
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Face-following robot arm with emotion
detection

Vernon Stanley Albayeros Duarte

Resumen – Este proyecto se basa en la creación de un brazo robot con seguimiento de cara
que responde a emociones detectadas utilizando una Raspberry Pi como controladora central.
Debido a las limitades capacidades de cómputo de la Raspberry Pi, el proyecto explora la Google
Cloud Platform como vı́a en la cual depender a la hora de necesitar recursos de cómputo para
operaciones más intensivas como la detección de emoción en una cara. El proyecto también
incluye la creación de un conjunto de librerı́as para el control simplificado de servomotores y que
otorgan acceso a la API de Google Cloud Platform, destinados a ser aprovechados por proyectos
posteriores. En el proyecto también se crea un conjunto de modelos listos para impresión 3D utiliz-
ables para reemplazar partes, o replicar el robot, junto a la lista de partes necesarias para montarlo.

Paraules clau – Raspberry Pi, Robótica, Robot, Servo, Python, Librerı́a Python, LED Di-
reccionable, Pi Camera, Detección de Rostro, Vision por computador, Google Cloud API

Abstract – This project aims to create a face following robot arm that responds to user emotions
using a Raspberry Pi as the main controller. Given the computational limitations of the Raspberry
Pi, we explore the possibility of using Google’s Cloud Platform as a means to offload compute
intensive tasks such as emotion detection. The project also aims to create a framework of python
libraries that can be used to power similar projects, and grant access to simplified servomotor
control and the Google Cloud API. The project also provides a set of models ready for 3D printing
that can be used to replace parts or replicate the robot, along with the bill of materials needed.

Keywords – Raspberry Pi, Robotics, Robot, Servo, Servomotor, Python, Python Library,
Addressable LED, Pi Camera, Face Detection, Computer Vision, Google Cloud API

F

1 INTRODUCTION

AS 3D printing, robotics components like microcon-
trollers (Arduino), single board computers(SBC
from now on) like the Raspberry pi or Beagelbone,

and general components (sensors, motors, etc.) become
more accessible to the average user, there is a growing com-
munity that takes these technologies and manages to build
fully fledged projects out of them, some reaching industrial
prototype-levels of quality.

This space is driven forward people from several back-
grounds, as it requires knowledge from various disciplines.
Mechanical engineers can design structural parts for 3D
printing, electrical engineers can design smaller, more ef-
ficient circuits, and computer engineers can design robust
control software handled by a microcontroller like Arduino

• E-mail de contacte: stanley.albayeros@gmail.com
• Menció realitzada: Enginyeria de Computació
• Treball tutoritzat per: Fernando Vilariño Freire (departament)
• Curs 2018/19

or a small form factor Raspberry Pi [1].
This growing community also seeks bigger challenges as

time goes on [2], and sometimes, an idea is just too big to fit
in the small packages provided by current microcontrollers
and SBCs. While these devices are very powerful on their
own, sometimes an application requires not only results, but
also fast results. Common SBCs are more than capable of
running an algorithm required to compute the likelihood of
a face detected in a picture being a sad face or a happy face,
but it might not be fast enough to compute the answer and
relay it to an application that needs real-time responsive-
ness.

The aim of this project is to build an interactive robot
and use Google’s Cloud Computing[3] solution as a means
to offload some of these computing tasks to get a real time
implementation of a function that would be otherwise too
complex to compute within a reasonable time by an SBC.

This article will walk through the development cycle of
a robot consisting of a three degrees-of-freedom arm, using
a camera for computer vision and an addressable led array
for user interaction.

February 2019, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: Face-following robot arm with emotion detection

2 OBJECTIVES

The project has two distinct parts with different objec-
tives. First and foremost, we can state the ”big picture”, or
”meta-objectives” of the project:

1. Explore Raspberry Pi and the Raspbian Linux distribu-
tion as the main controller of a robot as an alternative
to Arduino ICs.

2. Learn about Google’s Cloud computing services,
specifically their Cloud Vision offering and how it can
be used to offload traditionally resource intensive com-
putational tasks like recognizing the emotions of a per-
son in a photo.

3. Provide python package libraries for servo motor con-
trol and Google Cloud Vision API access.

To achieve these objectives, I set out to build a robot
inspired in one of the previous Robotics, Language and
Learning subject’s projects. This part came with it’s own
objectives:

1. Design around an existing physical frame to build a
”DIY-ready” robot.

2. The robot must detect a face in real-time using the at-
tached Raspberry Pi Pi Camera.

3. The robot must be able to keep a detected face within
a region in it’s field of view, meaning it ”follows” the
face around.

