TFG EN ENGINYERIA INFORMATICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Desarrollo e implementacion de un protocolo
Single Packet Authorization

Rubén Gutiérrez Guerrero

Resumen—En un paradigma cliente-servidor bajo una red TCP/IP no siempre puede ser una buena solucién utilizar los
protocolos clasicos en los que un servidor mantiene todos los puertos abiertos, ya que puede aportar informacion relevante a un
atacante. En este articulo se presenta una propuesta que aporta una capa adicional de seguridad, evitando que un simple
escaneo de puertos permita a un usuario malintencionado perfilar un servidor. Para esto, se propone implementar una variante
de los protocolos clasicos de portknocking denominada Single Packet Authorization (SPA). Esta variante emplea un Unico
paquete para auntenticar a un cliente, tras lo que se le permite la conexion a un determiando servicio. En el articulo se presenta
adicionalmente una prueba de concepto que valida la viabilidad de la propuesta.

Palabras clave—Portknocking, Single Packet Authorization, HMAC.

Abstract—In a client-server paradigm under a TCP/IP network, it can not always be a good solution to use the classic protocols
in which a server keeps all ports open, since it can provide relevant information to an attacker. This paper presents a proposal
that provides an additional layer of security, preventing a simple port scan from allowing a malicious user to profile a server. For
this, it is proposed to implement a variant of the classic protocols of portknocking called Single Packet Authorization (SPA). This
variant uses a single paquet to authenticate a client, after which the connection to a certain service is allowed. The article also
presents a proof of concept that validates the viability of the proposal.

Index Terms—Portknocking, Single Packet Authorization, HMAC

1 INTRODUCCIO

N el paradigma cliente-servidor se establece, por

definicién, una comunicacion entre dos partes a través
de un canal, el cual permite el intercambio de mensajes. En
este contexto, el Servidor es responsable de proveer de
acceso a recursos o servicios, los cuales son consumidos
por el Cliente. En el caso particular de los sistemas de
informacién, el canal suele tratarse de una red de
computadores, la cual es considerada como un entorno
inseguro en tanto que su funcién es la de transportar los
mensajes, y no la de proveer de mecanismos de seguridad
para proteger la comunicacion.

En el paradigma descrito anteriormente, y bajo redes
basadas en la familia de protocolos TCP/IP, el Servidor
expondra el acceso a recursos o servicios manteniendo
abiertos un conjunto de puertos, a los que se conectara un
Cliente para consumirlos.

Las caracteristicas de los protocolos TCP/IP hacen que,
bajo ciertas circunstancias, un atacante pueda recabar
informacion del Servidor, tal como puertos abiertos o

o E-mail de contacto: rubengutierrezguerrero@gmail.com
o Mencion realitzada: Tecnologies de la Informacié.

o Treball tutorizado por: Sergio Castillo Pérez (Departament d’'Enginyeria de

la Informacié i de les Comunicacions)
o Curso 2018/19

versiones del software que corre detrd de éstos. Este tipo
de informacién, obtenida por un atacante en una primera
puede ser explotada
posteriormente de forma maliciosa para identificar
vulnerabilidades y lanzar ataques que comprometan los
sistemas.

En este articulo se presenta una solucién que permite
aplicar el concepto de defensa en profundidad. Para
conseguir esto, la propuesta aqui recogida afiade una capa
adicional de seguridad, consistente en realizar una
obertura de puertos selectiva para aquellos Clientes que se
identifiquen como legitimos. De esta manera, los servicios
no quedan expuestos libremente ante cualquier potencial
atacante.

De forma mas particular, la solucién consiste en una
variante del portknoking conocida como Single Packet
Authorization (SPA) [2], la cual empleara un tinico mensaje
que autentica al cliente mediante un Message Authentication
Code (MAC) basado en HMAC. Esto reducira el riesgo de
que un atacante pueda suplantar a un cliente legitimo.

Adicionalmente, se presentard una prueba de concepto
que se ha implementado, y que permite validar la viabili-
dad de protocolo SPA propuesto.

fase de reconocimiento,

Febrero de 2019, Escola d’Enginyeria (UAB)

2 EE/UAB TFG: DESARROLLO E IMPLEMENTACION DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION

1.1 Organizacion del articulo

El resto del articulo estd organizado de la siguiente
manera:

e La seccion “2 Objetivos” incluye los diferentes
objetivos a abordar en el articulo y a resolver en la
prueba de concepto.

e Laseccion “3 Estado del arte” se analiza el estado del
arte desde la vision de la servicios expuestos
directamente en una red TCP/IP, en comparacion a los
mecanismos que permiten su ocultacién como son el
portknocking [7] y el SPA.

e La secciéon “4 Metodologia” expone la metodologia
seguida para poder llevar a cabo la prueba de
concepto, asi como la distribucion de tareas y fases a
completar.

e La seccion “5 Desarrollo” expone el desarrollo de
dicha prueba, incluyendo diferentes puntos a tener en
cuenta, tales como las librerias empleadas, la
confeccion del mensaje SPA, el cddigo implementado,
o el funcionamiento de cada parte implicada.

e La seccion “6 Resultados” muestra los resultados
obtenidos, verificando la viabilidad del protocolo SPA
propuesto a través de la prueba de concepto, y la
ejecucién del coédigo asociado.

e La seccién “7 Conclusiones” encapsula los objetivos,
desarrollo y resultados, mostrando qué se puede
extraer de ellos como conclusion, del mismo modo se
habla de diferentes lineas de desarrollo futuras
buscando expandir o mejorar la propuesta.

