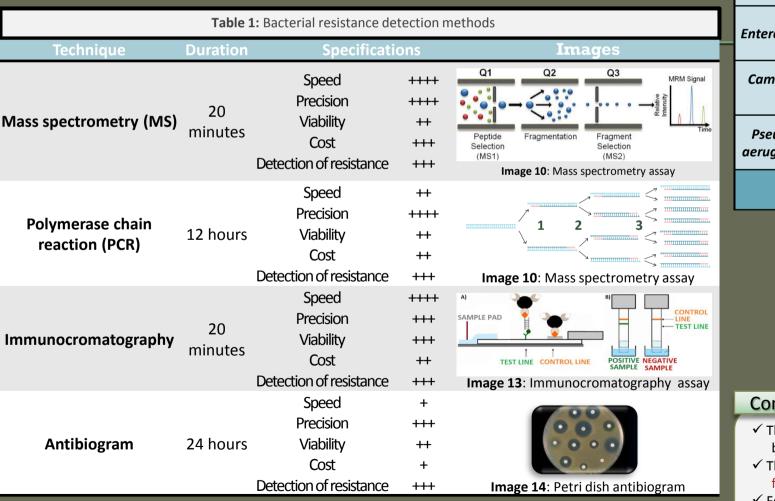


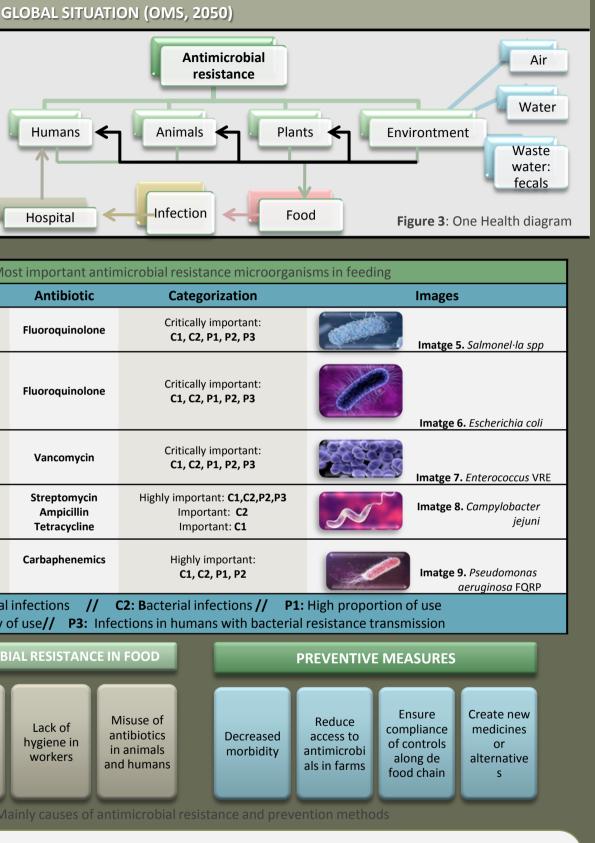
FOOD POISONING PRODUCED BY ANTIBIOTIC RESISTANT MICROORGANISMS


Aims

- \checkmark Contextualize the risk importance due to antimicrobial resistance in food.
- \checkmark Study which antibiotics resistance microorganisms are more important in food
- ✓ Study the most suitable bacterial resistance detection methods
- \checkmark Analyze the prevention systems that are currently in place

Antimicrobial resistance occurs when microorganisms change in ways that render the medications used to cure the infections they cause ineffective.

Figure 1: Antibiotic resistance mechanism



2050 2017 1200000 ROAD TRAFFIC 1400000 ACCIDENTS 1500000 DIABETES Animals Humans 1600000 8200000 CANCER 8000000 AMR 700000 Infection Hospital Figure 2: Causes and number of death in 2017 vs 2050

Table 3: Most important antimicrobial resistance			
Pathogen agent	Freqüently origin	Antibiotic	Categoriza
Salmonel·la spp	Meat // Eggs Food handling	Fluoroquinolone	Critically imp C1, C2, P1, I
Escherichia coli resistant to fluoroquinolones	Meat //Eggs // Water // Fruits // Vegetables // Food handling	Fluoroquinolone	Critically imp C1, C2, P1, I
Enterococcus VRE	Meat Water Food handling	Vancomycin	Critically imp C1, C2, P1, I
Campylobacter jejuni	Chicken Food hadling	Streptomycin Ampicillin Tetracycline	Highly important: Important Important
Pseudomonas aeruginosa FQRP	Water Fuits // vegetables Animals	Carbaphenemics	Highly impo C1, C2, P1
C1: Heavy bacterial infections // C2: Bacterial infect P2: High frequency of use// P3: Infections in humans w			
CAUSES OF ANTIMICROBIAL RESISTANCE IN FOOD			
Lack contr indus and fa	ol in control of stry water and	Lack of hygiene in workers	Aisuse of ntibiotics n animals d humans
Conclusions	Figure 4: M	ainly causes of ant	imicrobial resistan
✓ There is a significant risk to bacterial resistance throughout the world th			
• There is a significant risk to bacterial resistance throughout the World th			

- \prime There is a **significant risk** to bacterial resistance throughout the world that can affect millions of people in the future, and may be leading cause of death.
- ✓ There are 5 important microorganisms in food related to antimicrobial resistance: Salmonella spp, Escherichia coli resistant to fluoroquinolone, Enterococcus VRE, Campylobacter jejuni and Pseudomonas aeruginosa FQRP.
- ✓ For a high industry, the **best methods** are mass spectrometry and polymerase chain reaction. For a medium and little industry, the best methods are immunocromatography and antibiogram method.
- ✓ Although there are many causes of antimicrobial resistance, world organizations are making action plans due to prevent increases.
- Table 1: March-Rosselló, G. (2016). Métodos rápidos para la detección de la resistencia bacteriana a antibióticos.
- Figure 4: United Nations Food and Agriculture Organization (2016-2020). The FAO Action Plan on Antimicrobial Resistance
- Table 3: World Health Organization (2016). Critically Important Antimicrobials for Human Medicine: Ranking of medically important antimicrobials for risk management of antimicrobial resistance due to non-human use,.
- Figure 3: CDC (2017). Saving lives by talking a One Health approach.
- Figure 1: European Comission (2011). Action plan against the rising threats from Antimicrobial Restsiance: Communication from the Commission to the European Parliament and the Council.

Elisabet Fernández Vilà 2019 Juny

Figure 2: Jim O'Neill (2016). *Tackling drug-resistant infections globally: Final report and recommendations.*