.
Improvements could be made in future versions
in all of the 3 modules.

Logstash could be improved by supporting
more types of logs and more outputs apart
from JSON. This can be accomplished with 2

approaches: the first one would be the support
for plugins, as ELK does: that would allow the
quick configuration and support from modules
developed by third parties. The second one would
be keep the development private and implement
all the options all by myself.

Elasticsearch could be improved with support
for more queries. Right now, the queries have to
be in the right format, and only 3 types of query
are allowed. With more queries, any user could
go deeper in the logs to find hidden —and more
valuable— information. Another option would be
that each index is a SQL, so the queries could be
performed directly to those databases, without the
need to develop and support more queries.

Finally, the main limit in Kibana’s UI is the
fact that it can only display information on a
certain query. I think it would be appropriate to
bring support for multiple views in the UI, apart
from query results.

ACKNOWLEDGMENT

I just wanted to thank Angel for his supervising
and guidance throughout the development of this
project and for his ideas and corrections that have
helped me during these past months.

REFERENCES

[1] |C1sco SYSTEMS, Cisco Visual Networking Index: Forecast
and Methodology, 2016-2021. [ONLINE]

[2] [ELASTIC, ELK Stack, 2018. [ONLINE]

[3] [ELASTIC, Elasticsearch Documentation, 2018. [ONLINE]
[4] [ELASTIC, Logstash Documentation, 2018. [ONLINE]

[5] [ELASTIC, Kibana Documentation, 2018. [ONLINE]

[6] PYTHON SOFTWARE FOUNDATION, Tkinter Documentation,
2018. [ONLINE]

[7] PYTHON SOFTWARE FOUNDATION, Sending and receiving
logging events across a network, 2018. [ONLINE]

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813991
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813991
https://www.elastic.co/elk-stack
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html
https://www.elastic.co/guide/en/logstash/master/getting-started-with-logstash.html
https://www.elastic.co/guide/en/logstash/master/getting-started-with-logstash.html
https://wiki.python.org/moin/TkInter
https://wiki.python.org/moin/TkInter
https://docs.python.org/2.4/lib/network-logging.html
https://docs.python.org/2.4/lib/network-logging.html

APPENDIX

In the following figure you can see Logstash’s configuration file, where you can configure which
type of logs have to be normalized and where to find them. You can also configure the location of
Elasticsearch’s directory.

{
"syslog":{
"active": false,
"directory": "/Users/Josep/Desktop/LogGenerators/syslog-generator-master/"
}
Ildnsll: {
"active": false,
"directory”: "/Users/Josep/Desktop/LogGenerators/dns-generator/"
}
Ilhttpll :{
"active": true,
"directory”: "/Users/Josep/Desktop/LogGenerators/Fake-Apache-Log-Generator-master/"
}
"elasticsearch":{
"directory”: "/Users/Josep/Documents/GitHub/log-gestor/elasticsearch/"
}
}

Fig. 4. Dynamic configuration in Logastash using JSON

In the following figures the different JSON formats used for the logs are displayed:

{
{ "http_id":{

"dns_id":{ "type": "http",
"type": "dns", "clientIP": "*,
"timestamp": ["day", "month", "year", "time"] videntity": ",
“clientIP": "*, "username": "",
"protocol": "", “"timestamp": ["day", "month", "year", "time"],
"send_receive": "", "resquest": "","
"record_type": "", "status_code": "',
“flag": "", "size_response": "",
"domain": "" myrlv: e,

} "useragent": "",

¥ }
}
Fig. 5. JSON format used in DNS logs
Fig. 6. JSON format used in HTTP logs
{
"syslog_id":{
"type": "syslog",
“"timestamp": ["day", "month", "year", "time"],
"hostname": "",
"appname": "",
"message": "",
}
}

Fig. 7. JSON format used in syslog logs

In the following figure they appear the logs used for the query examples in Methodology section,
subsection B:

[] @® | access_log_20180527-193436.log

5 Q 4} ¢ i) Q Buscar
Mostrar Ara Esborrar Tornar a carregar Compartir
130.109.141.177 - - [27/May/2018:19:36:39 +1000] "PUT /posts/posts/explore HTTP/1.8" 200 4992 "http://www.potts.com/main/" "Mozilla/5.@ (X11; Linux x86_64; rv:1.9.5.20) Gecko/2014-03-17
22:46:48 Firefox/3.8"
26.130.80.179 - - [27/May/2018:19:39:02 +1000] "GET /wp-content HTTP/1.@" 200 4946 "http://www.farrell.com/main/" "Mozilla/5.@ (Windows 98) AppleWebKit/5312 (KHTML, like Gecko) Chrome/
45.0.870.0 Safari/5312"
11.234.205.99 - - [27/May/2018:19:42:19 +1008] "PUT /explore HTTP/1.0" 20@ 5034 "http://douglas.info/app/post/" "Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_6_8; rv:1.9.6.208) Gecko/
2010-05-10 08:41:05 Firefox/3.6.14"
110.112.114.234 - - [27/May/2018:19:43:28 +1000] "PUT /app/main/posts HTTP/1.0" 200 4941 "http://www.johnson.com/" "Mozilla/5.@ (X11; Linux i686; rv:1.9.6.20) Gecko/2016-12-21 15:48:33
Firefox/3.6.15"
188.228.2.144 - - [27/May/2018:19:44:47 +1000] "GET /wp-content HTTP/1.@" 200 5002 "https://www.lopez-hart.org/search/index/" "Mozilla/5.@ (Windows; U; Windows NT 5.01) AppleWebKit/
533.45.6 (KHTML, like Gecko) Version/4.1 Safari/533.45.6"
243.177.243.74 — - [27/May/2018:19:46:40 +1000] "POST /wp-admin HTTP/1.0" 200 5092 "http://www.suarez.com/list/about/" "Mozilla/5.@ (Macintosh; U; Intel Mac 0S X 10_12_1; rv:1.9.3.20)
Gecko/2016-11-05 18:28:49 Firefox/3.6.4"
23.59.179.134 - - [27/May/2018:19:51:33 +1000] "GET /app/main/posts HTTP/1.0" 200 5050 "https://www.pruitt-lewis.com/main/wp-content/privacy.htm" "Mozilla/5.@ (Windows NT 6.1; as-IN; rv:

