BACHELOR’S DEGREE THESIS IN COMPUTER ENGINEERING, SCHOOL OF ENGINEERING (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Why Neural Networks And Deep Learning Are
The Future In Machine Learning

Daniel Ulinic (1362218)

Abstract

Basat en el cervell huma, el desconegut més gran de la ciencia fins a I’actualitat, les xarxes neuronals profundes han estat
recentment en el radar de la majoria dels investigadors. El seu interés es basa en fets. Algorismes d’inspiracié biologica que
repliquen el funcionament del sistema neuronal huma capagos d’aprendre mentre estan sota la supervisié correcta i amb les
configuracions adequades. Avui en dia, I’aprenentatge €s un atribut associat directament a 1’ésser huma. Ser capag de fer-ho
denota intel-ligéncia. Per tant, I’interés sobtat de passar aquestes caracteristiques a les maquines. L’estat de I’art conclou amb
molts exemples com ara maquines capaces de mantenir una conversa adequada, guanyar videojocs, pintar imatges fins a cotxes
autosuficients. Com un cervell, el disseny de la xarxa neuronal es basa en capes de neurones artificials connectades enviant
senyals quan s’activen. En conseqiiéncia, 1’aprenentatge profund és un conjunt de teécniques potents per desencadenar les neurones
correctes i I’aprenentatge en xarxes neuronals. El proposit d’aquest article ¢s dissenyar un algoritme intel-ligent capag de distingir
digits manuscrits mitjangant el conjunt de dades reunit de una base de dades de codi obert des d’on pot entrenar i aprendre.

Index Terms

Xarxes Neuronals, Deep Learning, CNNs, Aprenentatge Automatic, Python, Intel-ligeéncia Artificial, TensorFlow, TensorBoard.

Abstract

Based on human brain, the biggest unknown to science to this day, deep neural networks have recently been on the radar of
most researchers. Their interest is based on facts. Biologically-inspired algorithms replicating the functioning of the human neural
system whom are capable of learning while under the correct supervision and with the right adjustments. Nowadays learning is an
attribute directly associated to mankind. Being capable of doing so denotes intelligence. Therefore the sudden interest on passing
on this features to machines. The state of the art concludes with many examples such as machines able of maintaining a proper
conversation, beating video games, painting pictures to self driving cars. Like a brain, neural network’s design relies on layers
of artificial neurons connected and sending signals when triggered. Accordingly, deep learning is a set of powerful techniques
for triggering the right neurons and learning in neural networks. The purpose of this paper is designing an intelligent algorithm

capable of distinguishing handwritten digits using datasets from an open source database from where it can train and learn.

Index Terms

Neural Network, Deep Learning, CNNs, Machine Learning, Python, Artificial Intelligence, TensorFlow, TensorBoard.

I. INTRODUCTION
NEURAL Networks (NNs) [1] and Deep Learning are

supervised, machine learning methods, which can

also be qualitative. By supervised, one understands
the algorithms are guided by class-labeled data in order to
achieve specific pre-determined results. The learning process,
therefore qualitative rather than quantitative is carried out by
specifying labels as the correct outcomes.

The objective of this study is to train a deep learning
algorithm to differentiate between image inputs of handwritten
digits from 1 to 10 while accomplishing the implementa-
tion of functional Neural Networks using the well-known
programming language, Python, thus reaching the highest

o Contact Email: dani.ulinic@gmail.com

e Bachelor’s Degree in Computer Engineering (Specialization in Informa-
tion Technologies

e Tutor: Jordi Casas Roma (dEIC)

e Year 2017/18

<+

possible level of accuracy comparable to the actual state of
the art results. Meaning, if not as high performance results
at least overpassing a threshold of 90.00% of accuracy. The
deep learning process will consist in training, learning and
validating the dataset collection of 60,000 thousand images
representing handwritten digits gathered from the open source
MNIST Database [2]. The images from the database are to be
distinguished between the training dataset and the test dataset,
50,000 and 10,000 respectively.

The first approach consisted in implementing a standard
single layer neural network serving as basis of the study
where most of the machine learning concepts were introduced
due to the low level of complexity that features and better
understanding for future developments. In order to improve
the accuracy, new techniques were used or the entire network
structure was changed leading to new models.

