
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1 

 

Convolutional Neural Networks for image 
processing 

Daniel Palacios Hidalgo 

Abstract— With the evolution of Artificial Intelligence, Machine Learning algorithms and Computer Vision techniques, several 
researchs have focused on the application of well known algorithms to obtain non-common results. In this paper related to the 
Final Degree Project of Daniel Palacios Hidalgo under the supervision of Ramón Baldrich and with the support of the Autonomous 
University of Barcelona, the original Style Transfer Algorithm, a Denoising Convolutional Network and a Deep Dreaming network 
will be exposed in depth. The main purpose of this project is the understanding of how they work, how to implement them and 
finally, evaluate their results to compare them against the original implementations of their respective authors using Pytorch 
framework. 

Index Terms— Artificial Intelligence, Computer vision, Machine Learning, Convolutional Neural Networks, Deconvolutional 
Neural Networks, Style Transfer, Image Denoising, Deep Dreaming, Torch, PyTorch. 

——————————   ◆   —————————— 

1 INTRODUCTION

mage processing considers the manipulation and analy-
sis of images. This processing refers to apply transfor-

mations and restauration techniques to improve the qual-
ity of the images. The analysis consists in the extraction of 
features and properties of the images to classify, identify 
or recognize patterns.   With the recent evolution and im-
provement in hardware architectures, nowadays comput-
ers can execute algorithms and complex computation 
structures that were impossible to execute 20 years ago in 
a personal computer. These facts brings us out the chance 
to apply those complex algorithms in our home computers 
to make study cases and understand the way they work in 
such a deep way. 

1. 2 OBJECTIVES 

This project has two groups of objectives. The first group 
of objectives are related to the professional skills set that a 
Computation Engineer should achieve, those objectives 
are: 

• C3: The skill to avaluate the computational 
complexity of a problem, know algorithmic 
strategies to solve the problem and implement 
them. 

• C4: The skill set to know the fundamentals, 
paradigms and techniques of artificial intelli-
gence systems and how to build them. 

• C6: The skill set to build interactive systems to 
present the information. 

• C7: Develop the necessary skill set to design 
and implement systems that use machine 
learning techniques. 
 

The second group of objectives of this project are related to 
the understanding of how to interpretate and to implement 
different research papers around computer vision, ma-
chine learning and convolutional neural networks. Those 
objectives are the following: 

• Implement Deep Learning algorithms from 
zero using the original papers. 

• Implement a Style Transfer network. 
• Implement a Denoising Network. 
• Implement a Deep Dreaming Network. 
• Implement a user interface to handle easily the 

execution of the previous algorithms. 
 
These objectives are chosen to allow to the student to ac-
quire general knowledge in leading artificial intelligence 
technologies and image processing and at the same time, 
acquire autonomy to interpretate previous researches per-
formed in the chosen area. 

1.3 METHODOLOGY 

This project is developed under an Agile methodology. 
There have been two stages, in the first stage all the efforts 
were focused in the research, design and implementation 
of the Style Transfer algorithm and the Denoising Net-
work. In the second stage, the objectives were centered in 
developing and implementing the deep dreaming algo-
rithm and the user interface.  
 
In the beginning of every stage, an analysis of the to do 
tasks is done to planify the temporal resources. At the end 
of every stage, there will be an analysis to understand the 
key points that worked or didn’t work to plan the next 
stage in a more efficient way. 

1.4 DOCUMENT STRUCTURE 

This document begins with a brief introduction to the pro-
ject, its objectives and the methodology used along the pro-
ject. Following the introduction section, the image 

I 

———————————————— 

• Contact e-mail:Daniel.PalaciosH@e-campus.uab.cat  

• Major: Computation 

• Treball tutoritzat per: Dr. Ramon Baldrich (CVC) 

• Course: 2017/18 



2 EE/UAB TFG INFORMÀTICA: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE PROCESSING 

 

processing section contains several subsections with an in-
depth view of the different algorithms implemented with 
their related results. To close this report, a conclusions sec-
tion will cover the main points in a summarized way, sug-
gestions to the reader to follow a path from this project on, 
the aknowledgements and the bibliograpgy where this 
project relies on. 