2 OBJETIVOS

En esta seccion se recogen los diferentes objetivos del
articulo, los cuales se centran en el estudio, el disefio, y la
implementacion de wuna solucién al problema de
visivilidad de los puertos y servicios de un servidor.
Seguidamente se dan mas detalles por cada uno de estos.

2.1 Estudio de mecanismos de proteccion de
servicios expuestos en red

Este objetivo permite tener un conocimiento adecuado
de la técnica del portknocking, las diferentes variantes y las
estrategias de implantacion, asi como las particularidades
a tener en cuenta (formato del mensaje, encapsulacion del
mismo, funcién hash a utilizar, ...). También incluye una
vista a posibles utilidades necesarias en el momento de
implementar al cddigo (Por ejemplo, tener en cuenta que
se reugerird utilizar una funcion HMAC sobre un mensaje
o acceder a la hora del sistema).

Este objetivo es el pilar fudamental para poder llevar a
cabo los recogidos en las subsecciones siguientes, siendo el
punto de referencia para la definicién del protocolo, la
implementacién, y guia a seguir [1, 4]. Y por tanto
proyectar adecuadamente las fases de planificacién y
desarrollo segtin los datos y tareas necesarias para la
impelmentacion de dicho protocolo.

Este objetivo se verd materializado en la secciéon de
“Estado del Arte”, donde se documentaran en términos
generales los diferentes mecanismos analizados.

2.2 Disefo e implementacién de una solucién SPA

Este objetivo tiene una doble finalidad. En primer lugar,
disefiar un protocolo SPA en base al estudio realizado en el
objetivo anterior. El disefio de éste protocolo debe
contemplar los aspectos estudiados asi como las possibles
librerias y lenguajes en el que desarrollar el cédigo.

En segundo lugar, implementar la solucién en si. Para
esto, se requerird un entorno en red en que haya dos
maquinas (un cliente y un servidor), el servidor debera de
poder abrir sus puertos o realizar acciones segun el
mensaje recibido del cliente, quien debe de poder enviar
un mensaje al servidor. Del mismo modo, ambos, deben
respetar el protocolo y el formato comun del mensaje que
se haya determinado en el objetivo anterio.

2.3 Ampliaciéon de las funcionalidades SPA

Este objetivo nos permitird automatizar acciones que
podra ejecutar un servidor al recibir un paquete del
protocolo SPA, incrementando asi sus funcionalidades. Se
buscard que el servidor pueda realizar acciones, tales
como: Envio de fichero, subida de fichero, obertura de
puertos, Funcionalidades que se
determinaran durante el desarrollo de planificacién de este
objetivo.

Estas acciones deberian de ser realizadas segun
diferentes parametros, tales como: puerto por el que se
recibid el mensaje, contenido del mensaje, etc.

envio de email...

3 ESTADO DEL ARTE

En esta seccion se recoge el estado del arte en cuanto a
diferentes modos de establecer una conexién entre un
cliente y un servidor, y en relaciéon al grado de exposicion
de los servicios. En concreto éstos son: 1) Comunicacién
clasica basada en el paradigma de TCP/IP, 2) La utilizacién
de portknoking y 3) El uso del SPA. A continuacion, se vera
el funcionamiento de cada una de estas tres posibilidades.

3.1 Servicio expuesto a nivel de capa de transporte
(TCP/IP)

Clasicamente, para la comunicacién entre dos
ordenadores conectados a una red se utiliza el paradigma
conocido como TCP/IP. En este contexto, los protocolos de
transporte mas extendidos son los de TCP y UDP.

El primero de ellos estd orientado a la conexién
garantizando la entrega de los paquetes enviados. Para
esto requiere de un establecimiento de conexién a través

del denominado 3-way handshake.

RUBEN GUTIERREZ: DESARROLLO E IMPLEMENTACION DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION 3

Por contra, el protocolo UDP no est4 orientado a la
conexidn, lo que no garantiza la correcta recepcion de los
paquetes enviados. En la figura 1 se muestra un diagrama
que resume graficamente las diferencias en el inicio de una
comunicacion.

TCP Vs UDP Communication

TCP UDP

Receiver Sender

Receiver
SYN -

RESPONSE gy »

SESPONSE gy N

I ST —

Sender

3

Figura 1. Comparativa entre la conexion TCP y la
comunicacion UDP.

Indiferentemente del protocolo TCP o UDP, los servicios
siempre se presentan a través de un puerto al que accede
un cliente. En cualquier caso ninguno de estos protocolos
permite de forma nativa evitar que un atacante determine
que puertos y/o servicios estan expuestos.

3.2 Portknoking clasico

El portknocking consiste en la utilizaciéon de una
secuencia concreta de mensajes para la obertura del puerto
solicitado. Esta secuencia sélo es conocida por el emisor y
receptor por lo que es utilizada como medio de
autentificacion del emisor.

Este tipo de tecnologia, por otro lado, permite proteger
de manera “extra” la comunicaciéon entre el ciente y el
servidor, aplicando asi el concepto de “defensa en
profundidad” [14], que consiste en la ocultacién de
servicios por medio de protocolos o tecnologias que hacen
de intermediario entre el cliente y el servicio del servidor a
la que desea acceder. En la Figura 2 se puede observar de
manera grafica dicho concepto, dénde, para acceder al
servidor es pasar por portknoking,
complementandose con el firewall y ssh, afadiendo ésta
capa extra de seguridad. Cabe destacar que la variante SPA
también permite aplicar dicho concepto.