This paper is structured as follows. Section I, a brief intro-
duction and the goals to be achieved. Section II will focus on
the actual state of the art regarding neural networks which will
conduct to a later comparison with the work achieved within

“February” of 2018, Engineering School (UAB)

DANIEL ULINIC: WHY NEURAL NETWORKS AND DEEP LEARNING ARE THE FUTURE IN MACHINE LEARNING 4

the present article. Section III will elaborate the tools and
techniques used whereas Section IV will focus on designing
a basic single layer Neural Network (NN) with Python as
a first contact towards more complex deployments. Section
V will evaluate deep learning studies and features extraction
techniques and choose suitable ones. Finally, sections VI, VII
and VIII will be dedicated to discussion over the results, future
work on this topic and conclusions, respectively.

II. STATE OF THE ART

The human brain is a highly complex, nonlinear, and parallel
computer. It is capable of performing certain computations
such as pattern recognition, motor control, etc. many times
faster than the fastest digital computer in the world. Its
structure consists of many layers of neurons connected by
synapses. Synapses are capable of adapting, and that is what
most of learning is, by changing their effectiveness. This
process starts when neurons receive an input and each input
line is controlled by a synaptic weight which can be either
positive or negative. The synaptic weights adapt so that the
entire network learns. Hence humans can recognize objects,
understand language or control their bodies.

A neural network does just that. Its distributed structure
and its ability to train and learn allows generalization, the
throughput of reasonable outputs for new inputs not encoun-
tered during training.

The benefits of neural networks also intended to test through
this paper are nonlinearity, good mapping response from
inputs to outputs, adaptivity, evidential response and con-
textual information.

The first Neural Networks appeared in the 1950’s. Their
structure was simple and only consisted of one hidden layer.
At that time they were not given much use or importance
since outputs did not seem accurate when the dataset escalated
in size. Figure 1 represents the schematic of a basic neural
network.

Input Hidden Layer Output

=0,

Q9O

&1

Fig. 1: Artificial Neural Network scheme model

It was not until a few years ago the interest of researchers
was regained. By adding more hidden layers to the model
outstanding results were obtained which led to self-driving
cars or face and speech recognition. Those neural networks
with a high number of layers (two or more) are known as
”deep neural networks” and are characterised by their learning
capabilities.

Around the year 2000, many pattern recognition algorithms
started to appear but it was not until the Deep Convolutional
Neural Networks (CNNs) that the movement was considered
revolutionary. In 2003 [3], the benchmark was set to a 0.40%
of loss using the MNIST Database. In 2006 [4] CNN based on
Graphics Processing Unit (GPU) obtained a 0.39% loss with
the same MNIST database.

Later in 2010, a new MNIST Database record was estab-
lished with a 0.35% loss made possible not by a CNN, but
rather by an ensemble GPU only implementation of the Back
Propagation (BP) algorithm, 50 times faster than any Central
Processing Unit (CPU) model version. Taking into account
the fact that these results were accomplished with a 3 to 5
decades old algorithm such as BP, the performances are worth
mentioning. Case in point, this led the investigators to think
that it should be better to go on improving hardware perfor-
mances rather than the model itself. The following years were
focused in testing and comparing algorithms and actual human
beings. In 2012, human-competitive performances or better-
than-human recognition rate as stated in [5] was achieved with
accuracy, 99.46%. The model used was a multi-column deep
convolutional neural network.

Therefore the goal for this study is reaching at least a
90.00% level of accuracy over the test dataset in order to have
a reasonably comparable outcome with the state of the art
results mentioned previously. In order to do this as explained
in Section I, a single layer neural network was the basis used
to introduce machine learning concepts and serve for future
more complex neural network developments.

III. METHODOLOGY

Implementation will be based on using Tensor Flow [6],
CPU version, Python’s newest open source framework de-
signed by Google for dealing with the insurgent large-scale
machine learning movement as reviewed in [7]. The main
feature of Tensor Flow are the front-end functions that give
transparency to lower-level programming. Since computations
can become very complex and confusing, to make it easier to
understand and debug, Tensor Board is also available, which is
a set of visualization tools. The code implemented in Python
is reshaped for suitability and maximization of Tensor Board
use.

Modeling the neural network will be the first approach. The
main concepts are inputs, weights, bias, learning rate, neuron
hidden layers, activation functions, loss function, labels, accu-
racy and outputs.

Each input will be given a number of nodes to start with
and the hidden layers are going to be defined. The essentials
of deep learning are the so-called techniques “activation
functions”. Each neuron in the layer can be considered as one
activation function and the inputs going through it, depending
on which one it is, will affect the output in one way or another.