2 IMAGE PROCESSING 

2.0 State of Art 

The algorithms exposed along this project are not new al-
gorithms. Some of them were developed in 2014 and have 
been optimized along these years. This is the case of Style 
Transfer which was originally designed by Leon A. Gatys 
in his paper [1]. Along these years, several optimizations 
[2] have improved the performance of this algorithm get-
ting speed ups up to 1000x. Those improvements allowed 
bringing this algorithm to mobile devices in applications 
such as Prisma and getting quasi-instant results. 
 
In the case of image denoising, the first approach purposed 
by ZHAO, Aojia was done in 2013. Although this algo-
rithm had good results, in January of 2018 a new research 
in image restoration field using deconvolutional neural 
networks DNNs [5] was performed with highly relevant 
results that showed promising results for various image 
restoration tasks. 
 
Finally, Deep Dreaming networks were firstly presented 
by Google Developing Group in 2015 [7]. The efforts since 
its presentation have focused in understanding in depth 
how does artificial neural networks store the information 
in its layers and why that information [8]. 
 
Regarding the technologies and frameworks that eases 
Deep Learning developments, there are several elections 
that might be considered: 
 
TensorFlow 
TensorFlow is a blend between lower computation librar-
ies like Theano and higher level computation libraries such 
as Blocks or Lasagne. Although it is one of the newest 
frameworks, it has earned a huge reputation because of be-
ing backed by Google Brain team. Its pros fall in have a 
large active community, low level and high level interfaces 
to network training, faster model compilation and cleaner 
multi-GPU support. Its cons fall in being slower in the 
benchmarks than Theano and its hardness in its learning 
curve. 
 
Theano 
Theano is a numerical computing framework that powers 
many other deep learning frameworks. Theano works at 
low level. In its pros, we can consider its flexibility to work 
in almost any deep learning project and his high perfor-
mance. In its cons, we must consider its substantial learn-
ing curve, his low speed at compiling graphs and the need 

of a substantial learning expertise to write effective code. 
 
Keras 
Keras is probably the highest level, must user friendly li-
brary. It allows to the developer to choose whether the 
models they build are executed on Theano’s or Tensor-
Flow’s. Keras community is quite large and active and Ten-
sorFlow team announced a future integration of Keras as a 
subset of TensorFlow project. Regarding its pros, Keras 
grants a easier learning curve and an intuitive high level 
interface. Its main coin is its lower flexibility than other 
frameworks because of its high-level interface. 
 
PyTorch 
Pytorch is a port of Lua’s Torch library to Python. Pytorch 
provides tensor computation with strong GPU accelera-
tion and Deep Neural Networks built in. It is backed by 
Facebook Artificial Intelligence Research Team. In its cons, 
we might consider its philosophy “Python First”, making 
it easy to integrate into Python Ecosystem. Also, it is a 
blend of high level and low level features, allowing to per-
form fast built-in functionalities or customize needed func-
tionalities. In its cons, it is one of the newest frameworks 
and it is less mature than other alternatives. Also, refer-
ences outside the official documentation are very limited. 
 
In this project, PyTorch will be used because of its capacity 
to perform good at low level and high level computation. 
Also, because of the image processing nature of the project 
and its capacity to integrate easily with other Python li-
braries such as NumPy or PIL. Moreover, taking into ac-
count that this project is an academic project to understand 
and to learn Deep Learning, its learning-curve and diffi-
culty its more suitable than other possible elections. 
 

2.1 Style transfer 

Style transferring algorithm was first proposed by Leon A. 
Gatys [1]. This algorithm consists in transferring the style 
of an image (S) to another image (B). 

