
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

Desarrollo e implementación de un protocolo
Single Packet Authorization

Rubén Gutiérrez Guerrero

Resumen—En un paradigma cliente-servidor bajo una red TCP/IP no siempre puede ser una buena solución utilizar los
protocolos clásicos en los que un servidor mantiene todos los puertos abiertos, ya que puede aportar información relevante a un
atacante. En este artículo se presenta una propuesta que aporta una capa adicional de seguridad, evitando que un simple
escaneo de puertos permita a un usuario malintencionado perfilar un servidor. Para esto, se propone implementar una variante
de los protocolos clásicos de portknocking denominada Single Packet Authorization (SPA). Esta variante emplea un único
paquete para auntenticar a un cliente, tras lo que se le permite la conexión a un determiando servicio. En el artículo se presenta
adicionalmente una prueba de concepto que valida la viabilidad de la propuesta.

Palabras clave—Portknocking, Single Packet Authorization, HMAC.

Abstract—In a client-server paradigm under a TCP/IP network, it can not always be a good solution to use the classic protocols
in which a server keeps all ports open, since it can provide relevant information to an attacker. This paper presents a proposal
that provides an additional layer of security, preventing a simple port scan from allowing a malicious user to profile a server. For
this, it is proposed to implement a variant of the classic protocols of portknocking called Single Packet Authorization (SPA). This
variant uses a single paquet to authenticate a client, after which the connection to a certain service is allowed. The article also
presents a proof of concept that validates the viability of the proposal.

Index Terms—Portknocking, Single Packet Authorization, HMAC

—————————— ◆ ——————————

1 INTRODUCCIÓ

N el paradigma cliente-servidor se establece, por

definición, una comunicación entre dos partes a través

de un canal, el cual permite el intercambio de mensajes. En

este contexto, el Servidor es responsable de proveer de

acceso a recursos o servicios, los cuales son consumidos

por el Cliente. En el caso particular de los sistemas de

información, el canal suele tratarse de una red de

computadores, la cual es considerada como un entorno

inseguro en tanto que su función es la de transportar los

mensajes, y no la de proveer de mecanismos de seguridad

para proteger la comunicación.

En el paradigma descrito anteriormente, y bajo redes

basadas en la família de protocolos TCP/IP, el Servidor

expondrá el acceso a recursos o servicios manteniendo

abiertos un conjunto de puertos, a los que se conectará un

Cliente para consumirlos.

Las características de los protocolos TCP/IP hacen que,

bajo ciertas circunstancias, un atacante pueda recabar

información del Servidor, tal como puertos abiertos o

versiones del software que corre detrá de éstos. Este tipo

de información, obtenida por un atacante en una primera

fase de reconocimiento, puede ser explotada

posteriormente de forma maliciosa para identificar

vulnerabilidades y lanzar ataques que comprometan los

sistemas.

En este artículo se presenta una solución que permite
aplicar el concepto de defensa en profundidad. Para
conseguir esto, la propuesta aquí recogida añade una capa
adicional de seguridad, consistente en realizar una
obertura de puertos selectiva para aquellos Clientes que se
identifiquen como legítimos. De esta manera, los servicios
no quedan expuestos libremente ante cualquier potencial
atacante.

De forma más particular, la solución consiste en una
variante del portknoking conocida como Single Packet
Authorization (SPA) [2], la cual empleará un único mensaje
que autentica al cliente mediante un Message Authentication
Code (MAC) basado en HMAC. Esto reducirá el riesgo de
que un atacante pueda suplantar a un cliente legítimo.

Adicionalmente, se presentará una prueba de concepto
que se ha implementado, y que permite validar la viabili-
dad de protocolo SPA propuesto.

E

Febrero de 2019, Escola d’Enginyeria (UAB)

————————————————

• E-mail de contacto: rubengutierrezguerrero@gmail.com

• Mención realitzada: Tecnologies de la Informació.

• Treball tutorizado por: Sergio Castillo Pérez (Departament d'Enginyeria de

la Informació i de les Comunicacions)

• Curso 2018/19

2 EE/UAB TFG: DESARROLLO E IMPLEMENTACIÓN DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION

1.1 Organización del artículo

El resto del artículo está organizado de la siguiente
manera:

• La sección “2 Objetivos” incluye los diferentes

objetivos a abordar en el artículo y a resolver en la
prueba de concepto.

• La sección “3 Estado del arte” se analiza el estado del
arte desde la visión de la servicios expuestos
directamente en una red TCP/IP, en comparación a los
mecanismos que permiten su ocultación como son el
portknocking [7] y el SPA.

• La sección “4 Metodología” expone la metodología
seguida para poder llevar a cabo la prueba de
concepto, así como la distribución de tareas y fases a
completar.

