
BACHELOR’S DEGREE FINAL PROJECT, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Final Report
Agent-based application development and

performance analysis using EcoLab

Daniel Beltrán Mora

Abstract

High Perfomance Computing(HPC) is a distributed computational technique that provides a solution to computational
problems that are too complex or large enough for desktop computers. Although there are so many computational methods
out there for develop applications within a HPC approach, in this paper, only agent-based modeling(ABM) is treated. ABM
is a computational method used to create and experiment with models composed by a set of entities called agents which make
decisions autonomously. This paper is mainly about the development of a benchmark application for the EcoLab Framework
which is a agent-based modeling and simulation(ABMS) platform for HPC system . In where the simulation part, consists
in the experimentation with a computational type model that simulates the actions and interactions of autonomous agents
with the goal of assessing their effects on a system as a whole. The resulting application is used for perform a performance
analysis within the Ecolab framework and also provides a way to validate it and the agent-based model implementation.

Keywords– EcoLab, Agent-based modeling, High Performance Computing , Distributed, Application
Performance

F

1 INTRODUCTION

HIGH PERFOMANCE COMPUTING(HPC)[8] is a
computational technique, used when the per-
formance matters , that provides a solution to

computational problems that are too complex or large
enough for desktop computers. A HPC environment is
essentially a fast local area network of computational nodes
where the nodes are composed by one or more processing
chips as well as its own memory. It is for this reason that
the computational problems programmed for a HPC must
be split into many sub-problems so every node has a task
to realize. This form of programming is known as parallel
computing in which a sequential application is divided
into many smaller applications called threads that work
simultaneously. Developer, on the other hand, will have to
develop a way for communicate , synchronize and organize
these threads to piece together the application in order to
have the same result than in the sequential application.
There are many ways to develop a parallel application
and in this paper it is proposed to use an Agent-based
modeling(ABM)[3] framework.

Agent-based modeling(ABM) is a computational method
used to create and experiment with models composed by
a set of entities called agents which make decisions au-
tonomously. The behaviour of these agents are determined

• Email: daniel.beltranm@e-campus.uab.cat
• Specialization in Computer Engineering
•Work tutored by : Anna Sikora
• Course 2017/18

by a set of a individual agent preferences and makes de-
cisions based in these preferences and the iterations be-
tween agents which can influence in these decisions. There
are a lots of frameworks that implement this computa-
tional method with a HPC approach like RepastHPC[11]
and flame[5] but this paper is about the development of a
particular benchmark for agent-based models in the EcoLab
framework [19] which is a agent-based modeling and simu-
lation platform for high performance computing where the
simulation part consist in the experimentation with a com-
putational type model that simulates the actions and interac-
tions of autonomous agents with the goal of assessing their
effects on a system as a whole. EcoLab needs an agent-
based model to function in a HPC environment. In order to
define an agent-based model, EcoLab , comes with Class-
desc[12] and Graphcode[20] libraries that together provides
a toolkit which greatly reduces the complexity of the com-
munications and interactions methods.

As a Proof of concept(PoC), I implemented in EcoLab
framework a benchmark application, which is a test used to
measure the relative performance of a system, specifically
designed for an ABM. This benchmark name is prisoner’s
dilemma model and it has been implemented in two oth-
ers similar frameworks called Repast HPC and Flame. The
grace of this benchmark is that it takes into consideration
most of common characteristics of these ABM applications
and includes parameters for influencing their relevant per-
formance aspects. The goals of implement this benchmark
are to have a relevant way to validate the framework and
the model implementation and also to collect data for the
prisoner’s dilemma model.

This paper is divided in the sections: EcoLab Descrip-

July of 2018, Escola d’Enginyeria (UAB)

2 EE/UAB COMPUTER FINAL PROJECT:Agent-based application development and performance analysis using EcoLab

tion which introduces the EcoLab framework ,Methodology
which explains the steps in order to perform the PoC, Back-
ground which contains concepts related to EcoLab frame-
work, Benchmark which explains the PoC , Results which
explains the PoC performance analysis , Conclusions which
explains the personal ideas and thoughts about the PoC
and EcoLab framework and lastly the ACKNOWLEDGE-
MENTS.