Este conjunto de mensajes, enviados por un cliente
hacia el servidor que lo autentificard, indican una
secuencia exacta de mensajes, haciendo que sea posible,
con diferentes secuencias, dar lugar a autentificaciones
diferentes dependiendo del cliente que se conecte
(Pudiendo asi, que, diferentes
secuencias concretas de mensajes den lugar a acciones o
servicios diferentes por parte del servidor).

necesario

incluso, configurar

Esto, como veremos mas adelante, también sera posible
utilizando un s6lo mensaje.

Port Knocking

Attacker

Figura 2. Concepto de defensa de profundidad aplicado al
portknoking

Pero este sistema conlleva diferentes problematicas,
entre ellas:

e Un atacante podria monitorizar la secuencia y
del

observar el comportamiento servidor en
consonancia.
e Limita la cantidad de informacién a transmitir.
e Un IDS podria interpretar los consecutivos paquetes
del cliente como un escaneo de puertos.
Por esto razon existen diferentes implementaciones de
portkocking,

problemas que presenta.

tratando de solventar los diferentes

3.3 Single Packet Authorizathion

Una variante particular del portknocking es la la
denominada como Single Packet Authorization (SPA) [10].
Esta variante, en contraposicién al portknocking clasico,
tiene las siguientes caracteristicas:

e Solo se envia un mensaje, de modo que es menos
llamativo y evita ser detectado por un posible
atacante.

o El mensaje estd autenticado y teniendo en cuenta
aspectos como son la IP de origen o el timestamp que
dificultan la reutilizacion del mismo por parte de un
atacante.

e Un IDS tan solo veria un mensaje con datos
indescifrables por lo que no se detectaria como un
ataque, evitando asi los obstaculos que acarrearia
resolver este problema.

El funcionamiento del SPA puede resumirse en que un
cliente, al tratar de conectar con el servidor, envia
previamente un sélo mensaje que lo autentica de algtin
modo (como podria ser un HMAC). Este mensaje es leido
por el servidor y, segtin el mensaje recibido, validara o no
al cliente abriéndole posteriormente el correspondiente
puerto de conexidn.

4 EE/UAB TFG: DESARROLLO E IMPLEMENTACION DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION

Del mismo modo que ocurria con el portknocking, con
un s6lo mensaje es posible autentificar diferentes clientes o
realizar diferentes acciones. Esto es, no se pierde
flexibilidad a pesar de reducir el nimero de mensajes a
uno, siendo esto un gran ventaja sobre el método “clasico”
de portknoking.

También es importante sefialar que SPA puede incluir
en el mensaje un timestamp que permite reducir ataques
de tipo replica [12].

3.3.1 Hash-based Message Authentication Code:

La tecnologia de SPA puede emplear diferentes
estrategias para autenticar el cliente (por ejemplo Message
Authentication Codes, firma digital, ...). Entre las diferentes
alternativas, el uso de un MAC mediante funciones
generadoras de tipo “Hash-based Message Authentication
Code” (HMAC) suelen ser ideales en este contexto, al ser
el tamano del cddigo resultante razonable para el
proposito que nos ocupa.

El HMAC, especificado en el RFC 2104 [11], emplea una
funcién hash sobre un conjunto de datos y una clave
compartida. Esto requiere de un proceso previo al propio
SPA para el intercambio seguro de dicha clave.

3.4 Resumen de diferentes tecnologias

En la Figura 3 se puede observar un resumen de las
diferencias entre las diferentes tecnologias segiin coémo se
establece la conexion, la comunicacion, posibles problemas
y el estado del servidor:

Tecnologia TCP/IP Portknoking SPA
ae)s g e Consiste en Envio de Mediante un
eXion multlpl.es dlferen.tes so!o men-

mensajes mensajes, saje.
intercambiados pero menos
entre el clientey | llamativo que
el servidor una exposicion
directa
Comunicacién Los mensajes, al Envio repetido | El mismo

Posibles proble-
mas

lidad del

ir en texto plano,

de diferentes

mensaje que

no ocultan mensajes se envid para
informacion autentificar
sensible ni las al cliente se
intenciones del ha utilizado
cliente con el para realizar
servidor peticiones.
Un atacante ve- | El envio | -

ria sin problemas | repetido de

tanto el conte- | mensajes al

nido de los men- | servidor podria

sajes intercam- | ser confundido

biados como los | por un IDS por

diferentes servi- | un escaneo de

cios ofrecidos | puertos

por el servidor

Requiere de una El servidor po- | El servidor
obertura de los dria mantener | permanece
puertos general servicios con los

y para cualquier ocultos ce- | puertos ce-

cliente. rrando los | rrados, sin
puertos hasta | posibilidad
que se solicite | de escaneo.

el servicio de
dicho puerto

Figura 3. Resumen de diferencias entre TCP/IP, portknoking
cldsico y SPA

4 METODOLOGIA

En este apartado se explone la metodologia utilizada

para alcanzar los objetivos indicados en la seccion
“Objetivos”. Esta se plantea como la ejecucion de un
conjunto de tareas de alto nivel, y que comprende las
diferentes fases: Planificacién, Estudios de técnicas de
portknocking, Disefio e implementacion y Ampliacion de
funcionalidades SPA.
A continuacién, se expondra la metodologia que se ha
seguido en las distintas fases que requerian de desarrollo,
consistiendo ésta en el uso iterativo por cada nueva
funcionalidad de Planificacion, Definicion,
Implementacfion y Testeo; tales como en la fase de Disefio
e Implementaciéon y de Ampliacién de funcionalidades
SPA.

4.1 Metodologia de desarrollo
La metodologia seguida en las fases de desarrollo es la
siguiente:

1. Planificacién: Se revisa y utiliza como guia la
informacién recopilada respecto a la tarea actual de
modo que facilite y agilice la implementacién y
permita acotar y definir la “Definicién de la tarea a
realizar”.