Therefore, each hidden layer is a set of neurons which all
have the same activation function. If a second hidden layer
would have another activation function defined, all neurons
of the respective layer would implement it. Their purpose is
focused on feature extraction for more accurate performances

DANIEL ULINIC: WHY NEURAL NETWORKS AND DEEP LEARNING ARE THE FUTURE IN MACHINE LEARNING 5

by sampling the inputs to the point that unnecessary details
will not interfere with prediction. In this study the activation
functions are non-linear, hence it tests the non-linearity of each
and every network model.

The inputs are declared as a unique placeholder of a single
flattened 28 by 28 pixel MNIST images which are to be
processed by the several activation functions for as many
hidden layers present in each neural network model.

The weights are real numbers expressing the importance
of the respective input to the output in vector type data. The
neuron’s output is determined by whether the weighted sum
>-; = w;x; of all of the inputs plus a so-called constant “bias”,
passing afterwards through the activation function, gives a
neuron more weight and to be the one to output its result
rather then the other neurons.

It is a good practice initializing the weights randomly and
change afterwards with the optimization functions such as
Back Propagation (BP) algorithm until adapting the learning
process for generalization resolution. The Back Propagation
algorithm it is applied repeatedly during the training process to
correct the weights based on the prediction (from the output, at
the end of the algorithm’s iteration) all the way to where inputs
are inserted to the network. The error to propagate backwards
in the network, in order for each model to learn is calculated
cach iteration by the Cross Entropy loss function as shown in
equation (1).

CrossEntropy = — Z Y/ -log(Y;) (1)

Where Y; are the actual probabilities and Y; is model’s
computed probabilities. It indicates how bad the prediction on
a single example was, calculating the error between the true
value (labels) and the value the system predicted, respectively.
The true values are one hot encoded. Furthermore, there is a
vector of Os and 1s for each input representing the actual value
of the input, whether it is a 2 or a 3 or any other digit from 1 to
10 which is later compared to system’s prediction to compute
the loss error.

To properly adjust the weight vector an algorithm that com-
putes the gradient vector for each weight it is used indicating
by what amount the error would increase or decrease if the
weight were increased by a tiny amount. The weight vector is
then adjusted in the opposite direction to the gradient vector.

The learning rate is the step chosen so the algorithm
converges or reaches an optimal solution which usually is
the negative gradient vector indicating the direction of steep-
est descent in a high-dimensional space of weights values.
It indicates how the algorithm moves towards to the local
minimum starting with an initial value and updating it till
the loss function reaches an optimal solution or the output
error is low on average. It is relevant for how fast or slow the
algorithm learns.

Tensor Flow provides a built-in optimization algorithm,
the stochastic Gradient Descent Optimizer, which allows the
model to learn and it is directly correlated to the concept of
learning rate. By computing the outputs and the errors of a
set of inputs, this algorithm calculates the average gradient

for those examples, and adjusts the weights accordingly. Its
implementation is shown in Algorithm 1.
Algorithm 1

optimizer =
tf.train.GradientDescentOptimizer (LR)

with tf.name_scope ("train"):

train_step =
optimizer.minimize (cross_entropy,
global_step=global_step)

The bias is a measure that indicates how easy it is to get the
neuron to output. In the present study the bias was initialized
always at 0.1, regardless the neural network model, and taking
the shape or dimension of the number of neurons of the next
layer to which it outputs.

A simple schematic illustrating most of the definitions above
can be found in Figure 2.

outputnode

X

X,

X3

activation funciton

inputnodes

Xo(bias)
Fig. 2: Simplified and zoomed in, data flow in a neural network

Where x;, w; and y; represent the inputs, weights and
outputs, respectively. Also, one can identify the weighted sum
as Y and the activation function of the neuron.

For a better clarification on how weights and biases are
visually processed, Figure 3 represents their evolution through
the training process using Tensor Board. The figure mainly
indicates the learning process is happening and values along
the code run are changing from zero at the beginning to ranges
of [-1, 1] and [-0.6, 0.6], respectively. This happens while the
gradient is being calculated and fractions of the vector that
points in the direction of the minimum loss, are used to update
biases and weights. This update is usually obtained by adding
the learning rate discussed previously.

It is useful to check updates and histograms if parameters
are diverging to +/ — oo or if the biases become very large.
The weights, as defined in the code, have an approximately
Gaussian (normal) distribution, after some time. For biases, the
histograms start at 0, and usually en up being approximately
Gaussian.