• La sección “5 Desarrollo” expone el desarrollo de
dicha prueba, incluyendo diferentes puntos a tener en
cuenta, tales como las librerías empleadas, la
confección del mensaje SPA, el código implementado,
o el funcionamiento de cada parte implicada.

• La sección “6 Resultados” muestra los resultados
obtenidos, verificando la viabilidad del protocolo SPA
propuesto a través de la prueba de concepto, y la
ejecución del código asociado.

• La sección “7 Conclusiones” encapsula los objetivos,
desarrollo y resultados, mostrando qué se puede
extraer de ellos como conclusión, del mismo modo se
habla de diferentes líneas de desarrollo futuras
buscando expandir o mejorar la propuesta.

2 OBJETIVOS

En esta sección se recogen los diferentes objetivos del

artículo, los cuales se centran en el estudio, el diseño, y la

implementación de una solución al problema de

visivilidad de los puertos y servicios de un servidor.

Seguidamente se dan más detalles por cada uno de estos.

2.1 Estudio de mecanismos de protección de
servicios expuestos en red

Este objetivo permite tener un conocimiento adecuado

de la técnica del portknocking, las diferentes variantes y las

estrategias de implantación, así como las particularidades

a tener en cuenta (formato del mensaje, encapsulación del

mismo, función hash a utilizar, ...). También incluye una

vista a posibles utilidades necesarias en el momento de

implementar al código (Por ejemplo, tener en cuenta que

se reuqerirá utilizar una función HMAC sobre un mensaje

o acceder a la hora del sistema).

Este objetivo es el pilar fudamental para poder llevar a

cabo los recogidos en las subsecciones siguientes, siendo el

punto de referencia para la definición del protocolo, la

implementación, y guía a seguir [1, 4]. Y por tanto

proyectar adecuadamente las fases de planificación y

desarrollo según los datos y tareas necesarias para la

impelmentación de dicho protocolo.

Este objetivo se verá materializado en la sección de

“Estado del Arte”, dónde se documentarán en términos

generales los diferentes mecanismos analizados.

2.2 Diseño e implementación de una solución SPA

Este objetivo tiene una doble finalidad. En primer lugar,

diseñar un protocolo SPA en base al estudio realizado en el

objetivo anterior. El diseño de éste protocolo debe

contemplar los aspectos estudiados así como las possibles

librerías y lenguajes en el que desarrollar el código.

En segundo lugar, implementar la solución en sí. Para

esto, se requerirá un entorno en red en que haya dos

máquinas (un cliente y un servidor), el servidor deberá de

poder abrir sus puertos o realizar acciones según el

mensaje recibido del cliente, quien debe de poder enviar

un mensaje al servidor. Del mismo modo, ambos, deben

respetar el protocolo y el formato común del mensaje que

se haya determinado en el objetivo anterio.

2.3 Ampliación de las funcionalidades SPA

Este objetivo nos permitirá automatizar acciones que

podrá ejecutar un servidor al recibir un paquete del

protocolo SPA, incrementando así sus funcionalidades. Se

buscará que el servidor pueda realizar acciones, tales

como: Envío de fichero, subida de fichero, obertura de

puertos, envío de email… Funcionalidades que se

determinarán durante el desarrollo de planificación de este

objetivo.

Estas acciones deberían de ser realizadas según

diferentes parámetros, tales como: puerto por el que se

recibió el mensaje, contenido del mensaje, etc.

3 ESTADO DEL ARTE

En esta seccion se recoge el estado del arte en cuanto a
diferentes modos de establecer una conexión entre un
cliente y un servidor, y en relación al grado de exposición
de los servicios. En concreto éstos son: 1) Comunicación
clásica basada en el paradigma de TCP/IP, 2) La utilización
de portknoking y 3) El uso del SPA. A continuación, se verá
el funcionamiento de cada una de estas tres posibilidades.

3.1 Servicio expuesto a nivel de capa de transporte
(TCP/IP)

Clasicamente, para la comunicación entre dos

ordenadores conectados a una red se utiliza el paradigma

conocido como TCP/IP. En este contexto, los protocolos de

transporte más extendidos son los de TCP y UDP.

El primero de ellos está orientado a la conexión

garantizando la entrega de los paquetes enviados. Para

esto requiere de un establecimiento de conexión a través

del denominado 3-way handshake.

RUBÉN GUTIÉRREZ: DESARROLLO E IMPLEMENTACIÓN DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION 3

Por contra, el protocolo UDP no está orientado a la

conexión, lo que no garantiza la correcta recepción de los

paquetes enviados. En la figura 1 se muestra un diagrama

que resume graficamente las diferencias en el inicio de una

comunicación.

Figura 1. Comparativa entre la conexión TCP y la

comunicación UDP.

Indiferentemente del protocolo TCP o UDP, los servicios

siempre se presentan a través de un puerto al que accede

un cliente. En cualquier caso ninguno de estos protocolos

permite de forma nativa evitar que un atacante determine

que puertos y/o servicios estan expuestos.