2 ECOLAB DESCRIPTION

EcoLab is an agent-based modeling and simulator frame-
work designed by Russell K. Standis designed for C++ pro-
grammers that allows to the user to implement his model in
C++ and simulate them in a script language called TCL[tcl]
which is capable of access to the methods and variables
of the model allowing to perform experiments dynamically.
TCL also provides a series of instruments that can be cou-
pled together with an agent-based model at runtime. Eco-
Lab has support for HPC environment in which the agents
are distributed over an arbitrary topology graph.

In order to serialize the agents of the model it makes
use of an included library called Classdesc which is
done by the same author. It extends the functionality
of C++ providing a reflection system[13] which allows
to serialize in a binary way every agent of the mod-
els. This mechanism is useful for the communication
between the agents of the model. The implementation
of the Message Passing between different computers is
done by another library called Graphcode, included in
the framework, which is based on the MPI[9] protocol.
The most interesting characteristics are as follows:

• The model is implemented as a C++ object and so is
capable of use all of the C++ standard library without
limitation.

• It uses a scripting language TCL to access to the
model’s methods and instance variables allowing to
perform experiments re-coding for it only the TCL
scripts without recompile the model.

• EcoLab models can use Graphcode and Classdesc li-
braries to implement a distributed network of agents
over an MPI-based cluster[6] computer.

2.1 Classdesc
Object reflections is a mechanism for facilitating the imple-
mentation of serialization[14], which is the process of cre-
ate binary data representing a object and in order to works
it requires a knowledge of the structure of the object.

Classdesc is a program that has been included in the Eco-
Lab platform and describes a set of functions that imple-
ments an object reflection class for C++. Classdesc parses
an input program and emits function declarations that know
about the structure of the objects. These functions only
needs to handle class, struct and union definitions and what
is emitted in the object descriptor, is a sequence of functions
calls for each base class and member. It also implements a
TCL obj class descriptor that creates a set of functions for
the TCL interpreter that allows to query or set C++ object’s
members.

Once a class definition has been parsed by Classdesc
and the class descriptors are embedded into the original
program. An object of that class can be serialized into a
buffer object. Once the buffer is packed it can be transferred
within the MPI-based cluster machines.

Classdesc is mainly utilized in Graphcode in order to pro-
vide a message passing and serialization mechanisms for
complex objects necessary for the the agents allocated in
the distribute graph of Graphcode.

2.2 Graphcode

Graphcode abstracts the message passing codes that pro-
vides Classdesc in order to provide a richer framework that
is easier to use.

It is a graph that contains a set of distributed objects
where the computation takes place within the vertex of the
graph and the communication takes place along the edges
of the graph. The objects inside a graph are interconnected
via a neighbourdhood.

Graphcode objects may be located on any processors and
are capable of be migrated dynamically to any other. These
can be acceded through variables of type Classdesc::objref
that contains the object ID, it’s location (proccesor rank)
and can be dereferenced in order to obtain access to the
object variables. Since the objects and be anywhere each
process maintains a map in order to keep track of all the
objects in the graph which is necessary for regenerate the
neighbourhood linklist after a migration.

To create a graph, it is necessary to call to method
Graph::AddObject and adding the links to each object to
form the graph.

In order to migrate objects between processors it is only
necessary to change the object location and Graphcode will
arrange automatically a set of MPI Classdesc functions to
achieve the change and so the developer only needs to
call to synchronize methods. Additionally it can call to
PARMETIS[10] parallel graph partitioner to partition the
graph across the available processors in an efficient way.

2.3 Communication

While working under Graphcode the communication pat-
tern is defined by the graph links. If an object computation
involves the neighbouring objects, it is necessary to per-
form an update into this neighbourhood. In an updating to a
neighbourdhood, Graphcode stores the results into a back-
ing buffer graph and then it swaps the backing buffer with
the original graph. The only communication required is to
ensure that a copy of all neighbours that resides on remote
process are being transferred to the process in which the ob-
ject resides. It can be done calling to Prepare Neighbours()
before starting the computation.

There are another types of distributed call such as
gather(), partition objects() , distribute objects().

2.4 Structure

EcoLab was mainly designed for a specify model called
EcoLab model and in the recent years, according to the
author, it has been the basis of a program called Minsky,

AUTHOR: DANIEL BELTRAN MORA 3

which supports dynamic systems approaches to economics
that don’t need HPC.

However the author affirms that it can be adapted to any
other agent-based model and is willing to test it perfor-
mance in a HPC system.

This is possible because it was designed in a generic way
and a few already models, like jellyfish, demonstrates this
statement.

Figure 1 presents a file structure to design an HPC agent-
based model.