Moreover, in order to evaluate each model, an accuracy
parameter was defined as the percentage of correctly recog-
nized digits. Test were carried out while saving the model each
time, a learning rate following a polynomial decay or a precise
0.003 and over 100, 1,000 and 10,000 iterations. It is important
that the iterations are scalable, as the more epochs performed
the more learning is achieved. An epoch in machine learning
context means the iterations needed for training once all over

DANIEL ULINIC: WHY NEURAL NETWORKS AND DEEP LEARNING ARE THE FUTURE IN MACHINE LEARNING 6

the dataset data. Obviously, with 100 iterations, each iteration
with an input of 100 MNIST images non-replaceable, the
training will only be done over 1,000 examples. For reaching
a data overall training, the iterations number should be on
epoch = 501’880 = 500 iterations. Therefore, 1,000 iterations
will mean training twice the overall inputs and so on. There
is a small batch of 100 inputs for each iterations due to
when applying the loss function from one image to another
the algorithm already has acquired knowledge over the 100
previous and the probability to actual get to a local minimum
are higher rather than processing one image at a time. Each
training batch gives an estimation of the average gradient over
all the remaining examples, leading to more accurate results
on new inputs from the test batch.

Finally, noting that the tests were made with a personal com-
puter Intel Core 17-4900MQ up to 4.1GHz, a 4GB dedicated
NVIDIA graphics and 32GB of RAM.

IV. SOFTMAX SINGLE LAYER MODEL

This section describes a basic implementation of a Tensor-
Flow 10-neuron single linear layer model. This model will
be used later to compare with more complex ones. Figure 5
illustrates the model built visualized in Tensor Board. Since
the neurons are a parameter to define, the representation is not
that accurate and in the model one can only see the different
blocks used to train the algorithm and the connections between
them.

train

cross_entropy accuracy | §

L 7
N
Cisory

labels
softmax init

L 9

nputs

Fig. 5: TensorBoard graph visualization single layer model

This single layer model prototype it is based on the Softmax
Regression algorithm which is used for multi-class classifi-
cation. The prediction it does for a given input, are relative
measurements of how likely it is that the image falls into each
of the 10 target classes. The generated values are between 0-1
with a total sum of 1.

Once implemented and functional, as a first approach a
rescarch test was initiated to see how relevant the learning
rate really is. In both cases, Figure 6 and Figure 7, the Y axis
represents the level of performance and the X axis illustrates
the number of iterations made. This learning rate test was

conducted in order to point out that the choosing of a correct
one is relevant to this study. For this test, a level of 90.00% of
accuracy was reached when the learning rate was 0.003 and
when reduced to 3e-05 an accuracy of 75.00% was obtained.

Learning Rate: 0.003, 1000 iterations

1.0 4

0.8

0.6

0.4

— train accuracy
- test accuracy

0.2 1

T T T T
200 400 600 800 1000

o

Fig. 6: Python plot of the accuracy test of the model

Learning Rate: 3e-05, 1000 iterations

—— ftrain accuracy
—— test accuracy

0.8

0.7 4

0.6

0.5

0.4

0.3

0.2

0.1

0.0

T T T T
200 400 600 800 1000

o4

Fig. 7: Python plot of the accuracy test of the model with low
learning rate

One can see that the learning rate chosen in Figure 6 is
indeed the proper one. The model learns faster over the first
iterations. It is also important to note that if the learning rate
is chosen wrong, too big or too small it could end up with
results such as in Figure 7.

If the step is too big it will miss the minimum while
searching surroundings whereas never converging. On the
other hand, if it is too small the result would be more precise
although it will converge at a slower rate, conducting to a
significantly time increase.

Figure 3 represents the accuracy and the cross-entropy,
both behaving as they should. Cross-entropy decreasing while
the model learns and the error between the predicted and
the original digit gets lower by every iteration with the BP
algorithm.

With this model the highest performance obtained was
with a learning rate of 0.003 over 10,000 iterations, within 4

DANIEL ULINIC: WHY NEURAL NETWORKS AND DEEP LEARNING ARE THE FUTURE IN MACHINE LEARNING 7

EEEE softmax/weights

1.00 . 0.600

softmax/biases

0.600
0.200

0.300

0.00
-0.200

-0.600

-0.300

-100 -0.600

o T
La hd

Fig. 3: TensorBoard biases and weights visualization

minutes and 38 seconds with an accuracy over the test dataset
of 92.52%.