3.2 Portknoking clásico

El portknocking consiste en la utilización de una

secuencia concreta de mensajes para la obertura del puerto

solicitado. Esta secuencia sólo es conocida por el emisor y

receptor por lo que es utilizada como medio de

autentificación del emisor.

Este tipo de tecnología, por otro lado, permite proteger

de manera “extra” la comunicación entre el ciente y el

servidor, aplicando así el concepto de “defensa en

profundidad” [14], que consiste en la ocultación de

servicios por medio de protocolos o tecnologías que hacen

de intermediario entre el cliente y el servicio del servidor a

la que desea acceder. En la Figura 2 se puede observar de

manera gráfica dicho concepto, dónde, para acceder al

servidor es necesario pasar por portknoking,

complementándose con el firewall y ssh, añadiendo ésta

capa extra de seguridad. Cabe destacar que la variante SPA

también permite aplicar dicho concepto.

Este conjunto de mensajes, enviados por un cliente

hacia el servidor que lo autentificará, indican una

secuencia exacta de mensajes, haciendo que sea posible,

con diferentes secuencias, dar lugar a autentificaciones

diferentes dependiendo del cliente que se conecte

(Pudiendo así, incluso, configurar que, diferentes

secuencias concretas de mensajes den lugar a acciones o

servicios diferentes por parte del servidor).

Esto, como veremos más adelante, también será posible

utilizando un sólo mensaje.

Figura 2. Concepto de defensa de profundidad aplicado al

portknoking

Pero este sistema conlleva diferentes problemáticas,

entre ellas:

• Un atacante podría monitorizar la secuencia y

observar el comportamiento del servidor en

consonancia.

• Limita la cantidad de información a transmitir.

• Un IDS podría interpretar los consecutivos paquetes

del cliente como un escaneo de puertos.

Por esto razón existen diferentes implementaciones de

portkocking, tratando de solventar los diferentes

problemas que presenta.

3.3 Single Packet Authorizathion

Una variante particular del portknocking es la la

denominada como Single Packet Authorization (SPA) [10].

Esta variante, en contraposición al portknocking clásico,

tiene las siguientes características:

• Sólo se envía un mensaje, de modo que es menos

llamativo y evita ser detectado por un posible

atacante.

• El mensaje está autenticado y teniendo en cuenta

aspectos como son la IP de origen o el timestamp que

dificultan la reutilización del mismo por parte de un

atacante.

• Un IDS tan solo vería un mensaje con datos

indescifrables por lo que no se detectaría como un

ataque, evitando así los obstáculos que acarrearía

resolver este problema.

El funcionamiento del SPA puede resumirse en que un

cliente, al tratar de conectar con el servidor, envía

previamente un sólo mensaje que lo autentica de algún

modo (como podría ser un HMAC). Este mensaje es leído

por el servidor y, según el mensaje recibido, validará o no

al cliente abriéndole posteriormente el correspondiente

puerto de conexión.

4 EE/UAB TFG: DESARROLLO E IMPLEMENTACIÓN DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION

Del mismo modo que ocurría con el portknocking, con

un sólo mensaje es posible autentificar diferentes clientes o

realizar diferentes acciones. Esto es, no se pierde

flexibilidad a pesar de reducir el número de mensajes a

uno, siendo esto un gran ventaja sobre el método “clásico”

de portknoking.

También es importante señalar que SPA puede incluir

en el mensaje un timestamp que permite reducir ataques

de tipo replíca [12].

3.3.1 Hash-based Message Authentication Code:

La tecnología de SPA puede emplear diferentes

estrategias para autenticar el cliente (por ejemplo Message

Authentication Codes, firma digital, ...). Entre las diferentes

alternativas, el uso de un MAC mediante funciones

generadoras de tipo “Hash-based Message Authentication

Code” (HMAC) suelen ser ideales en este contexto, al ser

el tamaño del código resultante razonable para el

propósito que nos ocupa.

El HMAC, especificado en el RFC 2104 [11], emplea una

función hash sobre un conjunto de datos y una clave

compartida. Esto requiere de un proceso previo al propio

SPA para el intercambio seguro de dicha clave.

3.4 Resumen de diferentes tecnologías

En la Figura 3 se puede observar un resumen de las

diferencias entre las diferentes tecnologías según cómo se

establece la conexión, la comunicación, posibles problemas

y el estado del servidor:

Tecnología TCP/IP Portknoking SPA

Establecer co-

nexión

Consiste en
múltiples
mensajes
intercambiados
entre el cliente y
el servidor

Envío de
diferentes
mensajes,
pero menos
llamativo que
una exposición
directa

Mediante un
solo men-
saje.

Comunicación Los mensajes, al
ir en texto plano,
no ocultan
información
sensible ni las
intenciones del
cliente con el
servidor

Envío repetido
de diferentes
mensajes

El mismo
mensaje que
se envió para
autentificar
al cliente se
ha utilizado
para realizar
peticiones.