Fig. 1: File Structure

From figure 1 the following include files was utilized:

• Tcl++: Serve as a binder of TCL.

• TCL obj: Allows to tcl the usage of objects created in
C++.

• Pack: Performs the object serialization and allows to
perform checkpoints.

• ClassdescMp: Extends Pack functionality providing
functions to serialize the objects within a distributed
platform.

• Graphcode: Allows the abstraction of the objects that
forms part of a distributed Graph.

In order to perform some execution. It is mandatory build
an experiment in a TCL script that acts as the main code of
the application. This TCL binds the C++ model and his
agents, the parameters for initialize the model and a toolkit
of instrumentation.

3 BACKGROUND

• RepastHPC: Is a free open source toolkit designed for
High Perfomance Computing written in C++ that and
makes use of Message Passing Interface (MPI) in or-
der to handle the interactions and actions of the agent’s
within the system. It provides a support for the devel-
opment of extremely flexible agent-base models and
allows to dynamically access and modify the param-
eters of the model. Because repast Hpc is a tool for
make agent-based models it provides a suit of features
for evaluate, execute and creating these models with a
certain degree of ease.

• Flame: is a template driven framework for agent-
based modelling on parallel architectures.It provides a

flexible agents modulation which allows to implement
a diverse set of models in mostly of the systems.

• Flame and RespastHPC evaluations: Both frame-
works have a similar evaluation explained in the pa-
per Designing a Benchmark for Assessing the Per-
formance of Parallel Agent-based Simulation Appli-
cations[1] from the authors Andreu Moreno, Anna
Sikora and Eduardo César.

• MPI: is a message-passing standard used for the com-
munication between machines within a cluster envi-
ronment . All operations are expressed as functions,
subroutine or methods linked to C++ and FORTRAN
languages. There are several well-tested and efficient
implementations of MPI. One of these is OpenMP
which is used in this PoF.

• Cluster: Set of computers connected to each others
through fast local area networks. These computers act
like one large machine that internally plans the work-
load in a distributed way.

• C++: It is a multi-paradigm programming lan-
guage that allows to use the pragmatics of struc-
tured,imperative, genetic and oriented to objects pro-
gramming.

• TCL: it is an interpreter which contains embedded a
command oriented toolkit language. In this Proof of
concept TLC is used for call functions and variables of
the C++ EcoLab model.

• HPC: Is a computational technique that , given a huge
application, relies in parallel computation in order to
resolve it in a efficient,reliable and quickly way.

4 METHODOLOGY

The main goal of this PoC is to develop the prisoner’s
dilemma model[1] in the EcoLab framework in order to per-
form a performance analysis in the resulting application.

This goal was reached following a set of tasks in sequen-
tial order as follows:

Firstly, is the research of documentation about EcoLab
the reason behind this is because the EcoLab is a bit un-
known so there are essential things to know like for what it
is, how can it be installed in a centOS system without root
privileges, what are the packet dependencies that it requires
in order to work in a HPC, which libraries it uses, and how
implement and simulate own user models. However there is
a lack of documentation in reference of how to implement
EcoLab within in centOS mpi-based cluster. That is caused
by a set of diverse factors which involve that EcoLab is still
in developing, there are very few users, so it isn’t very well
know, and the lasted years it hasn’t been used in HPC envi-
ronments.

Secondly, Is the Configuration and installation of Eco-
Lab platform in the CentOS cluster provided by DASCO
department.

Thirdly, Is the acquisition and development of the pris-
oner’s dilemma model in EcoLab. The development con-
sists in replicate, in the most accurate way, the same be-
haviour and interactions of the agents that are developed in

4 EE/UAB COMPUTER FINAL PROJECT:Agent-based application development and performance analysis using EcoLab

prisoner’s dilemma model of RepastHPC version but using
for it the tools that EcoLab provides through Graphcode.

Fourthly, Is the validation test performed to ensure that
the first approach is valid, which consist in the search and
resolve of all possible bugs from the development of the
previous task.

Fifthly , Is the performance test performed to ensure that
there isn’t anomalies in the results.

Sixty, Is the acquisition of results and conclusions.
Finally, is the writing of this paper which explain the

work done and results obtained.

5 BENCHMARK

All Proof of concept is done in a centOS mpi-based
cluster. This cluster has twelve nodes of two sockets
in which there are six cores, provided by DASCO de-
partment. Also, it has a list of modules available which
includes gcc/6.10 , openmpi/1.8.1 or/and 1.10.1 and
papi/5.4.3. That are necessary for the running of EcoLab.