2.1.1 Algorithm explanation 

To perform this operation, we should use a distance meas-
ure to know in every step of the algorithm how different is 
the result image from the style image S and the base image 
B. The original algorithm, the implementation here[3] and 
the implementation performed in this project, uses as a dis-
tance mesure the Mean Squared Error formula (MSE) such 
that: 
 

𝑑(𝐼, 𝐵) →  𝛿1 𝐴𝑁𝐷 𝑑(𝐼, 𝑆) →  𝛿2  
Where:  
           d is the distance measure, 
            I is the result image, 
           B is the base image, 
           S is the style image, 
           𝛿𝑖 is a threshold 
 

June of 2018, School of Engineering (UAB) 



DANIEL PALACIOS HIDALGO: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE PROCESSING 3 

 

 
Style Transferring is a 2-variable optimization problem. 
Because of the process takes in consideration two imputs, 
we must be able to regulate the weight of those inputs to 
control how much style or base should be applied to the 
result image. This can be performed calculating a weighted 
total MSE such that: 
 

𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 =  𝛼𝑀𝑆𝐸𝑆𝑡𝑦𝑙𝑒 +  𝛽𝑀𝑆𝐸𝑏𝑎𝑠𝑒 

 
Where:  
            𝛼 is the style weight, 
            𝛽 is the base weight 
 
Where alpha and beta are the weight regulators. 
 
In specific terms, the behaviour of the algorithm[Fig. 1] 
consists in, assuming that both input images are NxM pix-
els with 3 RGB color channels and given a pretrained con-
volutional network, both images must be forwarded 
through the network and its output must be captured to 
perform a weighted loss calculation on and an optimiza-
tion  on this loss to accomplish the transference of style ef-
fect. 
 
To capture style features independently from the content 
features, it is convenient to apply a Gram Matrix[4]. The 
terms of this matrix are proportional to the covariances of 
corresponding sets of features, and thus captures infor-
mation about which features tend to activate together. By 
only capturing these aggregate statistics across the image, 
they are blind to the specific arrangement of objects inside 
the image. This is what allows to capture information 
about style independent of content.  
 
The highest computation costs relies on the optimization 
process. A normal hill climbing algorithm to find out the 
minimum values would be computationally-expensive 
due to the size of the images. To minimize the impact on 
the total time execution, the chosen algorithm is the Broy-
den-Fletcher-Goldfarb-Shanno (BFGS) algorithm. This al-
gorithm is an iterative quasi-Newton method for solving 
unconstrained nonlinear optimization problems.  PyTorch 
includes a variant of this algorithm called Limited Memory 
BFGS. 
  

 
 

Fig. 1: Style Transfer algorithm scheme. 

2.1.2 Convolutional models 

Style Transferring algorithm works on an image generated 
by a convolutional network. There are several configura-
tions of convolutional networks used for this task based on 
VGG[Fig. 2], Inception and Xception, but according to the 
original research paper where Leon A. Gatys uses a VGG-
19 architecture with 16 convolutional layers, in this imple-
mentation we will use a VGG-16 model D where all the op-
erations are performed over 3D convolutions. The differ-
ences between a VGG-16 and a VGG-19 are subtle and non-
recognizable for a human eye. For solve this task, we only 
need the upper layers of the network to gather all the in-
formation of the input related to general colours and/or 
shapes. The lower layers can perform better for classifying 
and detection tasks which are not related or necessary for 
Style Transferring process.  
 

 
 

Fig. 2: Different VGG architectures scheme. 

2.1.3 Results 

Due to the arguable nature of the interpretation of the re-
sults, it is not possible to cuantify metrics but, the results 
itself. In the first approach[Fig. 3], Style Transferring was 
applied using a weight relation of 100:1. The MSE-Steps re-
lation shows off a stable point over 10 steps where the im-
age is no longer updated because of its similitude to the 
original and the superation of the threshold imposed. 

 
  

Fig. 3: Graphical style transfer results when applying a 
heavy weight to the base image. 



4 EE/UAB TFG INFORMÀTICA: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE PROCESSING 

 

The result images [Fig. 4] for this approach were the ex-
pected. A high similitude to the base image and no appre-
tiation of the style image. 
 

 
Fig. 4: Image generated from the input images when ap-

plying a heavy weight to the base image. 
 
In the second approach, Style Transferring was applied 
with a configuration of 1:100. The expected result[Fig. 5] is 
to have an image with the style applied but still having 
some similitudes to the original base image[Fig. 6]. The 
MSE graphic states that over time, style and base were both 
optimized to achieve a stable point. In the case of the con-
tent loss, the stable point was close to 0 and for the style 
around 4.5. 
 

 
 
Fig. 5: Graphical results when applying a mixed weight. 