Posibles proble-

mas

Un atacante ve-
ría sin problemas
tanto el conte-
nido de los men-
sajes intercam-
biados como los
diferentes servi-
cios ofrecidos
por el servidor

El envío
repetido de
mensajes al
servidor podría
ser confundido
por un IDS por
un escaneo de
puertos

-

Visibilidad del Requiere de una
obertura de los
puertos general

El servidor po-
dría mantener
servicios

El servidor
permanece
con los

Servidor y para cualquier
cliente.

ocultos ce-
rrando los
puertos hasta
que se solicite
el servicio de
dicho puerto

puertos ce-
rrados, sin
posibilidad
de escaneo.

Figura 3. Resumen de diferencias entre TCP/IP, portknoking

clásico y SPA

4 METODOLOGÍA

En este apartado se explone la metodología utilizada

para alcanzar los objetivos indicados en la sección

“Objetivos”. Ésta se plantea como la ejecución de un

conjunto de tareas de alto nivel, y que comprende las

diferentes fases: Planificación, Estudios de técnicas de

portknocking, Diseño e implementación y Ampliación de

funcionalidades SPA.

A continuación, se expondrá la metodología que se ha

seguido en las distintas fases que requerían de desarrollo,

consistiendo ésta en el uso iterativo por cada nueva

funcionalidad de Planificación, Definición,

Implementacfión y Testeo; tales como en la fase de Diseño

e Implementación y de Ampliación de funcionalidades

SPA.

4.1 Metodología de desarrollo

La metodología seguida en las fases de desarrollo es la

siguiente:

1. Planificación: Se revisa y utiliza como guía la

información recopilada respecto a la tarea actual de

modo que facilite y agilice la implementación y

permita acotar y definir la “Definición de la tarea a

realizar”.

2. Definición: Una vez se halla recopilado toda la

información necesaria se define exactamente qué tarea

se realizará. Es decir “Implementar la comunicación

a través de HMAC entre el cliente y el servidor” es

algo muy general, en esta fase se busca encontrar

exactamente qué funciones o módulos hay que hacer,

qué entradas y salidas tendrá…

3. Implementación: Tras haber definido mejor en qué

consiste la tarea se procede a la implementación de la

misma, según lo acotado en la fase “2. Definición”.

4. Testeo: Una vez se haya implementado, y verificado la

funcionalidad de, la fase “3. Implementación” se

procede a testearla y a comprobar resultados. En esta

fase, adicionalmente, se documenta qué se ha obtenido

de esta iteración. Esta fase está orientada al testeo de

las funcionalidades recién implementadas.

5 DESARROLLO

La metodología planteada en este artíclo en el momento

de realizar la prueba de concepto, se ha orientado en

RUBÉN GUTIÉRREZ: DESARROLLO E IMPLEMENTACIÓN DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION 5

completar diferentes fases:

• Planificación: Fase centrada en la definición y

ordenación de cada una de las tareas a realizar.

• Estudios de técnicas de portknoing: Estudio de las

diferentes estrategias y soluciones portknoking y su

implementación.

• Diseño e implementación: Desarrollo de una versión

básica de la solución SPA.

• Ampliación de funcionalidades SPA: Adición de

funcionalidades extra a la autentificación tras la

recepción y aceptación de un mensaje.

También se detallará el funcionamiento y la lógica

seguida por el servidor tras finalizar las fases de “Diseño e

implementación” y de “Aplicación de funcionalidades

SPA”. Así como el funcionamiento del cliente que, a pesar

de ser más simple, también debe cumplir con el protocolo

establecido en la planificación de la prueba de concepto

para elavorar un mensaje correcto.

Finalmente se verá la arquitectura, librerías y detalles

utilizados por el cliente y servidor para hacer de soporte

de la prueba de concepto.

5.1 Planificación

Se ha buscado documentación e información respecto a

la tarea actual de modo que facilite y agilice la

implementación y permita acotar y definir la “Definición

de la tarea a realizar” en las fases posteriores.

Entre otros aspectos, se prioriza el diseño de los

mensajes a enviar utiizando la tecnología de HMAC, así

como la gestión de los paquetes enviados y recividos tanto

en el servidor como en el cliente, llegando a concluir en el

uso de la librería de scapy por parte del cliente y en el uso

de netfilter [1] por parte del servidor.