2. Definicion: Una vez se halla recopilado toda la
informacién necesaria se define exactamente qué tarea
se realizard. Es decir “Implementar la comunicacion
a través de HMAC entre el cliente y el servidor” es
algo muy general, en esta fase se busca encontrar
exactamente qué funciones o moédulos hay que hacer,
qué entradas y salidas tendra...

3. Implementacion: Tras haber definido mejor en qué
consiste la tarea se procede a la implementacién de la
misma, segun lo acotado en la fase “2. Definicion”.

4. Testeo: Una vez se haya implementado, y verificado la
funcionalidad de, la fase “3. Implementacion” se
procede a testearla y a comprobar resultados. En esta
fase, adicionalmente, se documenta qué se ha obtenido
de esta iteracion. Esta fase esta orientada al testeo de
las funcionalidades recién implementadas.

5 DESARROLLO

La metodologia planteada en este articlo en el momento
de realizar la prueba de concepto, se ha orientado en

RUBEN GUTIERREZ: DESARROLLO E IMPLEMENTACION DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION 5

completar diferentes fases:

e Planificacion: Fase centrada en la definiciéon y
ordenacion de cada una de las tareas a realizar.

e Estudios de técnicas de portknoing: Estudio de las
diferentes estrategias y soluciones portknoking y su
implementacion.

e Disefio e implementacion: Desarrollo de una version
bésica de la solucion SPA.

e Ampliaciéon de funcionalidades SPA: Adiciéon de
funcionalidades extra a la autentificacién tras la
recepcion y aceptacion de un mensaje.

También se detallara el funcionamiento y la légica
seguida por el servidor tras finalizar las fases de “Disefio e
implementacién” y de “Aplicaciéon de funcionalidades
SPA”. Asi como el funcionamiento del cliente que, a pesar
de ser mas simple, también debe cumplir con el protocolo
establecido en la planificacion de la prueba de concepto
para elavorar un mensaje correcto.

Finalmente se vera la arquitectura, librerias y detalles
utilizados por el cliente y servidor para hacer de soporte
de la prueba de concepto.

5.1 Planificacion

Se ha buscado documentacién e informacién respecto a
la tarea actual de modo que facilite y agilice la
implementacion y permita acotar y definir la “Definicién
de la tarea a realizar” en las fases posteriores.

Entre otros aspectos, se prioriza el disefio de los
mensajes a enviar utiizando la tecnologia de HMAC, asi
como la gestion de los paquetes enviados y recividos tanto
en el servidor como en el cliente, llegando a concluir en el
uso de la libreria de scapy por parte del cliente y en el uso
de netfilter [1] por parte del servidor.

5.2 Estudio de las técnicas de portnocking
En esta fase se profundiza en los diferentes aspectos de
la técnica portkocking, recopilando la informacion

necesaria para llevar a cabo la fase siguiente de “Disefio e

implementacion” Esta fase la podemos subdividir en dos

sub-tareas:

e Estudio de diferentes opciones e implementaciones de
la técnica de portkocking, obteniendo asi un panorama
de cdmo y qué existe en este ambito

e Recopilacién de informacién sobre la técnica a utilizar,
estudiando asi, como debe implementarse y cuales son
las tareas que seguir en la elaboracion de paquetes y
comunicacién entre cliente y servidor

5.3 Diseio e implementacion

En esta fase se determina el disefio segtin la informacién
recopilada en las fases anteriores y se procede a

implementar este disefio. Esta fase la podemos subdividir
en:

e Estudio del sistema de filtrado de paquetes de red en
Linux, buscando conocer el funcionamiento del
mismo y cdmo debe de utilizarse para llevar a cabo los
objetivos planteados en el articulo y la interaccion con
la implementacién

e Fase de disefio de la solucién. En esta fase se determina

aspectos de la implementacion,
definiendo los mddulos necesarios para el cliente y el
servidor, asi como de qué funcionalidades tendra cada
uno y de sus interacciones (tanto internas como a
través de la red)

e Fase de implementacion. En esta fase se sigue la guia
establecida en el apartado de “Planificacion”, de
acuerdo con los contenidos estudiados en el primer y
segundo apartado. Implementando asilos médulos de
cada una de las partes (cliente y servidor) y de la
comunicacion entre estos.

e Fase de testing. En esta fase se definen baterias de
testeo para la implementacion a modo de buscar y
corregir los posibles errores cometidos. Del mismo
modo se buscara verificar que cumple los objetivos
definidos en la seccién “Objetivos”.

los diferentes

5.4 Ampliacion de las funcionalidades del SPA

En esta fase se definen qué funcionalidades se
implementan en la parte del servidor, asi como la
implementacién de dichas funcionalidades

e TFase de disefio de funcionalidades. En esta fase se
definen qué funcionalidades tendrd el servidor, asi
como cémo llevarlas a cabo.

e Fase de implementacion. En esta fase se implementan
las funcionalidades establecidas en la fase anterior,
modificando en caso de ser necesario lo desarrollado
en la fase de “Disefio e implementacién”.

5.5 Funcionamiento del Servidor
A continuacion se describe el funcionamiento del

6 EE/UAB TFG: DESARROLLO E IMPLEMENTACION DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION

Servidor, el cual puede desglosarse en tres fases (ver figura
4).