V. DEEP LEARNING STUDY

So far the study in Section IV has been based on one
classification layer, Softmax. In order to proceed with the
objectives of this study three activation functions were used,
namely: Sigmoid, ReLu and Convolutional non-linear rectify-
ing functions.

The previous code used for the single layer was used to
implement these three functions.

Regarding the batch of images processed on each iteration,
the number remained the same, preferably the small amount of
100 images. The code structure and its design it is resembling
to the single layer one.

Despite the similarities, there were some changes regarding
the learning rate which was changed to follow a polynomial
decay since seemed that decreasing the learning rate mean-
while the execution of the algorithm is much successful. If not
carefully chosen, results in a badly performing model which
could lead to what is known among scientists as vanishing or
exploding gradient problem [8]. Reached a certain point on the
deep learning, the algorithm can not move forward unless the
steps get smaller. The polynomial decay applies a polynomial
decay function to a provided initial learning rate to reach an
end learning rate in the given decay steps. This in code is
shown in Algorithm 2.

Algorithm 2

Polynomical decay learning rate

global_step = tf.Variable (O,
trainable=False)

starter_learning_rate = 0.003

end_learning_rate = 0.0001

decay_steps = 10000

learning_rate =

tf.train.polynomial_decay (starter_

learning_rate, global_step,
decay_steps,
end_learning_rate,power=0.5)

Finally, since deep learning study in order for the algorithm
to obtain better convergence results, the dropout regularization
technique was used. It is an optimization applied due to the
overfitting on the loss function. Moreover, the overfitting issue
is when reached a particular point in the training in which

accuracy/accuracy

cross_entropy/cross_entropy

0.800

0.600

0.300

— ra
L = La

Fig. 4: TensorBoard accuracy and cross-entropy visualization

the algorithm has memorized the training examples, it stops
learning to generalize to new situations. Therefore, dropout
is a technique to deactivate each iteration, a set of neurons
which will make the biases and the weights of that particular
neuron to not change and the activation function to be 0 and
therefore be slightly boosted next iteration. The probability to
keep neurons in the neural network has been established to be
invariant at 75.00% for all the models. Therefore at each itera-
tion a 25.00% of the total neurons are being deactivated. This
technique was applied and implemented aiming to increase the
level of accuracy.

A. Sigmoid Function

Fig. 8: Sigmoid function representation

The Sigmoid function is a continuous function through
time (X axis) which is zero for the negative part and one,
otherwise. The Figure 8 illustrates it.

The model implemented at first with this function consisted
of four layers of the same function, changing through each
layer the neuron number for interoperability and output pur-
poses. At the end of the Sigmoid model data flow, there
still remains the Softmax layer. The results of this model
were insignificant and the model was not actually learning
at all. The solution was to reduce the amount of intermediate
Sigmoid layers and see if the results were better. The new
model can be visualized in Appendix A.

The results obtained with this model, an accuracy of
96.63%, was reached within 10,000 iterations in 17 minutes
and 35 seconds simulation.

DANIEL ULINIC: WHY NEURAL NETWORKS AND DEEP LEARNING ARE THE FUTURE IN MACHINE LEARNING 8

B. ReLu function

The ReLu non-linear function has actually been discovered
to work better on deep learning studies. The problem Sigmoid
function presents is that on the sides is flat which leads to
a gradient of zero when calculating the loss. The gradient
is actually what allows the algorithm to get to the point
of convergence therefore having a zero in some regions is
not ideal. As explained before, this is known as vanishing
gradient problem. Despite all this, the ReLu function seems
to overcome this issue since it has been inspired by the actual
brain neurons functioning. By taking a look at the following
figure representing the ReLu function, it can be observed that
for the negative part of the X axis it is always zero whereas
for the positive, it is an identity function which will never
give as a result a gradient of zero.

f(@) =2 =max(0,2)

10 &

»
>

Fig. 9: ReLu function representation

This model shows improvement in the learning process.
Compared to the previous model, it has been able to sequence
up to four ReLu layers as shown in Appendix B. Furthermore,
the results obtained with this model, an accuracy of 98.03%,
was reached within 10,000 iterations in 16 minutes and 39
seconds simulation.