5.2 Estudio de las técnicas de portnocking

En esta fase se profundiza en los diferentes aspectos de

la técnica portkocking, recopilando la información

necesaria para llevar a cabo la fase siguiente de “Diseño e

implementación” Esta fase la podemos subdividir en dos

sub-tareas:

• Estudio de diferentes opciones e implementaciones de

la técnica de portkocking, obteniendo así un panorama

de cómo y qué existe en este ámbito

• Recopilación de información sobre la técnica a utilizar,

estudiando así, cómo debe implementarse y cuáles son

las tareas que seguir en la elaboración de paquetes y

comunicación entre cliente y servidor

5.3 Diseño e implementación

En esta fase se determina el diseño según la información

recopilada en las fases anteriores y se procede a

implementar este diseño. Esta fase la podemos subdividir

en:

• Estudio del sistema de filtrado de paquetes de red en

Linux, buscando conocer el funcionamiento del

mismo y cómo debe de utilizarse para llevar a cabo los

objetivos planteados en el artículo y la interacción con

la implementación

• Fase de diseño de la solución. En esta fase se determina

los diferentes aspectos de la implementación,

definiendo los módulos necesarios para el cliente y el

servidor, así como de qué funcionalidades tendrá cada

uno y de sus interacciones (tanto internas como a

través de la red)

• Fase de implementación. En esta fase se sigue la guía
establecida en el apartado de “Planificación”, de
acuerdo con los contenidos estudiados en el primer y
segundo apartado. Implementando así los módulos de
cada una de las partes (cliente y servidor) y de la
comunicación entre estos.

• Fase de testing. En esta fase se definen baterías de

testeo para la implementación a modo de buscar y

corregir los posibles errores cometidos. Del mismo

modo se buscará verificar que cumple los objetivos

definidos en la sección “Objetivos”.

5.4 Ampliación de las funcionalidades del SPA

En esta fase se definen qué funcionalidades se

implementan en la parte del servidor, así como la

implementación de dichas funcionalidades

• Fase de diseño de funcionalidades. En esta fase se

definen qué funcionalidades tendrá el servidor, así

como cómo llevarlas a cabo.

• Fase de implementación. En esta fase se implementan

las funcionalidades establecidas en la fase anterior,

modificando en caso de ser necesario lo desarrollado

en la fase de “Diseño e implementación”.

5.5 Funcionamiento del Servidor

A continuación se describe el funcionamiento del

6 EE/UAB TFG: DESARROLLO E IMPLEMENTACIÓN DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION

Servidor, el cual puede desglosarse en tres fases (ver figura

4).

Figura 4. Esquema de eventos en el Servidor

5.5.1 Recepción del paquete

La recepción del paquete por parte del código que se
encarga de realizar las diferentes funcionalidades del
servidor requieren del uso de, primeramente, de la
creación de reglas que indiquen que determinados
paquetes deben enviarse a la capa de aplicación y, a
continuación, un código que permita la recepción de dicho
paquete para leer y guardar el HMAC que contenga para
su posterior procesado.

Para ello se ha utilizado las siguientes reglas, utilizando
iptables [3]:

iptables -I INPUT -p tcp –dport 5001 -j NFQUEUE

De modo que el puerto que se utilizará para las

siguientes pruebas de concepto será el 5001 TCP. Esta regla
indicará que los paquetes que se dirijan hacia la cadena de
INPUT (esta es la cadena que, concretamente, utilizamos
durante la prueba de concepto) por el puerto 5001 tendrán
como objetivo “NFQUEUE”, tal y como se esquematiza de
manera más clara en la Figura 5:

Figura 5. Vinculación de la cadena INPUT al aplicativo

Posteriormente, en la aplicación y mediante la librería

de netfilter se vinvulará esta cadena al aplicativo, dónde se

podrá acceder vía código.
Para realizar esta vinculación, los pasos que se han

seguido mediante la librería de netfilter se resume en,
primero, obtener el handler de la librería (nfq_open), a
continuación se vincula el handler obtenido al tipo
nfqueue (nfq_bind_pf), se liga la vinculación a una función
callback, que será donde inicie el código y la lógica de la
prueba de concepto (nfq_create_queue) y, finalmente, se
indica cuanto del paquete se querrá obtener, que en este
caso será el paquete completo, teniendo así a los datos del
mensaje (nfq_set_mode, que se indicara el modo
“NFQNL_COPY_PACKET”). Tras esta primera
configuración el servidor escuchará en bucle los paquetes
recividos (nfq_handle_packet) enviando los paquetes a la
función que se le haya indicado en el callback.

Una vez la aplicación tenga acceso a dicha cola, se podrá
leer el contenido del paquete que se facilitó mediante unos
bytes de control (fffffff en este caso), se guardará el HMAC
y se pasará a procesar la respuesta del Servidor.

5.5.2 Procesado del mensaje

Tras obtener el HMAC enviado por el cliente, se
procederá a calcular los HMAC conocidos para la
comparación con el HMAC que se ha recibido.

Para realizar este procesado por parte del servidor se ha
optado por utilizar la librería de openssl [13], la cual ofrece
una gran cantidad de funciones relacionadas con
criptografía y hash, tales como el SHA-256 utilizado para
generar el HMAC, función también disponible en dicha
librería.