* Recepcién del paquete
¢ Busqueda de bytes de control

CEleEfel[e] @ Lectura del HMAC

* Generacion del HMAC

* Comparacion del HMAC

2els=ir:1sle) recibido con el generado

* Aceptar o denegar el paquete

® Activacion de la regla
correspondiente al HMAC

Figura 4. Esquema de eventos en el Servidor

5.5.1 Recepcion del paquete

La recepcién del paquete por parte del cédigo que se
encarga de realizar las diferentes funcionalidades del
servidor requieren del uso de, primeramente, de la
creacion de reglas que indiquen que determinados
paquetes deben enviarse a la capa de aplicacion y, a
continuacién, un cédigo que permita la recepcion de dicho
paquete para leer y guardar el HMAC que contenga para
su posterior procesado.

Para ello se ha utilizado las siguientes reglas, utilizando
iptables [3]:

iptables -I INPUT -p tcp —dport 5001 -j NFQUEUE

De modo que el puerto que se utilizard para las
siguientes pruebas de concepto sera el 5001 TCP. Esta regla
indicara que los paquetes que se dirijan hacia la cadena de
INPUT (esta es la cadena que, concretamente, utilizamos
durante la prueba de concepto) por el puerto 5001 tendran
como objetivo “NFQUEUE”, tal y como se esquematiza de
manera mas clara en la Figura 5:

Network applications

NFQUEUE

INPUT QOUTPUT

——>» PREROUTING - FORWARD »| POSTROUTING ey

Figura 5. Vinculacion de la cadena INPUT al aplicativo

Posteriormente, en la aplicacion y mediante la libreria
de netfilter se vinvulara esta cadena al aplicativo, dénde se

podra acceder via codigo.

Para realizar esta vinculacion, los pasos que se han
seguido mediante la libreria de netfilter se resume en,
primero, obtener el handler de la libreria (nfq_open), a
continuacién se vincula el handler obtenido al tipo
nfqueue (nfq_bind_pf), se liga la vinculacién a una funciéon
callback, que sera donde inicie el coédigo y la logica de la
prueba de concepto (nfq_create_queue) y, finalmente, se
indica cuanto del paquete se querra obtener, que en este
caso serd el paquete completo, teniendo asi a los datos del
mensaje (nfq_set_mode, que se indicara el modo
“NFQNL_COPY_PACKET"). Tras esta primera
configuracion el servidor escuchara en bucle los paquetes
recividos (nfq_handle_packet) enviando los paquetes a la
funcién que se le haya indicado en el callback.

Una vez la aplicacion tenga acceso a dicha cola, se podra
leer el contenido del paquete que se facilité mediante unos
bytes de control (fffffff en este caso), se guardara el HMAC
y se pasara a procesar la respuesta del Servidor.

5.5.2 Procesado del mensaje

Tras obtener el HMAC enviado por el cliente, se
procedera a calcular los HMAC conocidos para la
comparacion con el HMAC que se ha recibido.

Para realizar este procesado por parte del servidor se ha
optado por utilizar la libreria de openssl [13], la cual ofrece
una gran cantidad de funciones relacionadas con
criptografia y hash, tales como el SHA-256 utilizado para
generar el HMAC, funcién también disponible en dicha
libreria.

5.5.3 Decision sobre el mensaje

Finalmente, el servidor procederda a decidir la
aceptacion del mensaje y la decision a tomar en
corcordanza. Pudiendo asi realizar cualquier accion desde
la activaciéon de una regla que permita las conexiones a un
determinado servicio del servidor hasta realizar acciones
de gestion dentro del servidor. Adicionalmente se pueden
tomar acciones preventivas ante mensajes extrafios como,
por ejemplo, que tras un determinado de intentos erroneos
por parte de un cliente, se proceda a bloquear la IP de dicho
cliente, mitigando asi posibles ataques.

5.6 Funcionamiento del Cliente

Por el lado del cliente, se usa la libreria de scapy [5], de
Python, la cual permite la elavoracién de paquetes y la
edicion de cada uno de los campos de las cabeceras de las
diferentes capas (IP, TCP...).

Para un correcto funcionamiento del cliente, sélo se
necesitan editar las cabeceras IP y TCP, asi como la adiciéon
del payload, para a continuacién enviar el paquete al
servidor.

En la Figura 6 se puede observar de manera mas clara
la consecucion de comandos utilizados para generar y

RUBEN GUTIERREZ: DESARROLLO E IMPLEMENTACION DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION 7

enviar el parquete con dicha libreria:

payload = 'payload’
TCP(dport=port,sport=1024)
IP(dst=ipDst,src="192.168.1.111")
pkg = IP/TCP/payload

send(pkg)

Figura 6. Elavoracion de paquete scapy simplificado

5.7 Estrucutra del mensaje

Tanto el cliente como el servidor deben de generar el
mismo mensaje para que, en el momento de aplicar la
funcién HMAC, se genere el mismo mensaje procesado,
haciendo asi posible que el servidor puede validar el
mensaje del cliente.

Seguira la siguiente estrucura definida en la fase de
disefio:

IP_SERVIDOR + IP_CLIENTE + PUERTO_CLIENTE
+PUERTO_SERVIDOR + PAYLOAD + TIMESTAMP

El‘timestamp’ sera el equivalente al dia, hora y minutos,
evitando asi la, baja, probabilidad de que los segundos
cambien entre el envio del cliente y la recepcion del
servidor. En realidad esta precauciéon podria llevarse
incluso hasta el nivel de los segundos, ya que el tiempo
tipico de un datagrama es del orden de los milisegundos
(un modo sencillo de comprobar esto es mediante el
comando ‘ping’, del cual se puede observar el tiempo de
respuesta en la Figura 7)

slave@slave-VirtualBox:~5 ping 8.8.8.8
PING 8.8.8.8 (B.B.8.8) 56(84) bytes of data.

bytes from 8.8.8.8: icmp_seq=1 ttl=121 time=16.2
bytes from 8.8.8.8: icmp_seq=2 ttl=121 time=14.8
bytes from 8 8.8: icmp_seq=3 ttl=121 time=14.3
bytes from 8.8.8.8: icmp_seq=4 ttl=121 time=15.2
bytes from 8.8.8.8: icmp_seq=5 ttl=121 time=15.3
bytes from 8 8.8: icmp_seq=6 ttl=121 time=15.2
bytes from 8.8.8.8: icmp_seq=7 ttl=121 time=18.0
Figura 7. Tiempo de respuesta de un envio

Pero de todos modos se ha optado por tomar esta
medida, a modo de asegurar el envio.