The version installed of EcoLab platform is 5.51 which
contains version 3 of Graphcode and version 3.35 of Class-
desc.

5.1 Installation
In order to install EcoLab, there
are a set of mandatory requirements.

The installation is performed locally because it was been
taken over in a environment without root privileges. This
has resulted a set of problems which are:

1. Dependencies has to be searched and installed manu-
ally. These are installed in $home/makeInstall.

2. EcoLab isn’t thought to be installed locally and it
doesn’t recognize the file structure of the DASCO clus-
ter.

3. Because the EcoLab is in a long-term state developing
it uses a old-fashioned makefile this means that mostly
of the makefiles that EcoLab uses must be adapted to
a local installation manually.

4. It is mandatory to load the modules of openmpi,papi
and gcc before perform any installation.

5. Lastly the environment variables of the DASCO clus-
ter must be configured so that all local packages can
be recognized by the various makefiles of EcoLab and
it dependence’s.

The solution to these problems are mostly resolved using
the listing 1 script at start of the session in which /home-
/pfc/dbeltran must be equal at your $HOME path.

1 # ! / b i n / bash
2 # −∗− ENCODING: UTF−8 −∗−
3 module un lo ad openmpi / 1 . 8 . 1
4 module un lo ad gcc / 7 . 2 . 0
5 module un lo ad p a p i / 5 . 4 . 3
6 module un lo ad l i k w i d / 4 . 0 . 1
7 module l o a d gcc / 6 . 1 . 0
8 module l o a d openmpi / 1 . 8 . 1

9 module l o a d p a p i / 5 . 4 . 3
10 module l o a d l i k w i d / 4 . 0 . 1
11 e x p o r t PKG CONFIG PATH=$HOME/ m a k e I n s t a l l / l i b /

p k g c o n f i g : $PKG CONFIG PATH
12 e x p o r t INCLUDE PATH=/ u s r / i n c l u d e :$HOME/

m a k e I n s t a l l / i n c l u d e : $INCLUDE PATH
13 e x p o r t CPATH=/ u s r / i n c l u d e :$HOME/ m a k e I n s t a l l /

i n c l u d e : $CPATH
14 e x p o r t PATH=/ u s r / b i n : / u s r / s b i n :$HOME/ m a k e I n s t a l l /

b i n :$HOME/ m a k e I n s t a l l / s b i n : $PATH
15 e x p o r t LD LIBRARY PATH=/ u s r / l i b : / u s r / l i b 6 4 :$HOME/

m a k e I n s t a l l / l i b :$HOME/ m a k e I n s t a l l / l i b 6 4 :
$LD LIBRARY PATH

16 e x p o r t LIBRARY PATH=/ u s r / l i b : / u s r / l i b 6 4 :$HOME/
m a k e I n s t a l l / l i b :$HOME/ m a k e I n s t a l l / l i b 6 4 :
$LIBRARY PATH

17 e x p o r t LD RUN PATH=$LD LIBRARY PATH :
18 e x p o r t EcoLab HOME=$HOME/ m a k e I n s t a l l
19 e x p o r t VPATH=$EcoLab HOME / i n c l u d e
20 e x p o r t C l a s s d e s c =$EcoLab HOME / b i n
21 GIT DISCOVERY ACROSS FILESYSTEM= t r u e
22 e x p o r t GIT DISCOVERY ACROSS FILESYSTEM
23 DIRS=$DIRS : $EcoLab HOME :$HOME/ u s r : $EcoLab HOME /

u s r : $EcoLab HOME / X11R6 : / u s r / X11R6
24

Listing 1: confenv.sh

Once the environment is configured, the next step is lo-
cate the most important EcoLab packages dependencies
which are:

• GCC 4.5[7]: Allows to compile the C++ code. 4.5
is the minim version, The installation was performed
with 6.1.

• TCL/TK 8.5 and BLT 2.4 [15][22]: TCL is already
explained in section two meanwhile TK and BLT ex-
tends TCL functionally for graphical applications.

• Cairo[4]: A graphical library to perform png images.

• Openmpi 1.8.1: It is a free implementation of the
message-passing standard(MPI). EcoLab only works
in 1.X.X version.

However, it also requires
Zlib[23],Readline[17],UNURAN+PRNG[16][21]
and Berkley DB[2] in order to be successfully in-
stalled. Although, the only ones that are used
in the developed model are the important ones.
Note that there could be others dependencies for these
packages which relies in the user OS.