5.5.3 Decisión sobre el mensaje

Finalmente, el servidor procederá a decidir la
aceptación del mensaje y la decisión a tomar en
corcordanza. Pudiendo así realizar cualquier acción desde
la activación de una regla que permita las conexiones a un
determinado servicio del servidor hasta realizar acciones
de gestión dentro del servidor. Adicionalmente se pueden
tomar acciones preventivas ante mensajes extraños como,
por ejemplo, que tras un determinado de intentos erroneos
por parte de un cliente, se proceda a bloquear la IP de dicho
cliente, mitigando así posibles ataques.

5.6 Funcionamiento del Cliente

Por el lado del cliente, se usa la librería de scapy [5], de
Python, la cual permite la elavoración de paquetes y la
edición de cada uno de los campos de las cabeceras de las
diferentes capas (IP, TCP...).

Para un correcto funcionamiento del cliente, sólo se
necesitan editar las cabeceras IP y TCP, así como la adición
del payload, para a continuación enviar el paquete al
servidor.

En la Figura 6 se puede observar de manera más clara

la consecución de comandos utilizados para generar y

RUBÉN GUTIÉRREZ: DESARROLLO E IMPLEMENTACIÓN DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION 7

enviar el parquete con dicha librería:

Figura 6. Elavoración de paquete scapy simplificado

5.7 Estrucutra del mensaje

Tanto el cliente como el servidor deben de generar el

mismo mensaje para que, en el momento de aplicar la

función HMAC, se genere el mismo mensaje procesado,

haciendo así posible que el servidor puede validar el

mensaje del cliente.
Seguirá la siguiente estrucura definida en la fase de

diseño:

IP_SERVIDOR + IP_CLIENTE + PUERTO_CLIENTE
+PUERTO_SERVIDOR + PAYLOAD + TIMESTAMP

El ‘timestamp’ será el equivalente al día, hora y minutos,

evitando así la, baja, probabilidad de que los segundos
cambien entre el envío del cliente y la recepción del
servidor. En realidad esta precaución podría llevarse
incluso hasta el nivel de los segundos, ya que el tiempo
típico de un datagrama es del orden de los milisegundos
(un modo sencillo de comprobar esto es mediante el
comando ‘ping’, del cual se puede observar el tiempo de
respuesta en la Figura 7)

Figura 7. Tiempo de respuesta de un envío

Pero de todos modos se ha optado por tomar esta

medida, a modo de asegurar el envío.
El mensaje generado tras la concatenación de los datos

comentados, se procederá a ser procesado por una función
HMAC, la cual utilizará el SHA-256, para su posterior
comparación con el HMAC recibido del cliente.

5.6 Arquitectura utilizada

Para llevar a cabo cada una de las fases anteriores y para

dar soporte a las fases de implementación, los recursos

necesarios para llevar a cabo la prueba de concepto serán

los siguientes:

Ordenador multicore con un mínimo de 8 GB de RAM

para alojar en virtualbox:

• Máquina virtual “Linux Master” que realizará el rol de

servidor.

o 2 GB de RAM.

o Tarjeta de red modo bridge

o S.O. Distribución Linux (Ubuntu)

o Librerías

▪ Iptables (Configurar los puertos y

enviar los paquetes a nivel de

aplicación)

▪ gcc (Compilar el código generado) ▪

tcpdump (a modo de debug en el

envío de paquetes)

▪ lnetfilter (Librería para filtrar los

paquetes)

▪ lnfnetlink (Librería para manejar los

paquetes desde la capa de

aplicación)

• Máquina virtual “Linux Slave” que realizará el rol de

cliente.

o 1GB de RAM

o Tarjeta de red modo bridge

o S.O. Distribución Linux (Ubuntu) o Librerías

▪ gcc (Compilar el código generado)

▪ scapy (Para generar los paquetes)

▪ hashlib (Para utilizar el hash que

corresponda)

▪ datetime (Para obtener la fecha local)

6 RESULTADOS

Los resultados los podemos diferenciar en los
resultados funcionales (los resultados de la prueba de
concepto, viendo así el funcionamiento del servidor y del
cliente) y el diseño y software obtenidos a nivel de
arquitectura y código (un cliente y un servidor funcionales
capaces de realizar las acciones expuestas en este artículo
y susceptibles de ser extenbdidos con nuevas
funcionalidades.

6.1 Resultados de las pruebas

En las siguientes figuras se puede observar cómo el
cliente envía el datagrama con el payload correspondiente
al servidor (Figura 8), así como el mensaje original: la
concatenación especificada en la subsección de “Procesado
del mensaje” de la sección de Desarrollo.

Figura 8. Envío del datagrama desde el cliente

Y cómo el servidor recibe y elabora su propio prototipo
del mensaje oculto, mostrando también su mensaje

8 EE/UAB TFG: DESARROLLO E IMPLEMENTACIÓN DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION

original a modo de debug, pudiendo así comparar tanto el
mensaje generado por el servidor como por el cliente,
cercionando que el mensaje es correcto (Figura 9).