 

 
Fig. 6: Results applying a mixed weight. 

 
The final experiment was performed applying a high style 
weight, in particular a ratio of 1:5000. 
 
As we could expect[Fig. 7], the base image had a high loss 
around 3000 units of MSE loss while style has been opti-
mized around 0. The image that the algorithm provides as 
result is more similar to the Style image than to the Base 
image[Fig. 8]. 
 

 
Fig. 7: Graphical results when applying a heavy weight to 

the style image. 

 

 
Fig. 8: Image generated from the input images when ap-

plying a heavy weight to the style. 
 
The algorithm perfoms correctly when random images are 
provided [Fig. 9]. 
 

Base Style Result 

   

   

   
 
Performed evaluations demonstrates a correct execution of 
the algorithm according to the original formula exposed in 
the explanation section and in the paper of Leon A. Gatys.  
 

2.2 Denoising network 

The denoising networks consists in a deep convolutional 
network specialized in removing noise from images. The 
model architecture implemented in this project is the pro-
posed in the former paper [5] published by Aojia Zhao. 
 

2.2.1 Algorithm Explanation 

This architecture is based in a convolutional-deconvolu-
tional model that interpretates a result image I as the addi-
tion of an image result of a degradative function D plus an 
additive noise h. 

𝐼′ = 𝐷(𝐼) + ℎ 
 
Where:  
            𝐼′ is an image with noise, 
            𝐼 is an image with noise, 
            𝐷(𝑥) is the degradative function, 
            h is an additive noise (i.e. by the channel) 
 
Performing consecutive convolutional and deconvolu-
tional operations the noise can be erased progressively, 
and the image can be reconstructed according to the origi-
nal image. 



DANIEL PALACIOS HIDALGO: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE PROCESSING 5 

 

2.2.2 Model architecture 

The model used in the original paper and the implemented 
in this project is a stacked convolutional-deconvolutional 
model of 10 layers [Fig. 10]. The first 5 layers are convolu-
tional, and the 5 consecutives are deconvolutional layers. 
Those layers are connected using 4 direct and symmetri-
cally connections[6]. 

 
Fig. 10: Model architecture exposed by Aojia Zhao. 

 
The main purpose of the model during the scale-rescale 
process is to extract the feature vectors of the training da-
taset that, according to the correct weights of the delta reg-
ulation parameters of the connections, will allow us to re-
construct the original image. 
 
In the convolution stage, the formula used in every layer 
to extract the data is: 

𝑋𝑖 = 𝐶𝑜𝑛𝑣(𝛿 ∗ 𝑋𝑖−1) 
 
Where:  
            𝑋𝑖  is the result of a convolution stage 
            𝛿 is the gating factor, 
            𝑋𝑖−1 is the result of the previous convolution stage 
 
In the other hand, in the deconvolutional stage the formula 
used to reconstruct is the following: 
 

𝑋𝑖
′ = 𝐷𝑒𝑐𝑜𝑛𝑣(𝑋𝑖−1

′ + (1 − 𝛿) ∗ 𝑋𝑖) 
 
Where:  
            𝑋𝑖

′ is the result of a deconvolution stage 
            𝛿 is the gating factor, 
            𝑋𝑖−1

′  is the result of the previous deconvolution stage 
 
The delta factor regulates the information flow between 
layers. To minify bad visual effects that may occur, it is 
convenient to apply a Rectified Linear Unit to rectify pos-
sible negative values that can appear in the process. 

2.2.3 Data and training 

Dataset choices are restricted because of data labelling. In 
image denoising it is not necessary to classify, the objective 
is to perform regression on the images. In the original pa-
per, Zhao used the STL-10 dataset. In this project the choice 
has been the CIFAR-10 dataset. In the original paper, the 
researchers used images of atleast 64x64 pixels, but in this 
project implementation, all images will be resized to 64x64 
pixels. The training will be performed 2000 epochs over 
150 images of the first batch of the CIFAR-10 dataset and 
the conclusions will be analysed over random images of 

the evaluation batch due to the lack of computational 
power. 
 
In the former paper, the author performs a training over 
the dataset using MSE pixel loss and the Stochastic Gradi-
ent Descent with minibatches. In this implementation, the 
training has been performed using Stochastic Gradient De-
scent with minibatches.  