Once located all packages. In order to in-
stall them, is necessary use the bash com-
mands of make, make install and configure.
Generally, the packages are installed by this set of
instructions that download,uncompressed, choose the
installation path and install them.

1. WGET direct link https://packages.ubuntu.com/ got
plenty of them

2. tar fx path of downloaded package

3. cd path of uncompress package

4. ./configure –prefix=$home/makeInstall

5. make -j && make install

So now, the EcoLab framework can be installed by the
following set of instructions:

AUTHOR: DANIEL BELTRAN MORA 5

1. Download it from github repository along side with
Classdesc and Graphcode

2. tar fx path and cd into.

3. mkdir Graphcode and decompress Graphcode there.

4. mkdir Classdesc and decompress Classdesc there.

5. cd into models folder and customize the makefile
deleting the setting $EcoLab HOME line

6. cd .. and compile EcoLab with make -j PRE-
FIX=$HOME/makeInstall MPI=1 NOGUI= GCC=
UNURAN=1 PRNG=1 AEGIS= && make install

7. In order to generate any example model you can access
into pathEcoLabPackage/models and perform make
-j MPI=1 NOGUI= GCC= UNURAN=1 PRNG=1
AEGIS= . This instruction creates a binary associate
to one model.

5.2 Model development
Prisoner’s dilemma model is a benchmark model for paral-
lel Agent-based modeling and simulation(ABMS) applica-
tions which is used to measure a set of relevant factors that
affects to the performance of ABMS applications. These
factors are Communication volume, frequency and pattern ,
Amount of computation , Distribution and evolution of the
workload and Size of the test.

5.2.1 Structure Description

In order to successful compile the model in the Ecolab
framework is necessary to code the logic of the model and
the behaviour of his agents in one file TCL, one file cc and
one file h in which:

• file.tcl: Contains the main file of the application.

• file.cc: Contains the logic that defines the model and
his agents.

• file.h: Contains the structure of the model and his
agents.

Figure 2 presents a class diagram that can be looked for get
an idea of the model structure.

5.2.2 Class EcoLabDemoAgent

The behaviour and data of the agents are defined in the class
EcoLabDemoAgent. it contains a set of variables that are
used for identify an agent in the model such as id and rank
where rank determine the original creator of the agent and
a set of variables to store results about the interactions be-
tween agents. This class also contains a array of N size in
order to increment the cost of communication. The func-
tions and methods that describe the behaviour of the agents
are play, compute, cooperate and setm. in order to initial-
ize the agents it is done with EcoLabDemoAgent newa-
gent(Agent ID,Processor RANK,type) which creates a new
agent newagent.setm(newm) which initialize the buffer ar-
ray.

Fig. 2: Class Diagram

5.2.3 Class Ecolab point

In order to add agents into EcoLab platform these must be
attached to a virtual cell that form part of a distributed graph
served by Graphcode NS::graph. This virtual cell is called
EcoLab point which has access into a vector of agents and
is converted into a GRAPHCODE NS::Object type. Also, it
haves a set of methods used for iterate through these agents
and add/delete new ones.

5.2.4 Class Grid2D

The initialization of the grid is done with the function in-
stantiate(size x,size y) from the class Grid2D which inher-
its GRAPHCODE NS::graph. Every process that calls this
function is gonna create a part of the grid and will create
the neighbourhood of every own cell. The grid size is de-
termined by the variables nmapx , nmapy and the amount
of MPI processors. Finally, in order to be visible by all
processors, it calls to this-¿rebuild local list(); and this-
¿Partition Objects()

6 EE/UAB COMPUTER FINAL PROJECT:Agent-based application development and performance analysis using EcoLab

5.2.5 Class Ecolab Grid

This class inherits from Grid2D and EcoLab point. The ex-
istence of this class is for have a mechanic that allows to the
model to iterate through the Graph Grid and also through
graph cell agents. The iteration through cells is done with
a set of methods alike to the ones defined in EcoLab point
but this time are created for the Grid2D class. Because it
also inherit from EcoLab point, the iteration methods de-
fined inside it, can be used by this class. Additionally, it has
methods for redistribute the graph which is a method to dis-
tribute the agents along a grid space of determined proces-
sor and also it migrates cells between processors. Finally, in
the method step(size t nmapxy);, Is defined the schedule of
one iteration that is composed by EcoLabDemoAgent::play,
EcoLabDemoAgent::compute and EcoLab point::move.