4. The robot must utilize the Cloud Vision API to recog-
nize emotion features in a detected face.

5. The robot uses a 16 addressable LED ring to interact
with the user and provide feedback on it’s current sta-
tus.

6. The robot must use the responses of the Cloud Vision
API to react to the perceived emotional state of the
user.

7. The robot must perform these functions fast enough for
them to be perceived as real time (less than a second).

3 STATE OF THE ART

The market for DIY robots and electronics projects is
on the rise. In the past decade, microcontrollers like Ar-
duino have made electronics DIY projects very affordable
to the average consumer. The ease of programming these
boards, and the visual and physical impact these projects
produce have also opened the field to people that might not
otherwise be inclined to grab an IDE and learn to code.
The current offering of projects of this type is mainly cen-
tered around 2, 3 and 4 wheeled vehicles that usually im-
plement some sort of obstacle avoidance or remote control
via Bluetooth or RF. As a laboratory assistant the past cou-
ple of years for the Robotics subject, I have also noticed
that most people, even with the programming knowledge
needed to implement robust computer vision or machine

learning techniques do not take too many risks when de-
signing a robot using small components.

I believe the main reason for the simplicity of these de-
signs is the lack of raw computing power on these micro-
processors and SBCs. Most Arduino boards have a very
limited memory size, and SBCs like the Raspberry Pi are
limited by RAM size and processor power, considering they
have to run a full blown OS parallel to our control software.
This climate is ripe for a change, and I believe tapping into
the potential of the cloud to offload these tasks can lead to
an increase in design complexity of these projects.

4 METHODOLOGY AND TOOLS

On this section, I will provide information about the
methodology followed through the design and development
cycle, and the tools needed to complete it.

4.1 Methodology

The project followed an agile methodology organized in
sprints corresponding to the milestones planned.

4.2 Planning

Name Start
Date End Date Days

Elapsed
Google Cloud API

Research 10-01 10-04 3

Objectives
definition 10-04 10-08 4

Testing Google API 10-08 10-10 2
Dependency checks

on Raspberry Pi 10-10 10-12 2

Source/design
robot frame 10-12 10-22 10

OpenCV face
detection 10-22 11-04 13

Emotion detection 11-04 11-17 13
Print Frame 11-17 11-24 7

Servo
parametrization 11-24 11-29 5

Validation / Testing 11-29 12-02 3
Gesture

parametrization 12-02 12-06 4

Validation / Testing 12-06 12-10 4
Emotion reaction
parametrization 12-10 12-21 11

Vision and motion
engines integration 12-21 2019-01-

06 16

Validation / Testing
/ Optimization

2019-01-
06

2019-01-
21 15

Documentation 2019-01-
21

2019-02-
11 21

TABLE 1: PLANNING

The project’s planning was based in milestones to reach
in a certain number of days. The original planning was



Vernon Stanley Albayeros Duarte: TÍTOL DEL TREBALL 3

made without taking into consideration several develop-
ment hurdles that appeared in the project’s development cy-
cle. Table 1 describes the final development planning.

The project’s planning was kept track with Microsoft
Project. The final Gantt chart can be found in the appendix.

4.3 Tools

I used several software packages to complete this project.

• Raspbian OS[4]: Linux distribution used in the Rasp-
berry Pi.

• Fritzing[5]: Software package used to generate the
connection graphics for the electronics components.

• FreeCAD[6]: CAD program used to generate or mod-
ify some of the printable parts needed for the robot.

• OnShape[7]: Online CAD program, used to create and
modify most of the printable parts needed for the robot.

• Simplify3D[8]: STL Slicer, used to transform the 3D
models generated by the previous CAD programs into
printable GCode.

• 3D Printer (FDM): I used my own 3D printer to print
the whole robot. It is an FDM-based 3D printer, model
Tevo Tarantula.

• LucidChart[9]: Online tool used to create the state ma-
chine diagram in this paper.

• Office365[10]: Used to create the reports throughout
the project’s life cycle.

• Overleaf[11]: Online LATEX editor and package man-
ager used to generate this article.

• Visual Studio Code[12]: IDE used to edit all of the
source code.

• Git: Source control.

• WinSCP[13]: used to transfer files to and from the
Raspberry Pi.

• Putty: SSH client used to access the Raspberry Pi
without the need to connect a monitor.

• RealVNC[14]: VNC Client used to access the Rasp-
berry Pi’s display out to verify camera feed.

5 WHY GOOGLE CLOUD?

When searching for cloud-based compute engines,
Google’s offering had an excellent documentation, a com-
munity supporting it, and had a few interesting offerings
like the Cloud Vision API that we use in the robot. Even as
a commercial compute engine, Google offers students a fair
bit of documentation and free credits to utilize the engine
for academic purposes.

5.1 Google Compute Engine

The Google Compute Engine is a suite of cloud comput-
ing services offered by Google that leverage their infras-
tructure to provide compute power to clients. The API of-
fers a wide arrange of services, ranging from providing raw
compute cores to run our own custom code on them, to data
analysis tools, cloud storage and machine learning function-
ality.