1.9.1.20) Gecko/2013-05-20 04:47:25 Firefox/3.8"
160.11.63.101 - - [27/May/2018: 5:43 +1000] "GET /apps/cart.jsp?appID=5054 HTTP/1.0" 200 4948 "https://www.tate.net/author.htm" "Mozilla/5.@ (Macintosh; Intel Mac 0S X 10_12_4; rv:
1.9.2.20) Gecko/2010-03-28 04:06:27 Firefox/3.8"

91.245.28.250 - - [27/May/2018:19:59:29 +1000] "GET /app/main/posts HTTP/1.0" 200 4955 "https://www.carter-anderson.org/posts/wp-content/search/home.html" "Mozilla/5.@ (Macintosh; PPC
Mac 0S X 10_9_@) AppleWebKit/531@ (KHTML, like Gecko) Chrome/40.0.842.0 Safari/5310"
38.122.225.45 - — [27/May/2018:20:00:21 +1000] "DELETE /app/main/posts HTTP/1.@" 4@4 5072 "http://coleman-nichols.com/main/" "Mozilla/5.@ (X11; Linux i686; rv:1.9.5.20) Gecko/2018-03-12

12:53:08 Firefox/3.6.7"

Fig. 8. HTTP logs used in the example before being processed by the Logstash module

In the following figure you can observe Kibana’s user interface with a sample query already performed
in one of the 2 available indexes.

‘o0 0 Log Management System v1
16042018 http clientIP all GROUPl Search

Available Indexes

15042018
16042018 Query Results

Count

Logs that are a match with the query

Log number 0:

type: hitp

clientlP: 131.174.154.24

timestamp: [[16', 'Apr', 2018, '20:50:36]

request: "PUT /searchtag/iist HTTP/1.0"

status_code: 200

size_response: 4938

url: "http//Awww.gonzalez.com/post.html"

useragent: "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_7_6; rv:1.9.6.20) Gecko/2011-05-19
03:27:11 Firefox/3.8"

Fig. 9. Kibana’s user interface

In the following figures it can be seen the graphic results for the examples performed:

Query Results

0.0 0.2 0.4 0.6 0.8 1.0
Count - clientIP: 11.234.205.99 size_response: all

Fig. 10. Results for the COUNT query

Query Results

Results for the GROUP query

Fig. 11.

I 5080

I 5060

[.asuodsat azis|]

I 5040
I 5020
- 5000
- 4980
I 4960
4940

Query Results

38.122.225.45

91.245.28.250

160.11.63.101

23.59.179.134

243.177.243.74

188.228.2.144

110.112.114.234

11.234.205.99

26.130.80.179

130.109.141.177

1.0 1

0.8 A

0.6
0.4
0.2
0.0 -

uno)

Fig. 12. Results for the ORDER query

¥ | elasticsearch

&

I

configuration.json
indexer.py

v [indexes

B
ya

&

¥ 27052018.json
logs.json
search_api.py
timestamps.json

¥ [kibana

B

s

configuration.json
kibana_ui.py

v [logstash

&

[~/ = [~

configuration.json
constants.py
dns_normalizer.py
http_normalizer.py
logstash.py
normalizer.py
syslog_normalizer.py

avui, 12:35 p. m.

12 juny 2018, 4:54 a. m.
10 juny 2018, 9:10 a. m.
27 maig 2018, 12:12 p. m.
27 maig 2018, 12:11 p. m.
27 maig 2018, 12:11 p. m.
15 maig 2018, 6:22 a. m.
27 maig 2018, 12:11 p. m.
avui, 12:35 p. m.

11 maig 2018, 5:08 a. m.
12 juny 2018, 8:10 a. m.
avui, 12:35 p. m.

10 juny 2018, 9:20 a. m.
14 maig 2018, 11:56 a. m.
22 abr 2018, 3:47 a. m.
21 abr 2018, 10:31a. m.
13 juny 2018, 3:47 a. m.
13 juny 2018, 3:47 a. m.
15 abr 2018, 8:50 a. m.

358 bytes
6 KB

4 KB

Zero bytes
11 KB

52 bytes
92 bytes
13 KB
459 bytes
79 bytes
2 KB

4 KB

3 KB

627 bytes
3 KB

Carpeta

JSON

Python Source
Carpeta

JSON

JSON

Python Source
JSON

Carpeta

JSON

Python Source
Carpeta

JSON

Python Source
Python Source
Python Source
Python Source
Python Source
Python Source

Fig. 13.

Directory scheme of the whole project

	INTRODUCTION
	STATE OF THE ART
	METHODOLOGY AND DESIGN
	Logstash
	Elasticsearch
	Kibana
	File and directory structure

	INSTALLATION AND CONFIGURATION
	RESULTS AND CONCLUSIONS
	FUTURE IMPROVEMENTS
	References