5.2.6 Class EcoLabDemoModel

This class inherit EcoLab grid and Classdesc::TCL obj t.
It has the initial model parameters and it is mainly used
to start the program with the method init() which ini-
tialize the grid and also has doSomething() that exe-
cutes EcoLab grid::step(size t nmapxy). Through the use
of the inherit Classdesc::TCL obj t and the macro Class-
desc ACCESS(EcoLabDemoModel); it can be accessed by
a TCL script that has access into the entire C++ model,

5.2.7 Communication Description

Because this model is implemented in a cluster, the pro-
cessors could be allocated in a different machines. So
now the model has to have a communication mechanic to
acknowledge the different grid states in a running execu-
tion. This communication mechanic is ruled by OpenMPI
which is an implementation of MPI. However, though the
use of the tools that EcoLab provides, The model imple-
mentation uses a high-level abstraction of openmpi which
is the Graphcode class and the graph structure that it uses.
In a graph, each process has a map of the graph whether
they own the cell or are in a remote processor so if a local
cell requires the information of a another cell, Graphcode
already knows how to handle the communication. However,
these cell objects need to be encapsulated as a Classdesc
pointer aka Classdesc::ref in order to be serialize. Other-
wise, the information of the cell could be lost because every
process has different memory map. The map is represented
by objref which is a class pointer that inherits from Class-
desc::ref to actual cell object and additionally it has proc
member which is attached to actual processor that own the
cell and ID member that represent a id within the graph.

A short synopsis of Graph communication tools is as fol-
lows:

• rebuild local list(): Reconstruct the list of objrefs lo-
cal to the current processor, according to the proc
member of the objrefs.

• Prepare Neighbours(): For each object on the local
processor, ensure that all objects connected to it are
brought up to date, by obtaining data from remote pro-
cessors if necessary.

• Partition Objects(): Call the ParMETIS partition to
redistribute the graph in an optimal way over the pro-
cessors.

• Distribute Objects(): Broadcast graph data from pro-
cessor which has rank 0, and call rebuild local list() on
each processor.

• gather(): Bring the entire graph on processor which
has rank 0 up to date, copying information from remote
processors as necessary.

The model implementation needs to communicate in the
functions is as follows:

• EcoLab grid::move(size t nmapxy): Once all pro-
cessors change their own grid cells proc member, the
manner in which it acknowledges the changes along
the grid is using gather() and distribute object(). Once
all grid is updated, in order to be balanced it calls to
Partition objects() and then calls rebuild local list();
for successfully acknowledge the balance.

• EcoLab grid::step(size t nmapxy): Before to call to
agents it calls to partition objects to ensure that all ob-
jects are brought up to date.

5.3 Execution
In order to execute the implemented model it is necessary
to create a TCL script. This script acts as the main file so is
necessary to specify the initial parameters that are attached
to EcoLabDemoModel member variables and the logical
sequential calls to the model C++ functions in order to a
correct behaviour.

The script should be alike to the one as follow:

1 # ! Demo 03 Model
2 p roc s i m u l a t e {} {
3 u p l e v e l #0 {
4 s e t x 0
5 s e t T o t a l t i m e 0
6 p a r a l l e l u se namespace DemoModel
7 s e t s t o p A t [l i n d e x $a rgv (1)]
8 p a r a l l e l coun tOfAgen t s [l i n d e x $a rgv (2)]
9 p a r a l l e l s eed [l i n d e x $a rgv (3)]

10 p a r a l l e l nmapx [l i n d e x $a rgv (4)]
11 p a r a l l e l nmapy [l i n d e x $a rgv (5)]
12 p a r a l l e l nmapxy [l i n d e x $a rgv (6)]
13

14 p a r a l l e l i n i t
15 p a r a l l e l addAgent
16 w h i l e {$x < $ s t o p A t } {
17 p u t s ” N e w I t e r a t i o n ”
18 s e t T o t a l [t ime { p a r a l l e l doSomething}]
19 i n c r x
20 p u t s $ T o t a l
21 }
22 }
23 }
24

25 # p u t s ” [l i n d e x $a rgv (1)] ”
26 i f {$argc==7} { s i m u l a t e } \
27 e l s e { p u t s ” USAGE I S : mpirun −np X . /

