Canine cognitive dysfunction and neuroscience: an interdisciplinary approach

David Daudén Roquet
Degree in Veterinary Medicine

We investigated:

How neuroscience (NS) and canine cognitive dysfunction (CCD) can inform and benefit each other?

We concluded:

- Neuroscience allows CCD to have more specific treatments focusing in neuroplasticity
- CCD lesions in hippocampus and neocortex can explain its ethological signs

Ethological signs explained by neuroscience

Disorientation

D

• Dorsal hippocampus is responsible for spatial learning

Altered social interactions

• Thalamus | Neocortex | Hippocampus | Amygdala

Sleep disorders

S • Serotonin

Loss of housetraining

• Dorsal hippocampus for memory tasking

Hypothalamus for thirst regulation

Altered activity

 Balance in neuroexcitatory and neuroinhibitory neurotransmitters

Anxiety

A

Н

- Serotonin and noradrenalin
- Ventral hippocampus neurogenesis

How does CCD help NS?

Animal neurophysiology can not be investigated with current images techniques

CCD (and other neurodegenerative diseases) can be used as knock out of particular neurologic structures

How does NS help CCD?

There is no technique enabling an in vivo CCD diagnosis

neurophysiology understanding may help to develop new treatment options

Better

Food for thought

- Which is the difference between an advanced aged brain and a brain with CCD?
- How is CCD being treated currently? And what about further horizons?
- Why specialization is important but collaboration is key?

Further readings

Landsberg, Gary M., Aladár Mad'ari, and Norbert Žilka. 2017. Canine and Feline Dementia: Molecular Basis, Diagnostics and Therapy.

June 2019

Final degree project