El mensaje generado tras la concatenacion de los datos
comentados, se procederd a ser procesado por una funcién
HMAQC, la cual utilizara el SHA-256, para su posterior
comparacién con el HMAC recibido del cliente.

5.6 Arquitectura utilizada

Para llevar a cabo cada una de las fases anteriores y para
dar soporte a las fases de implementacion, los recursos
necesarios para llevar a cabo la prueba de concepto seran
los siguientes:

Ordenador multicore con un minimo de 8 GB de RAM
para alojar en virtualbox:

e Maquina virtual “Linux Master” que realizara el rol de
servidor.

o 2GBdeRAM.

o Tarjeta de red modo bridge

o S.O. Distribucion Linux (Ubuntu)
o Librerias

= Iptables (Configurar los puertos y
enviar los paquetes a nivel de
aplicacion)

= gcc (Compilar el cédigo generado) =
tcpdump (a modo de debug en el
envio de paquetes)

= Inetfilter (Libreria para filtrar los
paquetes)

* Infnetlink (Libreria para manejar los
paquetes desde la capa de
aplicacion)

e MAquina virtual “Linux Slave” que realizara el rol de
cliente.

o 1GBdeRAM
o Tarjeta de red modo bridge
o S.0. Distribuciéon Linux (Ubuntu) o Librerias
= gcc (Compilar el codigo generado)
= scapy (Para generar los paquetes)
= hashlib (Para utilizar el hash que
corresponda)
= datetime (Para obtener la fecha local)

6 REsSuLTADOS

Los resultados los podemos diferenciar en los
resultados funcionales (los resultados de la prueba de
concepto, viendo asi el funcionamiento del servidor y del
cliente) y el disefio y software obtenidos a nivel de
arquitectura y céddigo (un cliente y un servidor funcionales
capaces de realizar las acciones expuestas en este articulo
y susceptibles de ser extenbdidos con nuevas
funcionalidades.

6.1 Resultados de las pruebas

En las siguientes figuras se puede observar cémo el
cliente envia el datagrama con el payload correspondiente
al servidor (Figura 8), asi como el mensaje original: la
concatenacién especificada en la subseccion de “Procesado
del mensaje” de la seccién de Desarrollo.

send? y/n: y

sent 1 packets.

Sended clean: 192.168.1.108192.168.1.11150011024payload180922
Sended hmac: fffffffo4c23e8a2bbffb4923e94dd4f79abadf0add6b3lc5542efb2073050426d5a957d
send? y/n:

Figura 8. Envio del datagrama desde el cliente

Y cémo el servidor recibe y elabora su propio prototipo
del mensaje oculto, mostrando también su mensaje

8 EE/UAB TFG: DESARROLLO E IMPLEMENTACION DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION

original a modo de debug, pudiendo asi comparar tanto el
mensaje generado por el servidor como por el cliente,
cercionando que el mensaje es correcto (Figura 9).

FEEDBACK:
RECIEVED: 94c23e8a2bbffb4923e94dd4f79abadfoaddéb3c5542efb2073050426d5a957d
HMAC_25
Clean

94c23e8a2bbffba923e94dd4f79abagfeandsb3cs5542efb2073050426d5a957d
192.168.1.168192.168.1.11150011624payload188922
HMAC digest: 94c23e8a2bbffb4923e94dd4f79abadf0add6b3c5542efb2073050426d5a957d

HMAC ACCEPTED
RULE CREATED: Port 22 opened for 192.168.1.2

Figura 9. Recepcion del mensaje desde la parte del servidor

Como se puede ver en el cddigo adjunto de “envio.py”,
practicamente es una linea por cada una de estas acciones.
Como se ha comentado a lo largo del articulo
(Concretamente en la seccion de “Desarrollo”), se utilizara
la libreria de netfilter [4, 6] para pasar a capa de aplicacion
los datagramas recibidos por el servidor.

Ademas, la adicion de la regla de la obertura del puerto
22 se ha realizado mediante la ejecuciéon de un comando
Linux del sistema, a través del codigo C++. Esto posibilita
y facilita la ejecucién de otros comandos y ficheros de
formato bash. Esta caracteristica sera la aprovechada para
la automatizacion de tareas en el servidor.

Para realizar esta obertura del puerto, se utiliza la
libreria de ufw [8, 9] para facilitar dichas operaciones. Mas
concretamente, el comando ejecutado para dicha acciéon
que se ha utilizado a modo de ejemplo es:

system("ufw allow from 192.168.1.111 to any port 22");
Esto ejecutara en el sistema el comando “ufw allow 22”
Que habilitard el puerto 22, de modo que la maquina
solicitante tenga el puerto abierto para poder conectarse.