D e m o 0 3 . t c l <s topAt> <countOfAgents> <seed> <
nmapx> <nmapy> <nmapx∗nmapy> ”}

Listing 2: MainScript.tcl

In which: /beginitemize /item #!Demo 03 Model: is
the executable file that results from the compilation of
the model. /item use namespace: allows to access into

AUTHOR: DANIEL BELTRAN MORA 7

Demo 03 Model variables, methods and functions. /item
parallel instruction allows to all processors to perform a ac-
tion simultaneously. /enditemize

6 RESULTS

This section shows some results obtained from the EcoLab
framework using the benchmark implementation described
in section 5. The experiments have been executed in a ma-
chine with 72 cores (6 cores/ node). Although only four
nodes were available.

First, I have conducted three different set of experiments
in order to evaluate the scalability of the EcoLab frame-
work.

The first set of experiments have the same number of
agents(10000), an extra size of 256 B for each interaction
,a grid size of 300x300 units, and an extra amount of work
for each agent corresponding to the computation of a FFT
on a table of 16KB.

Figure 3 shows that EcoLab framework communications
are low enough to allow an increase in performance.

Fig. 3: Speed UP results from 4 to 24 nodes/core and from
2 to 4 nodes/core

For the second set of experiments, the number of nodes/-
core has been fixed to 24 and the number of agents has been
varied from 2000 to 12500 rest is the same than previous
set of experiments. Figure 4 shows that increasing the num-
ber of agents has a noticeable impact which is due by an
increased amount of interactions and an increased amount
in compute. It is particularly noteworthy that increase the
number of agents adobe 10000 has an extra cost probably
due to an non-sequential increment in the interactions costs.

For the third set of experiments, the experiments are alike
the second set of experiments but now with the extra size of
256B were changed into 16B for each interaction. Figure 5
shows that in fact decreasing the size of interactions has a
positive impact into the performance and also allows to have
more agents in the same grid space of size 300x300units.

Lastly, I used a tracing instrumentation tool called
TAU[18] in order to records a detailed log of events that
allows to the user to see when and where routine transitions
and communications take places. With this tool I can see
an overview of the agents iteractions that takes place in the
model developed.

In order to get a clear vision of the interactions between
agents, I performed an experiment with 4 cores in which
each core is allocated in a different node, with 10000 agents
allocated and a extra size of 256B for each interaction a

Fig. 4: Time elapsed results with 24 nodes/core varying the
amount of agents

Fig. 5: Speedup of interactions of 16B relative to 256B

grid size of 300x300 units, and an extra amount of work for
each agent corresponding to the computation of a FFT on a
table of 16KB. Figure 6 shows a communication overview
in which each yellow line represents a bunch of messages
sent between processors. Figure 7 shows the initialization
of the grid in which each process creates it own grid space.
Figure 8 and 9 shows an DoSomething interaction, in these
views we can see that the amount of work allocated in each
processors changes in dynamically way. However it isn’t
balanced and according to the Partition Objects() function
which uses PARMETIS it should be.

Fig. 6: A Communication overview

8 EE/UAB COMPUTER FINAL PROJECT:Agent-based application development and performance analysis using EcoLab

Fig. 7: Initialization of the grid and agents

Fig. 8: DoSomething Communication Iter N

Fig. 9: DoSomething Communication Iter N+1

7 CONCLUSIONS

Although one could think that the installation is an trivial
task it wasn’t. I see there a somewhat big downside with
concerning EcoLab platform because it has zero informa-
tion about how to install it locally in a Linux distribution so
one can go through a lot of problems that isn’t documented.
Over the course of the installation process I had to install
one to one dependencies that figured in EcoLab documen-
tation the problem resides in the ones no listed caused by the
Linux distribution that is explained is only ubuntu while the
implementation is allocated in a CentOS cluster. Further-
more, in a local installation, one must edit manually every
old-fashioned makefile of the EcoLab platform in order to
correctly set path and even compilation flags that doesn’t
correctly set in the parameters options.

The others problems are related to the execution and us-
age of the compiled models. The models and his agents has
to been written in one file, the TCL script has to have the
same name as the binary associated to the model and must
be called in the first sentence of the script. This doesn’t
need to be a problem but I wasn’t be able to locate these
little details in the documentation.

Implement your own model in the EcoLab platform is
hard to do in a first instance, mostly by the leak of explained

examples. However as you acquire experience with it be-
comes easier. This is so nice because I got the felling that
once you implement one model, if the platform possibility
convince you, you can implement the next one much more
easier.