2.2.4 Results 

The results [Fig. 11] obtained in the evaluation period 
shows off results very similar to the exposed in the original 
paper of Aojia Zhao.  

 
Fig. 11: Results of the training stage. 

Comparing the results with the results of the original pa-
per, we can observe that the upgrade in the MSE loss is ob-
tained after 1200 epochs, while in the original paper it hap-
pens after 5000 epochs. Although the curve is very similar 
in both trainings, this may happen because of the small size 
of the dataset used in this project that turned up into an 
overfitted model. The mean MSE for the first 1000 itera-
tions is around 10000 units, over this point, in some cases, 
the MSE can draw down until 2500 units. The total time 
training for 2000 epochs has been 37.43 minutes. 
 

 
 

Fig. 12: Graphical results of reconstructions 

2.3 Deep Dreaming 

A deep dreaming algorithm can emulate the process of 
generating dreams or hallucinations on an image the same 
way that a living being can do. 



6 EE/UAB TFG INFORMÀTICA: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE PROCESSING 

 

2.3.1 Algorithm explanation 

This process of generating dreams relies on the fact that 
neural networks layers store different level information in 
different level layers. Recent study cases demonstrate that, 
in general, information stored in the layers responds to: 
 

• First layers: Sensible to basic functions such as 
borders or orientations 

• Intermediate layers: Sensible to general compo-
nents and shapes such as leafs or doors. 

• Deep layers: those layers are sensible to very com-
plex groupings such as trees or buildings. 

 

 
Fig. 13: Deep dreaming result by Google 

 
In the algorithm, a random layer is chosen to optimize 
whatever it detects through an descent gradient. From this 
point, a relative shift of X pixels is performed over the orig-
inal image to make an effect of dream or hallucination. In 
this implementation, an Stochastic Gradient Descent is  
used to perform the minimization of the signal. 
 
To improve the results and make a more pleasant resultant 
image, the process is performed in a recurrent rescaling 
procedure using octaves and octaves factors[9]. Every oc-
tave is a depth level rescaled to a scale factor, that merged 
with the previous image, gives a fractal effect of hallucina-
tion. 
 

2.3.2 Model 

The model used for deep dreaming in the original paper is 
a GoogLe Net trained on ImageNet dataset. This imple-
mentation will be performed over a VGG-19 using the pre-
trained weights of PyTorch Model Zoo. This model has 
been trained for image classification purposes and can per-
form accurately in pattern and object recognition. After 
slicing the network, the selected layer to perform a hook is 
the 34th. This layer is deep enough to general object recog-
nitions, which are a key of success in generating relevant 
high-level patterns in the input image. 

2.3.3 Results 

To analyse the results, three random images have been se-
lected and processed through the network [Fig. 14]. The 
layer selected to analyse is the last convolutional layer of 
the VGG19 model. In general, the selected layer is special-
ized in high level feature detection. If we check for the first 
image, we can identify several eyes. In the second and 
third image, several random shapes can be found such as 
mountains or animals.  

 
Fig. 14: Results of deep dreaming. 

 
Due to the recursive nature of the algorithm, a fractal im-
age [Fig. 15] has been forwarded through the network to 
figure out how this network could interpretate its infor-
mation. Apparently, the algorithm replicates the geometric 
shape of the image randomly over the fractal.  
 

 
Fig. 15: Results on a Fractal image. 

 
For analysis purposes of figuring out which information is 
stored in every layer, the third previous image has been 
processed by the first convolution layer and the last con-
volutional layer of the network [Fig. 16]. As stated in the 
theory behind neural networks, every layer interpretates 
the information in such a different way.  
 

 
Fig. 16: Results by first and last layer 

 
The information that every layer is capable of identify de-
pends on the depth of itself. While the first conv layer 
seems to be sensitive to edge detection, the last convolu-
tional can detect complex objects on its image.  



DANIEL PALACIOS HIDALGO: CONVOLUTIONAL NEURAL NETWORKS FOR IMAGE PROCESSING 7 

 

3 PROJECT CONCLUSIONS 

Despite the difficulty of implementing those algorithms 
from zero for a novice future computer engineer, the pro-
ject has been accomplished satisfactory.  
 