Figura 9. Recepción del mensaje desde la parte del servidor

Como se puede ver en el código adjunto de “envio.py”,

prácticamente es una línea por cada una de estas acciones.
Como se ha comentado a lo largo del artículo
(Concretamente en la sección de “Desarrollo”), se utilizará
la librería de netfilter [4, 6] para pasar a capa de aplicación
los datagramas recibidos por el servidor.

Además, la adición de la regla de la obertura del puerto
22 se ha realizado mediante la ejecución de un comando
Linux del sistema, a través del código C++. Esto posibilita
y facilita la ejecución de otros comandos y ficheros de
formato bash. Esta característica será la aprovechada para
la automatización de tareas en el servidor.

Para realizar esta obertura del puerto, se utiliza la
librería de ufw [8, 9] para facilitar dichas operaciones. Más
concretamente, el comando ejecutado para dicha acción
que se ha utilizado a modo de ejemplo es:

system("ufw allow from 192.168.1.111 to any port 22");
Esto ejecutará en el sistema el comando “ufw allow 22”
Que habilitará el puerto 22, de modo que la máquina
solicitante tenga el puerto abierto para poder conectarse.

Finalmente se puede observar en la Figura 10 el proceso
completo por parte del servidor, los diferentes mensajes
intercambiados y la addición de la regla:

Figura 10. Activación de la regla por HMAC válido

Y, en la Figura 11 se puede observar la conexión del
cliente vía ssh:

Figura 11. Conexión ssh tras la activación de la regla

6.1 Características del prototipo

Tras la realización de la prueba de concepto, se ha
generado el software de un cliente y un servidor con las
características y funcionalidades necesarias para llevar a
cabo una comunicación vía SPA. El servidor puede
recibir, procesar y decidir en función del HMAC
analizado, necesitando unicamente, como configuración
extra (más allá de compilar e iniciar el código) las reglas
de iptables especificadas en el apartado de Recepción del
paquete de la sección de desarrollo.

Por otro lado se ha obtenido el cliente que, con los
parámetros de “ip del servidor”, “puerto del servidor”y
“paylaod” realiza las acciones necesarias para generar el
mensaje y procesarlo mediante un HMAC utilizando el
SHA-256.

Adicionalmente, en ambos casos, es necesario
especificar las direcciones IP en el código.

7 CONCLUSIONES

Como se ha podido ver a lo largo del artículo, y

particularmente en la sección de estado del arte, existen

diversas técnicas que permiten añadir una capa adicional

de seguridad a los servicios expuestos través de una red

TCP/IP. Así, el uso de portknoking clásico, o el SPA

conforman una de éstos mecanismos.

En este artículo hemos presentado una implementación

de SPA basada en GNU/Linux, en la que la parte Servidor

emplea el subsistema de filtrado de paquetes de netfilter.

Esta implementación emplea HMAC como Message

Authentication Code, haciendo uso de la función hash SHA-

256, lo que permite autenticar los paquetes enviados por la

parte cliente y evitar ataques de suplantación o de

repetición. Las diferentes pruebas realizadas de la

implementación demuestran la viabilidad de la propuesta

teórica, materializada en forma de prueba de concepto.

RUBÉN GUTIÉRREZ: DESARROLLO E IMPLEMENTACIÓN DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION 9

Adicionalmente, se ha podido comprobar como SPA

puede extender su funcionalidad clásica de autorización

de un cliente para el acceso a un servicio ejecutando

comandos particulares en función del paquete enviado. El

uso de la versión SPA efectivamente ha proveído, y se ha

comprobado, que puede realizar dichas acciones de

autentificación, autorizacion de acceso a un servicio, o de

ejecución de comandos, a pesar de utilizar un sólo mensaje.

Esto, junto con el uso de un HMAC apropiado aplicado a

los datos enviados junto a un timestamp robustece la

solución desde una perspectiva de seguridad. Asimismo,

se ha comparado la solución SPA con la de portknocking,

exponiendo las bondades de esta tecnología.

Desde la perspectiva futuras lineas de mejora podemos

considerar las siguientes:

• Alternativas a HMAC: Una possible via de

continuación sería estudiar alternativas a HMAC,

como podría ser, por ejemplo, la firma digital.

• Clientes concurrentes: Una de las líneas de desarrollo

sería la gestión y conexión de clientes concurrentes, de

modo que un servidor (o incluso un cluster) pudiese

servir a una gran cantidad de clientes de manera

concurrente.

• Extensión de funcionalidades: Otra de las principales

líneas es la de una extensión de funcionalidades,

automatización de tareas en el servidor como solicitud

por parte de un cliente, de modo que se ofreciesen

diferentes servicios y configuracioens dependiendo

del payload, puerto, cliente...