Another reason about this difficult is the little few users
of the application. thus,cause an important leak on example
implementations and documentations apart from the author
ones. Also, this has a negative impact into the EcoLab plat-
form because it potential can be easily hidden.

I must say that , as well as the author, that I’m agree with
him about the flexibility of the platform. This thought is
because you can handle the communication using an high-
level library through the use of Graphcode, which is capable
of handle a high ratio of possibles HPC models, but it also
use a lower-level library through the use of ClassdescMP
which is similar to MPI and mostly extends it serialization
competence.

As future work this could be expanded in others HPC
environments and compare its performance with different
hardware configurations also it would be nice to compare
the EcoLab framework with others ABM like RepastHPC
and Flame.

8 ACKNOWLEDGEMENTS

This project would have not been possible without DASCO
cluster. Special thanks to my tutor, Anna Sikora and Ed-
uardo César from the Autonomous University of Barcelona
(UAB).

REFERENCES

[1] Anna Sikora Andreu Moreno and Eduardo César.
“Unpublished: Designing a Benchmark for Assess-
ing the Performance of Parallel Agent-based Simu-
lation Applications”. 2018.

[2] Berkely DB. http : / / www . oracle .
com/technetwork/database/database-
technologies / berkeleydb / overview /
index.html. Accessed:21-04-2018.

[3] Eric Bonabeau. “Agent-based modeling: Methods
and techniques for simulating human systems”. In:
Proceedings of the National Academy of Sciences
99.suppl 3 (2002), pp. 7280–7287.

[4] Cairo library. http://cairolibrary.org/.
Accessed:21-04-2018.

[5] AL Chin et al. “Flame: An approach to the paral-
lelisation of agent-based applications”. In: Work 501
(2012), p. 63259.

[6] Cluster definition. https://web.archive.
org/web/20111027215420/http:/www.
clusters.nom.es/. Accessed:21-04-2018.

[7] GNU GCC. GCC C++ Standard Library.

[8] Ananth Grama et al. Introduction to parallel comput-
ing. Pearson Education, 2003.

AUTHOR: DANIEL BELTRAN MORA 9

[9] Rolf Hempel. “The MPI standard for message
passing”. In: International Conference on High-
Performance Computing and Networking. Springer.
1994, pp. 247–252.

[10] George Karypis. “METIS and ParMETIS”. In: En-
cyclopedia of parallel computing. Springer, 2011,
pp. 1117–1124.

[11] Paulo Leitão, Udo Inden, and Claus-Peter Rücke-
mann. Parallelising multi-agent systems for high per-
formance computing. Vol. 6. 2013, p. 1.

[12] Duraid Madina and Russell K Standish. “A sys-
tem for reflection in C++”. In: Proceedings of
AUUG2001: Always on and Everywhere (2001),
p. 207.

[13] Duraid Madina and Russell K Standish. “A sys-
tem for reflection in C++”. In: Proceedings of
AUUG2001: Always on and Everywhere (2001),
p. 207.

[14] Duraid Madina and Russell K Standish. “A sys-
tem for reflection in C++”. In: Proceedings of
AUUG2001: Always on and Everywhere (2001),
p. 207.

[15] John K Ousterhout and Ken Jones. Tcl and the Tk
toolkit. Pearson Education, 2009.

[16] PNRG library. http://statmath.wu-wien.
ac . at / software / prng / index . html.
Accessed:21-04-2018.

[17] Readline library. https://launchpad.net/
ubuntu/+source/readline. Accessed:21-04-
2018.

[18] Sameer Shende. “Profiling and tracing in linux”. In:
Proceedings of the Extreme Linux Workshop. Vol. 2.
Citeseer. 1999.

[19] Russell K Standish and Richard Leow. “EcoLab:
Agent based modeling for C++ programmers”. In:
arXiv preprint cs/0401026 (2004).

[20] Russell K Standish and Duraid Madina. “Classdesc
and Graphcode: support for scientific programming
in C++”. In: arXiv preprint cs/0610120 (2006).

[21] Unuran library. http://statmath.wu-wien.
ac.at/unuran/. Accessed:21-04-2018.

[22] Brent B Welch, Ken Jones, and Jeffrey Hobbs. Prac-
tical programming in Tcl and Tk. Prentice Hall Pro-
fessional, 2003.

[23] Zlib library. https : / / zlib . net/.
Accessed:21-04-2018.