One of the biggest issues while developing the project was 
setting up the environment to bring the algorithms to a 
mobile platform. Initially, this objective was reflected into 
the initial report as a primary objective but, because of the 
incompatibility with required dependencies, a lot of time 
and effort was spended trying to solve it and definitely, 
with the support of the supervisor teacher the decision was 
to replanify the project to ensure the correct development 
of the algorithms, which in fact, are the core of this project.  
Fortunately, the time schedule was accomplished cor-
rectly, and a basic design of a GUI was implemented. 
 
Another issue that has been intrinsic in the project is the 
basic knowledge set in deep learning. In the first imple-
mentation of Style Transferring algorithm the major prob-
lem was learning to implement the first paper and, at the 
same time, learn to use PyTorch as framework. Progres-
sively, this issue has been solved. The second implementa-
tion has been easier than the first because of the accumu-
lated experience in understanding articles and the experi-
ence earned using PyTorch, and the third implementation 
despite of the difficulty of finding relevant documentation, 
has been easier than the previous ones in terms of using 
PyTorch and understanding the articles.  
 
This work has definitely met its goals, not only towards the 
familiarisiation with the state of art of deep learning for 
Image Processing which is a constant evolution field, but 
the learning to implement image processing papers. Facing 
common problems in this area such as choosing the most 
suitable deep learning framework, choosing the most suit-
able optimization learning method, treating the data be-
fore and after processing, trying to figure out the best anal-
ysis method to analyse the results and trying to repair ex-
ecution problems derivated of malfunctioning or optimize 
it, are valuable skillsets that are useful for any specialist in 
deep learning and are difficult to acquire in a closed aca-
demic environment where the guidelines are well defined. 

3.1 FUTURE STEPS 

Although the main requirements have been solved, there 
are no new contributions for the community and for the 
current artificial intelligence panorama due to the high 
complexity that it implies and the shortage of time. How-
ever, this project can contribute to help future students to 
understand how those algorithms work, and, at the same 
time, can help to scientific communities to understand how 
different neuronal levels interact in cognitive and creative 
processes and the interpretation of how and when neural 
networks store information in their data structure. 

AKNOWLEDGEMENTS 

This project could not be completed without the support 
and guidance of BALDRICH, Ramon and the special sup-
port of my closest family and friends. 

BIBLIOGRAPHY 

[1] GATYS, Leon A.; ECKER, Alexander S.; BETHGE, Matthias. 
Image style transfer using convolutional neural networks. In 
Computer Vision and Pattern Recognition (CVPR), 2016 IEEE 
Conference on. IEEE, 2016. p. 2414-2423. 

[2] JOHNSON, Justin; ALAHI, Alexandre; FEI-FEI, Li. Perceptual 
losses for real-time style transfer and super-resolution. In Euro-
pean Conference on Computer Vision. Springer, Cham, 2016. p. 
694-711. 

[3] NARANAYAN, Harish. Convolutional neural networks for ar-
tistic style transfer. In personal blog. 

[4] BERGER, Guillaume; MEMISEVIC, Roland. Incorporating long-
range consistency in CNN-based texture generation. arXiv pre-
print arXiv:1606.01286, 2016. 

[5] ZHAO, Aojia. Image Denoising with Deep Convolutional Neu-
ral Networks.Etc. 

[6] MAO, Xiaojiao; SHEN, Chunhua; YANG, Yu-Bin. Image resto-
ration using very deep convolutional encoder-decoder net-
works with symmetric skip connections. En Advances in neural 
information processing systems. 2016. p. 2802-2810.   

[7] MORDVINTSEV, Alexander; OLAH, Christopher, TYKA, 
Mike. Inceptionism: Going Deeper into Neural Networks. 

[8] BROWNE, Kieran; SWIFT, Ben; GARDNER, Henry. Critical 
Challenges for the Visual Representation of Deep Neural Net-
works. En Human and Machine Learning. Springer, Cham, 
2018. p. 119-136. 

[9] PEDERSEN, Magnus Erik Hvass. Deep Dreams implementa-
tion. 