C. ReLu and Sigmoid Deep Learning Model analysis

For optimization and research purposes it was decided to
combine both Sigmoid and ReLu function and see if the
results, due to better feature extraction and merged were
going to gain in precision. It was expected that the learning
rate would not be invariant anymore and it would follow a
polynomial decay achieving a higher accuracy in this way. In
previous models, Sigmoid and ReLu, the polynomial decay
was applied as well but leading to not representative results
or not finishing converging it was fixed to 0.003. The resulting
graph is represented in Appendix C.

The results obtained with this model, an accuracy of
96.40%, was reached within 10,000 iterations in 19 minutes
and 59 seconds simulation.

D. CNNs

The goal was to build a relatively small Convolutional
Neural Network (CNN) for recognizing the same inputs as
previous models. The architecture of a typical CNN is struc-
tured as a series of levels. One could think of this levels as the

different layers the inputs pass by. The four main key ideas
are : local connections, shared weights, pooling and the use
of many layers. Nowadays studies build models using 10 to
20 non-linear activation functions inbetween the convolutional
layers. While that is out of the scope of this study, a simpler
model was built: 3 sequential convolutional layers, pooling
layers for each one of the previous, a fully connected layer and
the softmax layer. The levels mentioned before and relevant
at this point are the convolutional and pooling layers. In
contrast to previous models, this one does not use a flattened
array as a input, but reshapes the data from the MNIST
database and makes pixel matrix alike representation for
further interpretation. The CNN, uses the entire image while
mapping its features, whether it is a straight line or a curve
one therefore sampling the outputs by each layer. Moreover,
local groups of values are often highly correlated and the
pooling layers merge those semantically similar features into
one. But, because the relative position of similar features can
vary somehow, the pooling layer computes the maximum of
a local patch of units. Neighboring pooling units take input
from patches that are shifted by more than one column, hence
reducing the dimension of the representation and creating an
invariance to small shifts or distortions. Meaning, the model
can generalize better and make predictions on feature pairs that
were previously not been trained on. Figure 10, is a schematic
representation on how CNN down-samples and extracts the
features. Each layer connects with the one beneath using local
patches through a set of weights. Regarding weights and biases
in this model of NN, the degree of freedom is increased.

Output

Inputs

|

Convolutions Subsampling ~ Fully Connected Layer

Fig. 10: CNN data flow representation

With this convolutional model, the highest performances
have been achieved, an accuracy of 99.02%. This was pos-
sible while iterating over 10,000 times and implementing the
regularization dropout technique.

VI. DISCUSSION

TABLE 1 shows the results of the different training models
discussed along this study. This section is dedicated to examine
them. As the table shows there are different algorithms,
whether or not the dropout regularization technique has been
used, the number of iterations, the time spent by the system
to finish training, the learning rate and the accuracy both on
train and test datasets, respectively.

Overall, the models behave, train and learn better when
the number of iterations is higher. This seems logic since the

DANIEL ULINIC: WHY NEURAL NETWORKS AND DEEP LEARNING ARE THE FUTURE IN MACHINE LEARNING 9

more training the better will be the results on the test data.
Nevertheless, time is also directly proportional to iterations
increase. Regarding the learning rate, it must be clarified that
the polynomial decay did not work for the simpler Softmax,
Sigmoid nor ReLu models, giving convergence errors along
the code execution. On the other hand, on the convolutional
model when overfitting happened if not polynomial at 10,000
iterations the system would have never converged.

Furthermore, all models implementing dropout performed
worst than when it was not applied. The dropout optimization
leaves the neural network damaged with deactivated neurons
at each iteration. When dropout was applied to the model both
combining Sigmoid and ReLu there was a lower accuracy
on the train dataset than in the test dataset. This means
that the neurons deactivated were boosted by not changing
the weight through Back Propagation during an iteration.
Without the implementation of this regularization technique
the highest performances reached are on the convolutional
model within 1,000 iterations (98.85%). Despite all of that,
the train step becomes very noisy. When deactivating the 25%
of the neurons there are less neurons and the noise is smaller.
The dropout technique solves the problem of overfitting and
instead of the system stopping to generalize reached a certain
point, it remains constant if there is anything other than
improvements while the error does not start to increase. The
convolutional model giving the best performances (0.98 loss
rate) is highlighted in bold.

VII. FUTURE WORK

Supervised Learning, the base of the work within this article
as successful as it gets in accuracy, there still remains one
factor to overcome. Most human and animal learning is by far
unsupervised. Meaning, the natural way of discovering things
around is accomplished by observing them rather than being
told the name of every object.

