
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Towards a Data Science and Engineering
Club at UAB

Diego Velazquez Dorta

Resumen La contratación de profesionales especializados en Machine Learning es una cecesi-
dad que se hace cada vez más presente para las empresas. Por lo tanto, alentar a los jóvenes
estudiantes a aprender este conjunto de habilidades en particular deberı́a ser una prioridad en
todos los campus universitarios. El objetivo de este Trabajo de Fin de Grado es la creación de
una plataforma donde los estudiantes de la UAB puedan participar en competiciones de Machine
Learning usando datos reales y resolviendo, potencialmente, problemas que las empresas publiquen
en dicha plataforma. A lo largo del desarrollo del trabajo se han ido agregando blogs a la plataforma
que sirven como introducción a métodos punteros de análisis de datos y Machine Learning.

Palabras clave Machine Learning, Deep Learning, Análisis de Datos.

Abstract The hiring of specialized professionals in Machine Learning has been and still is an
increasing necessity for companies. Therefore encouraging young students to learn this particular
set of skills should be a priority in every university campus. The goal of this Project is the creation of
a platform where UAB students can participate in Machine Learning competitions using real data and
potentially solving problems that companies publish on said platform. Throughout the development
of the project a blog has been created that serves as an introduction to leading methods of data
analysis and Machine Learning.

Keywords Machine Learning, Deep Learning, Data Analysis

F

1 INTRODUCTION

MACHINE Learning becomes more relevant in every
aspect of our lives each passing day. This results
in an exponentially growing need for companies

(especially in Europe) to hire specialized professionals in
this field. The problem is that there are not many qualified
professionals available to cover this need.
The first goal of this work is the development of compe-
titions in data engineering using CodaLab1. Different engi-
neers can participate in the competitions, using their models
to solve a given problem using Machine Learning. Compa-
nies with the need to hire Engineers specialized in Machine
Learning can propose their own competitions and reward
the winners. The topics of the competitions will be restric-
ted to the sectors of companies in the UAB environment,
HUB30 2. In addition, a blog will be developed as a lear-

• E-mail de contacte: diegoalejandro.velazquez@e-campus.uab.cat
• Menció realitzada: Computació
• Treball tutoritzat per: Jordi Gonzalez (Ciencias de la Computación)
• Curs 2018/19

1https://competitions.codalab.org/
2https://www.uab.cat/web/hub-b30-1345754064093.

html

ning tool, presenting popular Machine Learning methods
and techniques, evidencing their limitations and advantages
when applied to specific datasets. With the creation of the
competition platform and the blog, we expect to propel for-
ward the creation of a Data Science and Engineering Club
at UAB.

2 SELECTING THE DATASETS

The databases that will be analyzed in each of the blogs
have been selected. They act as an introduction to each of
the main Machine Learning concepts needed to address
almost any type of problem that can be solved with these
methods. We have selected the following datasets:

1. Cryptocurrency Historical Prices[1]: Predicting the
Bitcoin Market Price. This dataset contains informa-
tion regarding the state of the cryptocurency market
over the course of the last 5 years. The problem to be
solved using this dataset is the prediction of Bitcoin
value in USD, given the current state of the market.
This dataset is composed of 2921 data points. We se-
lected 10% of the samples for both the validation and
test set and the rest for training.

Enero de 2019, Escola d’Enginyeria (UAB)

https://competitions.codalab.org/
https://www.uab.cat/web/hub-b30-1345754064093.html
https://www.uab.cat/web/hub-b30-1345754064093.html


2 EE/UAB TFG INFORMÀTICA: Towards a Data Science and Engineering Club at UAB

2. Game of Thrones[2]: Predicting Deaths in Game of
Thrones. The goal of this dataset is to predict whether
a Game of Thrones character will die. The dataset is
composed of 1946 samples, each of with comprises 33
features, containing information of multiple characters
from the show. We selected 20% of the data points to
evaluate our models.

3. MNIST[3, 4]: Handwritten digit recognition. The goal
of this dataset is to identify handwritten digits ranging
from 0 to 9, presented in binary images. This dataset
consists (as we have modified it) of 47995 in the trai-
ning set, 12005 in the validation set and 10000 in the
test set. The images are stored in numpy serializables
files (.npy).

4. Lesion Diagnosis[5]: Classifying skin lesions using
dermatoscopic images. The goal of this dataset is to
automate the diagnosis of different skin lesions using
fine-tuning[6]. This dataset contains 10015 images be-
longing to one of 7 categories. We selected 20% of the
images present in each class for validation and used
the rest for trai ning.