Finalmente se puede observar en la Figura 10 el proceso
completo por parte del servidor, los diferentes mensajes
intercambiados y la addicion de la regla:

master@master-VirtualBox:~5 sudo ufw status numbered
status: active

To Action

5001 ALLOW
Anywhere ALLOW
Anywhere ALLOW
192.168.0.161 22 ALLOW
192.168.0.161

5001 (v6) ALLOW Anywhere (v6)
master@master-VirtualBox:~$

RECIEVED: 67a16245b31fa34eedd8692a1b2d731111949a5b5721c7dbc6601009a2bd

HMAC_256: 67a16245b31fa34eedd8692a1b2d731111949a5b5721c7dbc6601009a2bd
Clean: 192.168.0.160192.168.0.16150011024payload091126

HMAC digest: 67a16245b31fa34eedd8692a1b2d731111949a5b5721c7dbc6601009a
HMAC ACCEPTED

RULE CREATED: Port 22 opened for 192.168.0.161

[skipping adding existing rule

[DEBUG] RECIEVED: 67a16245b31fa34eedd8692a1b2d731111949a5b5721c7dbc6601009a2bd
=

b
[DEBUG] HMAC_256: 67a16245b31fa34eedd8692a1b2d731111949a5b5721c7dbc6601009a2bd
=

[DEBUG] Clean: 192.168.6.169192.168.0.16150011024payloade91126
[DEBUG] HMAC digest: 67a16245b31fa34eedd8692a1b2d731111949a5b5721c7dbc6601669a

Figura 10. Activacién de la regla por HMAC vdlido

Y, en la Figura 11 se puede observar la conexion del
cliente via ssh:

sent 1 packets.
Sended clean: 192.168.0.160192.168.0.16150011024payload91108
sended hmac: FFfffffbededfgeacdesab2bas7ed0cebeeasbbfadaes23die22edzac73c7basfbo

sent 1 packets.

Sended clean: 192.168.0.160192.168.0.16150011024payload91108

sended hmac: FFfFfffbededfovacdesab2bad7e40cebecasbbfadae623dde22edzac73c7basfbo
e6cc

©®® master@master-VirtualBox: ~

bBpplicable law.

aster@master-virtualBox:~5 exit

ogout

onnection to 192.168.08.160 closed.

Flave@slave-VirtualBox:~$ ssh master@192.168.0.160

sh: connect to host 192.168.6.160 port 22: Connection timed out
fFlave@slave-VirtualBox:~$ ssh master@192.168.0.160
aster@192.168.0.1608's password:

elcome to Ubuntu 16.04.4 LTS (GNU/Linux 4.15.0-42-generic x86_64)

* Documentation:
* Management:
* Support:

https://help.ubuntu.com
https://landscape.canonical.com
https://ubuntu.com/advantage

155 packages can be updated.
b updates are security updates.

New release '18.84.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

** System restart required *#**

ast login: Sat Feb 9 11:18:11 2019 from 192.168.0.161
aster@master-VirtualBox:~$ I

Figura 11. Conexidn ssh tras la activacion de la regla

6.1 Caracteristicas del prototipo

Tras la realizaciéon de la prueba de concepto, se ha
generado el software de un cliente y un servidor con las
caracteristicas y funcionalidades necesarias para llevar a
cabo una comunicacién via SPA. El servidor puede
recibir, procesar y decidir en funcion del HMAC
analizado, necesitando unicamente, como configuracion
extra (mas alla de compilar e iniciar el c6digo) las reglas
de iptables especificadas en el apartado de Recepcion del
paquete de la seccion de desarrollo.

Por otro lado se ha obtenido el cliente que, con los
parametros de “ip del servidor”, “puerto del servidor”y
“paylaod” realiza las acciones necesarias para generar el
mensaje y procesarlo mediante un HMAC utilizando el
SHA-256.

Adicionalmente, en ambos casos, es
especificar las direcciones IP en el cédigo.

necesario

7 CONCLUSIONES

Como se ha podido ver a lo largo del articulo, y
particularmente en la secciéon de estado del arte, existen
diversas técnicas que permiten afiadir una capa adicional
de seguridad a los servicios expuestos través de una red
TCP/IP. Asi, el uso de portknoking clasico, o el SPA
conforman una de éstos mecanismos.

En este articulo hemos presentado una implementacién
de SPA basada en GNU/Linux, en la que la parte Servidor
emplea el subsistema de filtrado de paquetes de netfilter.
Esta implementaciéon emplea HMAC como Message
Authentication Code, haciendo uso de la funcién hash SHA-
256, lo que permite autenticar los paquetes enviados por la
parte cliente y evitar ataques de suplantacion o de
repeticion. Las diferentes pruebas realizadas de la
implementacién demuestran la viabilidad de la propuesta
tedrica, materializada en forma de prueba de concepto.

RUBEN GUTIERREZ: DESARROLLO E IMPLEMENTACION DE UN PROTOCOLO SINGLE PACKET AUTHORIZATION 9

Adicionalmente, se ha podido comprobar como SPA
puede extender su funcionalidad clasica de autorizacion
de un cliente para el acceso a un servicio ejecutando
comandos particulares en funcién del paquete enviado. El
uso de la version SPA efectivamente ha proveido, y se ha
comprobado, que puede realizar dichas acciones de
autentificacion, autorizacion de acceso a un servicio, o de
ejecucion de comandos, a pesar de utilizar un s6lo mensaje.
Esto, junto con el uso de un HMAC apropiado aplicado a
los datos enviados junto a un timestamp robustece la
solucion desde una perspectiva de seguridad. Asimismo,
se ha comparado la solucion SPA con la de portknocking,
exponiendo las bondades de esta tecnologia.