Future work could include addition and combination of
layers while changing activation functions. It should be pos-
sible to take the code and use it as basis to reach Deep
Learning based on Recurrent Neural Networks (RNNs) by
reshaping it as needed. However, this possibility was outside
the scope of this work due to its complexity and time. Another
improvement is working with colored images rather than black
and white ones.

If it were to continue with the work where this article
ends its study, first of all one may also think of different
ways of improving what has already been done. For instance,
different regularizations techniques to apply. There is one
regularization for when overfitting occurs rather than dropout
called batch normalization which recently seems to have
proven very successful results. Its functionality focuses on
statistically normalizing by mean and variance the train and
test datasets, independently.

Finally, the dataset could also be changed and observe if the
results are as good as for the dataset used in this study. There
is also the possibility to find mechanisms and optimization to
accelerate the learning process.

VIII. CONCLUSIONS

TensorFlow system and its programming model offer a set
of tools which facilitate both production and experimentation
over self implemented models nevertheless scalable and effi-
cient. Through this paper’s work a set of models have been
implemented and each one of them led to the next one. Starting
with the single layer model using Softmax activation function
for classification purposes as the anchor for all the upcoming
Sigmoid, ReLu, a combination of both and Convolutional
model implementations. All combined within TensorBoard’s
visualization tools helped understanding much better the entire
process with data flow, histograms, accuracy and cross-entropy
representations. Furthermore, TensorBoard helped fixed issues
between getting to properly connect the layers with cach other
and create graph models to sufficiently work.

Also discussed, the commonly central algorithm for Deep
Learning, Back Propagation for supervised weight-sharing has
been applied to each and every model and helped getting the
Neural Network to learn over the train dataset and get better
results while overcoming the test dataset successfully.

Regarding obstacles encountered during the process of the
present article, issues have picked up during the experimental
work such as Python implementation problems, deprecated
functions of a constantly changing and growing framework
or overfitting problems through code execution which were
later solved with the regularization techniques, case in point
dropout regularization and by changing the way the learning
rate behaves during code execution.

All of this made it more plausible to reach the conclusion
that TensorFlow is a powerful tool in Image Processing
and although the machine learning movement it is halfway
through, there is still room for improvement. Alongside this
conclusion stands that Neural Networks and Deep Learning
combined are capable of achieving levels of accuracy which
were thought impossible to get years ago. Therefore despite all
the controversy and improvement made through the past years
these have demonstrated to be powerful techniques that led
to the world we know today of autonomous self-driving cars,
speech recognition, autonomous mobile robots, scene parsing,
object detection, shadow detection, video classification or
Alzheimer’s disease neuroimaging just to instance some of
them successes in the field.

As for the results accomplished, the maximum accuracy
was reached with the Convolutional layer model implementing
dropout regularization, 99.02% hence a loss rate of 0.98%.
Taking into account as mentioned in the State of the Art
section, the global actual maximum reached is within a 0.39%
loss, accomplished with GPUs rather than with CPUs, is
a satisfactory outcome. This being possible while having
less computational resources, hence less training and a local
minimum not as efficient as the resulting from a high compu-
tational performance machine, 50 times slower than ensemble
implementation and yet still a fitting result. Accordingly, it
can be said, the objectives of this paper have been fulfilled.
TensorFlow represents the future for complex deployments
of neural network models, leading to more accuracy and
improved results either it is image processing or any other

DANIEL ULINIC: WHY NEURAL NETWORKS AND DEEP LEARNING ARE THE FUTURE IN MACHINE LEARNING 10

. . . . Accuracy (%)
Algorithm DropOut | Learning Rate | Iterations || Time Elapsed -
(hh:mm:ss) | Train Dataset | Test Dataset
100 00:00:02 87.19 87.57
No 0.003 1,000 00:00:27 89.77 91.68
Softmax
10,000 00:04:38 93.14 92.52
100 00:00:10 14.15 9.98
o No 0.003 1,000 00:02:01 12.19 10.55
Sigmoid
10,000 00:17:35 99.15 96.63
100 00:00:10 81.92 77.16
No 0.003 1,000 00:01:46 99.43 95.95
ReLu
10,000 00:16:39 97.00 98.03
100 00:00:07 17.04 18.05
No Polynomial decay 1,000 00:01:39 93.01 84.36
10,000 00:17:37 99.66 97.75
100 00:00:0 19.00 12.15
Sigmoid and ReLu . o o
Yes Polynomial decay 1,000 00:01:55 81.33 84.67
10,000 00:19:59 97.31 96.40
100 00:05:20 94.72 91.50
No Polynomial decay 1,000 00:57:06 99.96 97.87
10,000 04:26:56 100.00 98.85
. 100 00:05:56 91.38 87.07
Convolutional .
Yes Polynomial decay 1,000 00:55:30 99.80 97.63
10,000 04:34:27 100.00 99.02

TABLE I: COMPARISON OF PERFORMANCES ON MNIST DATASET USING DIFFERENT NEURAL NETWORK MODELS.

of the above machine learning scenarios being analyzed.