We chose the first 2 datasets to show how to perform a
thorough analysis of temporal series, cross-sectional data
and model performance, using techniques like correlation
matrices, feature extraction, confusion matrices, cross va-
lidation and many more. The MNIST dataset was chosen
because it is a well-known dataset used as a baseline for
Deep Learning models. In the blog, we use it to provide an
introduction to Convolutional Neural Networks. Finally, we
chose the Lesion Diagnosis dataset in order to introduce the
concept of fine-tuning in a fine-grained classification pro-
blem. Which is currently a very common approach used in
Deep Learning.

3 METHODOLOGY OF THE POSTS

Blog Posts have been created[7], detailing how to per-
form a deep analysis over a dataset, whether it is for clas-
sification or regression. The posts also contain an introduc-
tion to key Machine Learning concepts, serving as a guide
for the reader to tackle Machine Learning problems.
What follows is a list of some of the currently existing blogs
as well as an overview of their content. All of the blogs are
written using Python 3.6[8] inside Jupyter-Notebook[9].

3.1. Cryptocurrency Historical Prices
In this blog post[10] we use dataset[1] to predict the price

of Bitcoins using regression and data analysis techniques.
This post explains how to build and evaluate a regressor and
how to analyse your data.

3.1.1. Data Analysis and Preprocessing

We start by introducing the concept of feature correlation,
explaining how it can help us discard useless or redundant
features and keep the ones that contribute the most to the
learning process of our model. We show how to visualize
the correlations between your features plotting a confusion

matrix as a heat map. There are multiple ways to calcula-
te the correlation between 2 variables. We decided to use
the Pearson Correlation Coefficient. Analysing the resulting
correlation matrix, seen in Figure 1b, we get rid of features
whose correlation with our target variable is close to 0, sin-
ce these do not influence our target variable much. We also
remove redundant features. These are the ones whose co-
rrelation coefficient with all other variables is very similar,
meaning that if we find a pair of redundant features, we can
remove one them. Thus, reducing the redundancy present
in our data. We also plot the evolution of some important
features over time. Looking for some interesting insight in-
to the workings of the Bitcoin Market, see Figure 1a. We
can see that the more valuable Bitcoin becomes, the harder
it is to mine it and the more daily transactions are perfor-
med. Notice the early spike in Daily Confirmed Transac-
tions, halfway into 2010, when the Mining Difficulty was
low because their Market Price and Market Cap were basi-
cally non-existent. The people who bought Bitcoins in these
early transactions and sold them around the spike present
halfway through 2011 and on 2014 are the ones that pro-
bably got rich with Bitcoin.

3.1.2. Applying Machine Learning

In this section we show how to build and fit a Linear Re-
gressor and we also enumerate two metrics you can use to
evaluate the performance of said model.

We start by building and fitting the regressor to our trai-
ning data and proceed to evaluate it’s performance on the
validation set using two metrics: RMSE (Root Mean Squa-
red Error) and coefficient of determination (R2 Score). We
provide a brief insight into how these metrics work and what
they represent.

3.1.3. Results

Finally we proceed to show the results obtained with our
simple regressor. Looking at Figure 2a we can see that our
regressor performs considerable well, specially on the pre-
dictions made for data appearing after the year 2014. Per-
forming a deeper analysis using a residual plot, shown in
Figure 2b, it becomes obvious that our model can be impro-
ved as indicated by the non-random pattern present in the
projected data points on the left side of the plot.

3.2. Game of Thrones
In this blog post[11] we set out to predict the fate of Ga-

me Of Thrones characters using Machine Learning. This
post contains a deep analysis on the dataset[2], along with
an analysis of the performance of many different Machine
Learning models.

3.2.1. Data Analysis and Preprocessing

In this section we show that there are multiple ways of
dealing with NAN values. Explaining that if you only ha-
ve a couple of samples which contain a NAN value in a
certain attribute, you might just be better off with dropping
those samples entirely. But if there are too many samples
that contain NANs you can’t just drop them all. This is the
case for this dataset. So we proceed to fill the NANs that



Diego Velazquez Dorta: Towards a Data Science and Engineering Club at UAB 3

(a) Bitcoin Data over time (b) Correlation Matrix

Fig. 1: Bitcoin Data Visualization

(a) Regressor prediction over entire dataset (b) Residual Plot

Fig. 2: Regression results

we can with the mean value of their columns and replace
the rest with a� 1 or empty string. We also show the use-
fulness of Violin plots and compare them with box plots.
Showing how, since violin plots show the probability den-
sity of the data at different values, they are more informati-
ve than a plain box plot. In fact, as it can be seen in Figure
3, while a box plot only shows summary statistics such as
mean/median and interquartile ranges, the violin plot shows
the full distribution of the data. Afterwards, we show how
to get rid of useless features in the data, likeS.Nowhich is
basically an incremental identi�er for each sample, andna-
me, which is the name of the character. Since these features
don't contribute at all to the prediction of a character's fate,
we drop them entirely. Finally, we introduce the concept of
one-hot encoding, using it to transform the categorical fea-
tures in our dataset into vectors, making it possible for our
models to use them in the learning process. The concept of
factorizing it's also explained but not applied, since it is not
the correct approach for this dataset.