Desde la perspectiva futuras lineas de mejora podemos
considerar las siguientes:

e Alternativas a HMAC: Una possible via de
continuacion seria estudiar alternativas a HMAC,
como podria ser, por ejemplo, la firma digital.

¢ Clientes concurrentes: Una de las lineas de desarrollo
seria la gestion y conexién de clientes concurrentes, de
modo que un servidor (o incluso un cluster) pudiese
servir a una gran cantidad de clientes de manera
concurrente.

e Extension de funcionalidades: Otra de las principales
lineas es la de una extensiéon de funcionalidades,
automatizacion de tareas en el servidor como solicitud
por parte de un cliente, de modo que se ofreciesen
diferentes servicios y configuracioens dependiendo
del payload, puerto, cliente...

e Gestion de usuarios: Una vez se dispusiese de una
gran cantidad de usuarios y funcionalidades, esto
daria lugar a una gran cantidad de datos (ip, puertos,
payloads...) que gestionar, del mismo modo que al
momento de comparar HMAC’s del cliente con esta
gran cantidad de informacion. Seria posible utilizar
una base de datos o cdlculo y comparacion en paralelo
para una mayor eficiencia en esta gestion.

e Disefo de software: Una ultima linea de desarrollo
seria generar una mejor arquitectura, tanto por parte
del cliente como del servidor de modo que se
generasen Ul funcionales o mejores disefios en lo que
se refiere al codigo, mejorando su flexibilidad a la hora
de aceptar futuros cambios o extensiones.

AGRADECIMIENTOS

Antes de nada, agradecerle a mi tutor los esfuerzos y la
gran ayuda con las fuentes de informacion, ha sido algo
que me ha ayudado a abanzar rapido y sin problemas en
ese aspecto. Ademas, por supuesto, de todos los consejos a
la hora de dar formato y corregir los diferentes informes.
Del mismo modo también agradecer a mis compaferos y

amigos por escuchar mis “desvarios” sobre el tema y el
darme su opicion al respecto.

Por ultimo, mi familia me ha ayudado mucho en otros
aspectos (apoyo, comida preparada, tareas que han hecho
por mi) son pequefias cosas ajenas al articulo en si pero que
sin esta ayuda hubiese sido completamente imposible
llegar hasta aqui.

BIBLIOGRAFIA

[1] G. Gorka Gorrotxategi (2015/07/08) “Netfilter NFQueue”
[Online]. Available: https://blog.irontec.com/netfilter-nfqueue-
firewalling-en-user-space/

[2] L.M. Garcia “Técnicas avanzadas de filtrado dinamico en siste-
mas cortafuegos: Port Knocking y Single Packet Authorizatio”.
Available: https://e-archivo.uc3m.es/bitstream/han-
dle/10016/9584/PF_Luis_Martin_Garcia.pdf

[3] Synex Introduces (Visited: 2018/11/02) “How Does It Work: IP-
Tables” [Online]. Available: https://n0where.net/how-does-it-
work-iptables

[4] libnetfilter_queue (2017/11/13) “nfgnl_test.c” [Online]. Availa-
ble: https://www .netfilter.org/projects/libnetfilter_queue/dox-
ygen/nfgnl__test_8c_source.html

[5] J.Calles (2011/02/28) “Scapy: Construyendo un paquete UDP”
[Online]. Available: http://www.flu-project.com/2011/02/scapy-
construyendo-un-paquete-udp_2637.html

[6] libnetfilter_queue (2017/11/13) “Message parsing functions”
[Online]. Available: https://www.netfilter.org/projects/libnetfil-
ter_queue/doxygen/group__Pars-
ing. html#gaf79628558c94630e25dbfcbde09f2933

[7] KZKG"Gaara (2013/04/04) “Port Knocking: La mejor seguridad
que puedes tener en tu ordenador o servidor” [Online]. Availa-
ble: https://blog.desdelinux.net/port-knocking-la-mejor-seguri-
dad-que-puedes-tener-en-tu-ordenador-o-servidor-imple-
mentacion-configuracion/

[8] J. Wallen (UFW) (2015/10/30) “An Introduction to Uncompli-
cated Firewall” [Online]. Available:
https://www linux.com/learn/introduction-uncomplicated-fire-
wall-ufw

[9] Oriol (Visited: 2019/01/27) “Como Habilitar y Configurar el Fi-
rewall UFW en Ubuntu” [Online]. Available: https://comput-
ernewage.com/2014/08/10/como-configurar-el-firewall-ufw-en-
ubuntu/

[10] Lyz (2016/04/07) “Port-Knocking y Single Packet Authorization”
[Online]. Available: https://elbinario.net/2016/04/07/port-knock-
ing-y-single-packet-authorization/

[11] H.Krawczyk, M. Bellare and R. Canetti (1997/02) “HMAC:
Keyed-Hashing for Message Authentication” [Online]. Availa-
ble: https://tools.ietf.org/html/rfc2104

[12] OWASP (Visited 2019/01/26) “Testing for WS Replay” [Online].
Available: https://www.owasp.org/index.php/Test-
ing_for_WS_Replay_(OWASP-WS-007)

[13] OpenSSL (Visited 2019/01/26) “HMAC” [Online]. Avaliable:
https://www.openssl.org/docs/man1.1.0/man3/HMAC.html

[14] S.Jeanquier (2006/09/09) “An Analysis of Port Knocking and Sin-
gle Packet Authorization” [Online]. Avaliable: https://www.se-
curitygeneration.com/wp-content/uploads/2010/05/An-Analy-
sis-of-Port-Knocking-and-Single-Packet-Authorization-Sebas-
tien-Jeanquier.pdf