ACKNOWLEDGEMENTS

Thanks to Jordi Casas Roma, for supervising and guiding
me through carrying out this project and all the references
and articles he suggested which were nevertheless helpful and
essential to get the work within this project done. Moreover, 1
would like to be thankful to all the teachers I came across over
this past years. It was a pleasure working with all of them and
sure thing I have learned a lot. Finally, I would like to defi-
nitely thank my parents for supporting me and understanding
the late hours and the skipped relevant appointments.

REFERENCES
[1] S. Theodoridis, “Neural Networks and Deep
Learning,” in Machine Learning. Determination
Press, 2015, pp. 875-936. [Online]. Available:

http://neuralnetworksanddeeplearning.com/

Y. Qiao, C. Cortes, and C. Burges, “MNIST handwritten
digit database, Yann LeCun, Corinna Cortes and Chris
Burges,” 2007. [Online]. Available: http://yann.lecun.com/
exdb/mnist/

[31P. Y. Simard, D.
Platt, “Best Practices

Steinkraus, and J. C.
for Convolutional Neural
Networks Applied to Visual Document Analysis.”
[Online]. Available: http://www.cs.cmu.edu/~bhiksha/
courses/deeplearning/Fall.2016/pdfs/Simard.pdf

[4] M. aurelio Ranzato, C. Poultney, S. Chopra,
Y. L. Cun, M. Ranzato, C. Poultney, S. Chopra,
and Y. L. Cun, “Efficient Learning of Sparse
Representations with an Energy-Based Model,” Advances
in Neural Information Processing Systems, vol. 19,
no. 1, pp. 1137-1144, 2007. [Online]. Available:
http://papers.nips.cc/paper/3112-efficient-learning- of-
sparse-representations-with-an-energy-based-model.pdf

[5] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber,
“Multi-column deep neural network for traffic sign
classification,” Neural Networks, vol. 32, pp. 333-338, 8
2012. [Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0893608012000524

A. C. Schapiro, T. T. Rogers, N. I. Cordova, N. B. Turk-
Browne, and M. M. Botvinick, “Neural representations of
events arise from temporal community structure,” Nature
Neuroscience, vol. 16, no. 4, pp. 486492, 2013.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
A system for large-scale machine learning,” 2016.
[Online]. Available: https://www.usenix.org/conference/
osdil6/technical-sessions/presentation/abadi

G. Ian, Y. Bengio, and A. Courville, Deep learning.
MIT Press, 2011. [Online]. Available: http://www.
deeplearningbook.org/

DANIEL ULINIC: WHY NEURAL NETWORKS AND DEEP LEARNING ARE THE FUTURE IN MACHINE LEARNING 11

APPENDIX D. Model 1V: Convolutional
A. Model I: Sigmoid
train

o o
train {
Pol ialDe... tr §

':::‘ o ['olynomialle.] [Cross_entropy j [accuracy) ’E

\ A\ i

[i 5 label -

PolynomialDe...) (cross_entropy) H s H
% 3 i % !
labéls i i
o a0 || | |
I i
a ki .

Reshape_1

shape O—C_ >
sigmoid2
'&(‘V
Reshape
shape O+ [input sigmoidl X
|
- i

B. Model II: ReLu " %,

convl

s .. S %\
o . "Reshape
S o N train o5,
el ¢ o § input
i3
Smore
H
S
relut 90005 >)
h2 g init >
g
et S99
softmx

Fig. 14: Convolutional layers model implementation Tensor-
Board view

Fig. 12: ReLu function model implementation TensorBoard
view

C. Model IlII: ReLu and Sigmoid
cross_entropy |3 n
o =

cross_entr.
accuracy labels

softmax
sigmoid?
el
3more

labels,
it

2 g i
sigmoid1 Moy
Reshape
shape O [T oot relul

"

. -

Fig. 13: ReLu and Sigmoid functions model implementation
TensorBoard view