3.2.2. Applying Machine Learning

The following section in the post explains different ways
in which you can measure the performance of a classi�er,
along with the different metrics used in Machine Learning
and what each of them represents.

We start by introducing the concept of splitting the data
into train and test sets. The way in which you divide your
data in Machine Learning is crucial when it comes to de-
termining how well a model performs on it. It is imperative
to make sure that our model performs well no matter how
the data is partitioned. For example: suppose we have a mo-
del with one or more unknown parameters, and a dataset to
which the model can be it (the training data set). The �tting
process optimizes the model parameters to make the model
�t the training data as well as possible. If we then take an
independent sample of validation data from the same popu-
lation as the training data, it will generally turn out that the
model does not �t the validation data as well as it �ts the
training data. The size of this difference is likely to be large
especially when the size of the training data set is small, or
when the number of parameters in the model is large. Cross-
validation is a way to estimate the size of this effect.
We split the data using cross validation and run many diffe-
rent models using 5 data splits. As it can be seen in Figure
4b we can select the most promising models by selecting
the best accuracy distribution. To show the effects of hyper-
parameter tuning we chose the best and the worst perfor-
ming models, showing that with some tuning both models
can perform almost equally well. We continue by introdu-
cing the concept of grid search and how it is used to al-
gorithmically select the best hyper-parameters for a given



4 EE/UAB TFG INFORM�ATICA: Towards a Data Science and Engineering Club at UAB

(a) Class Distribution around different
features

(b) Violin Plot and Box Plot comparison

Fig. 3: Data Visualisation for the GOT dataset

model. We apply this algorithm to our selected models even
though it is a brute force approach since if you havek hyper-
parameters, and each one of them havec possible values.
Then, performing grid search is basically taking a Cartesian
product of these:

Q k
c=1 ci.

3.2.3. Results

In this section we visualize the performance of the classi-
�ers and give an overview of the evaluation metrics used in
Machine Learning. We plot a normalized confusion matrix
for each of the models showing how well each classi�er per-
forms on each of the classes. As shown in Figure 4a, both
of our classi�ers perform much better on positive examples
(alive characters) than on negative examples (dead charac-
ters). This is due to the fact that here are many more positive
examples than negatives in the dataset. This class imbalan-
ce makes the model biased towards the positive class.
We analyze how well our models can distinguish between
classes by plotting a ROC (Receiver Operating Characteris-
tics) curve. As it can be seen in Figure 4c, both models have
a fairly decent AUC (Area Under the Curve) at every thres-
hold. Nonetheless, the Random Forest Classi�er performs
consistently better at lower thresholds. Lastly, after explai-
ning the importance of different metrics such as: precision,
recall and f1-score; we proceed to visualize the precision-
recall trade-off every model suffers from, by plotting a PRC
(precision recall curve). As seen in Figure 4d, our model
behaves as expected, maintaining about80 %precision and
recall values at almost every threshold.

3.3. MNIST

In this post[12] we solve the famous MNIST dataset[4],
describing widely use kind of neural network widely used in
computer vision known as Convolutional Neural Networks
(CNN). We introduce the reader to the concept of CNN tea-
ching them how to implement one from scratch using the
PyTorch library[13].

3.3.1. Data Analysis and Preprocessing

We start by introducing the reader to the concept of a
Data Loader, as well as to the concept of Tensors and how
images can be seen as such. Explaining that before feeding
the images to our model it's always a good idea to prepro-
cess them a bit. To do this, PyTorch[13] provides theda-
ta.transformsmodule.

Images are usually represented as a 3D array with a shape
of H � W � C, containing RGB values ranging from 0 to
255. In this case since we are using binary images they have
only 2 possible values: 0 or 255.
We apply one transformation to every image, changing their
shape toC � H � W and make the range of values between
0 and 1, or in our this particular case: 0 or 1. This trans-
formation will also convert the images to tensors which is
an array that can be stored in GPU. Once we have our data
on disk we use PyTorch[13]DataLoadersto load them into
memory using batches and shuf�ing them if needed, using
several workers loading the data in parallel preventing this
process from becoming a bottleneck.