• Gestión de usuarios: Una vez se dispusiese de una

gran cantidad de usuarios y funcionalidades, esto

daría lugar a una gran cantidad de datos (ip, puertos,

payloads...) que gestionar, del mismo modo que al

momento de comparar HMAC’s del cliente con esta

gran cantidad de información. Sería posible utilizar

una base de datos o cálculo y comparación en paralelo

para una mayor eficiencia en esta gestión.

• Diseño de software: Una última línea de desarrollo

sería generar una mejor arquitectura, tanto por parte

del cliente como del servidor de modo que se

generasen UI funcionales o mejores diseños en lo que

se refiere al código, mejorando su flexibilidad a la hora

de aceptar futuros cambios o extensiones.

AGRADECIMIENTOS

Antes de nada, agradecerle a mi tutor los esfuerzos y la

gran ayuda con las fuentes de información, ha sido algo

que me ha ayudado a abanzar rápido y sin problemas en

ese aspecto. Además, por supuesto, de todos los consejos a

la hora de dar formato y corregir los diferentes informes.

Del mismo modo también agradecer a mis compañeros y

amigos por escuchar mis “desvaríos” sobre el tema y el

darme su opición al respecto.

Por último, mi familia me ha ayudado mucho en otros

aspectos (apoyo, comida preparada, tareas que han hecho

por mí) son pequeñas cosas ajenas al artículo en sí pero que

sin esta ayuda hubiese sido completamente imposible

llegar hasta aquí.

BIBLIOGRAFÍA

[1] G. Gorka Gorrotxategi (2015/07/08) “Netfilter NFQueue”

[Online]. Available: https://blog.irontec.com/netfilter-nfqueue-

firewalling-en-user-space/

[2] L. M. García “Técnicas avanzadas de filtrado dinámico en siste-

mas cortafuegos: Port Knocking y Single Packet Authorizatio”.

Available: https://e-archivo.uc3m.es/bitstream/han-

dle/10016/9584/PF_Luis_Martin_Garcia.pdf

[3] Synex Introduces (Visited: 2018/11/02) “How Does It Work: IP-

Tables” [Online]. Available: https://n0where.net/how-does-it-

work-iptables

[4] libnetfilter_queue (2017/11/13) “nfqnl_test.c” [Online]. Availa-

ble: https://www.netfilter.org/projects/libnetfilter_queue/dox-

ygen/nfqnl__test_8c_source.html

[5] J. Calles (2011/02/28) “Scapy: Construyendo un paquete UDP”

[Online]. Available: http://www.flu-project.com/2011/02/scapy-

construyendo-un-paquete-udp_2637.html

[6] libnetfilter_queue (2017/11/13) “Message parsing functions”

[Online]. Available: https://www.netfilter.org/projects/libnetfil-

ter_queue/doxygen/group__Pars-

ing.html#gaf79628558c94630e25dbfcbde09f2933

[7] KZKG^Gaara (2013/04/04) “Port Knocking: La mejor seguridad

que puedes tener en tu ordenador o servidor” [Online]. Availa-

ble: https://blog.desdelinux.net/port-knocking-la-mejor-seguri-

dad-que-puedes-tener-en-tu-ordenador-o-servidor-imple-

mentacion-configuracion/

[8] J. Wallen (UFW) (2015/10/30) “An Introduction to Uncompli-

cated Firewall” [Online]. Available:

https://www.linux.com/learn/introduction-uncomplicated-fire-

wall-ufw
[9] Oriol (Visited: 2019/01/27) “Como Habilitar y Configurar el Fi-

rewall UFW en Ubuntu” [Online]. Available: https://comput-

ernewage.com/2014/08/10/como-configurar-el-firewall-ufw-en-

ubuntu/
[10] Lyz (2016/04/07) “Port-Knocking y Single Packet Authorization”

[Online]. Available: https://elbinario.net/2016/04/07/port-knock-

ing-y-single-packet-authorization/

[11] H. Krawczyk, M. Bellare and R. Canetti (1997/02) “HMAC:

Keyed-Hashing for Message Authentication” [Online]. Availa-

ble: https://tools.ietf.org/html/rfc2104

[12] OWASP (Visited 2019/01/26) “Testing for WS Replay” [Online].

Available: https://www.owasp.org/index.php/Test-

ing_for_WS_Replay_(OWASP-WS-007)
[13] OpenSSL (Visited 2019/01/26) “HMAC” [Online]. Avaliable:

https://www.openssl.org/docs/man1.1.0/man3/HMAC.html
[14] S. Jeanquier (2006/09/09) “An Analysis of Port Knocking and Sin-

gle Packet Authorization” [Online]. Avaliable: https://www.se-

curitygeneration.com/wp-content/uploads/2010/05/An-Analy-

sis-of-Port-Knocking-and-Single-Packet-Authorization-Sebas-

tien-Jeanquier.pdf