3.3.2. Applying Machine Learning

This blog has a more theoretical and introductory ap-
proach, so in the Machine Learning section we introduce
the reader to some basic concepts, that are necessary to fo-
llow the code and explanations presented in the post.
Firtly we explain that Neural Networks are based on a co-
llection of connected units or nodes called “neurons”, which
try to simulate, in a very simplistic manner, the way neurons
interact in an animal's brain. Each connection, like the sy-
napses in a biological brain, can transmit a signal from one
arti�cial neuron to another. An arti�cial neuron that receives
a signal can process it and then signal additional arti�cial
neurons connected to it. Secondly we explain that CNNs are
a kind of neural network that attempts to look at images the
way the humans do, extract information from them and pass
it to the arti�cial neurons tasked with handling this informa-
tion in the fully connected layers. Lastly we show how the
convolution �lters work. Explaining how they look at the
image progressively, using a sliding window and how this
allows the network to focus on one piece of the image at a ti-
me, learning to extract the most important information from
each portion of the image. This is similar to how the human
brain looks at images. The human eye is mostly very low
resolution, except for a tiny patch called the fovea. Though
we feel as if we can see an entire scene in high resolution,
this is an illusion created by our brain who stitches together
several glimpses of small areas captured by the fovea.

3.3.3. Results

Lastly, we visualize each one of the activation maps ge-
nerated by one of the convolutional layers of the trained



Diego Velazquez Dorta: Towards a Data Science and Engineering Club at UAB 5

(a) Confusion Matrices of 2 of the evaluated models

(b) Accuracy Distribution obtained by all of the models evaluated using Cross-Validation

(c) ROC Curve for 2 of the evaluated classi�ers (d) Precision Recall Curve for Random Forest Classi�er

Fig. 4: Different ways of evaluating a classi�er

architecture. As it can be seen in Figure 5a the �rst convo-
lutional layer clearly is specialized in detecting edges and
curves in the numbers.
We also show the results obtained by our small and simple
architecture using loss and accuracy values. As shown in Fi-
gure 5b, we achieve around99 %accuracy on the validation
set, which comes close to the state-of-the-art results[14] for
the MNIST dataset.

3.4. Lesion Diagnosis

In this blog post[15] we introduce one of the many wi-
dely used techniques in Deep Learning and Computer Vi-
sion, known as �ne-tuning.
We explain what �ne-tuning is and how to �ne-tune

any CNN, applying this technique to the Skin Lesion
Challenge[5] using a resnet18 architecture, shown in Figure
6). The training is done by using multiple GPUs using the
DataParalellmodule provided by PyTorch[13].

3.4.1. Data Analysis and Preprocessing

In this blog post we introduce the concepts of Data Aug-
mentation and Normalization applying these techniques to
the images in the dataset. We �ip images horizontally with
a 50 %chance. Since on our dataset no information is lost
by performing this operation, we effectively augment the
amount of training images at our disposal.
We also crop a random section of the image and feed that
to the network, this is a good technique to effectively aug-



6 EE/UAB TFG INFORM�ATICA: Towards a Data Science and Engineering Club at UAB

(a) Activation Map of a CNN convolutional layer: The white specs
in the images are the regions that the CNN is paying attention to.

(b) Results as loss and accuracy values

Fig. 5: Results on the MNIST dataset

Fig. 6: Resnet18 Architecture

Fig. 7: Results obtained on the Resnet18 architecture

ment the amount of images in the training set. It also helps
the network to generalize better since performing this ope-
ration adds more variance to the data.
Finally we re-scale and normalize our images due to the fact
that the network must be fed224� 244images and that the
images with which the network was trained were normali-
zed using the Imagenet[16] mean and standard deviation.

3.4.2. Applying Machine Learning

As the latter post (described above), this post is elabo-
rated using a more theoretical approach so, in the Machine
Learning section we walk the reader through some key con-
cepts that are necessary to follow the rest of the blog post.
We explain how since CNNs usually have a large number
of parameters, often in the range of millions, training one of
these architectures with a dataset that is signi�cantly sma-
ller than the number of parameters it has, will prevent it

from generalizing, making it over�t the data. On top of that,
training a network with millions of parameters from scratch
takes a large amount of time. Fine-tuning bypass both of
these problems by taking an already trained network, mo-
difying it slightly and re-training it on new data. Avoiding
over�tting and making the training signi�cantly faster.
To �ne-tune a CNN, the �rst thing you have to do is change
only the last fully-connected layer of the network, repla-
cing it with your own, having as many output units as your
task requires. For example: a network trained with Image-
net will have 1000 neurons on the last layer, since Imagenet
has 1000 classes. If our dataset has only 10 classes we just
replace the last layer with one that has 10 neurons.
Once this is done Fine-tuning can be performed in mainly
in 3 different ways:

Freeze (no backprop) the entire network and train only
the newly added layer with a normal learning rate.




	Introduction
	Selecting the Datasets
	Methodology of the Posts
	Cryptocurrency Historical Prices
	Data Analysis and Preprocessing
	Applying Machine Learning
	Results

	Game of Thrones
	Data Analysis and Preprocessing
	Applying Machine Learning
	Results

	MNIST
	Data Analysis and Preprocessing
	Applying Machine Learning
	Results

	Lesion Diagnosis
	Data Analysis and Preprocessing
	Applying Machine Learning
	Results


	The Platform Data UAB
	Conclusions