5.2 Google Cloud Vision

I was especially interested in Google’s Cloud Vision API.
This API is capable of analyzing pictures to extract features.
A few examples of things that this API can recognize are:
face and landmark detection, OCR and logo recognition.
For our use case, I found the face features detection to be
the most interesting. When we send a photo with a face in
it to the Cloud Vision API, part of the response includes the
following:

” j o y L i k e l i h o o d ” : enum ( L i k e l i h o o d ) ,
” s o r r o w L i k e l i h o o d ” : enum ( L i k e l i h o o d ) ,
” a n g e r L i k e l i h o o d ” : enum ( L i k e l i h o o d ) ,
” s u r p r i s e L i k e l i h o o d ” : enum ( L i k e l i h o o d ) ,

The Cloud Vision API is capable of recognizing a given
person’s emotion from a photo, and returns the likelyhood
of one out of four emotions. Before implementing this in
our robot, we need to test how reliable is this information,
and how fast we get it. The details of this testing and its
results are discussed in the ”Results” section of this article.

6 ROBOT PROTOTYPE

Initially, I was going to take advantage of an existing
robot made by a group of students a few years ago called
”Pixi-Lamp” 1. Unfortunately, the hardware configuration
of the robot made behaviour extremely unstable. The com-
bination of high-torque servomotors used with the very
heavy metal-based frame, made for very high inertia move-
ments when I tried to simulate some emotion response rou-
tines, leading to overheating of the servomotors and general
frame instability.

As the existing frame would not work for this project, I
set out to look for an alternative. I found the base files of
another student project with a 3D printed arm, originally
created by Slant Concepts called LittleArm 2C [15]. I con-
tacted the company and was granted permission to use their
files for this project, and to modify them for the needs of the
project as long as their original files were not made public.

6.1 Hardware

This section will discuss the bill of materials needed for
the project. Table 2 reflects the final budget for the robot.

• SG-90 servomotors were chosen for their size and re-
spectable 1.3 Kg-cm torque.

1https://rlpengineeringschooluab2018.wordpress.com/2018/05/29/pixi-
lamp/



4 EE/UAB TFG INFORMÀTICA: Face-following robot arm with emotion detection

TABLE 2: BUDGET

Name Units Cost Total
SG-90 Servo 3 8.95 e 26.85 e

Raspberry Pi 3B+ 1 38.95 e 38.95 e
25W PSU 1 15.00 e 15.00 e

10W Power Adapter 1 12.00 e 12.00 e
PCA9685 PWM

Controller 1 12.00 e 12.00 e

Neopixel 16 LED
Ring 1 16.15 e 16.15 e

Total 120.85 e

• A Raspberry Pi was chosen as the main controller for
the robot.

• The Raspberry Pi only has a few hardware PWM en-
abled pins, with only two PWM channels available. To
use more pins as PWM-enabled pins with more chan-
nels there are several software-based solutions, but I
found these to negatively affect the performance of the
robot. As a result, I used an I2C based PWM generator,
the PCA9685 12-Channel PWM Driver. This compo-
nent can be connected to the Raspberry Pi through the
I2C interface, and does not rely on the Pi’s CPU to ac-
curately generate the pulses needed to drive our three
motors. This completely frees up the PWM pins on the
Raspberry Pi.

• I used a 25W (5V 5A) power supply to power the servo
driver and the servomotors. At peak current, the ser-
vomotors use around 2A in total.

• 10W power Adapter: This is the power supply for the
Raspberry Pi. At first, I was feeding power through a
voltage regulator (3-12V To 5V) from the main PSU,
but the voltage drops caused by the servomotors reach-
ing their peak current and the voltage drop inherent in
voltage regulators meant that the raspberry pi was get-
ting undervolted consistently while face tracking was
active, causing the CPU to underclock to prevent shut-
ting down. This affected performance negatively al-
most by a 3x factor.

• The Neopixel ring is an array of 16 addressable LEDs
that only require one PWM pin to be controlled.

The final connections are configured as pictured in Figure
1.

6.2 Frame

The LittleArm 2C was originally created for slightly dif-
ferent motors and meant to be used with an Arduino-based
control board, but the main frame of the robot could be
adapted to fit the needs of this project. I re-sized the mo-
tor sockets to fit our motor’s dimensions, and strengthened
the walls of the arm, as it would now need to support a heav-
ier load. I created a control box to house the electronics and
a base for the arm that connects to the control box. This

Fig. 1: Fritzing Diagram of all the hardware connections.

Fig. 2: Camera and LED ring holder.

makes the robot completely self contained, and the added
weight of the control box with the PSU and Raspberry Pi
inside provides stability to the arm.

I also created an adapter for the arm to house the camera
and the LED ring (Fig 2), which goes in the place where
the gripper would be in a traditional pick and place arm.
Since the arm no longer needs a servomotor to power the
”hand”, I modified the forearm to be slightly shorter, and
to allow the Pi Camera’s ribbon cable and Neopixel Ring’s
wires to pass through. This added weight lead to the need
for sturdier walls for the firearm, so I also increased their
width slightly.

You can find a picture of the final robot arm in Figure3.

6.3 Dependencies

The robot’s software uses the following:

• CircuitPython Library [16]: This library provides
functions to control the PCA9685 servo driver.

• Neopixel Library [17]: This library provides functions



Vernon Stanley Albayeros Duarte: TÍTOL DEL TREBALL 5

Fig. 3: Final Prototype.

to control the Neopixel Ring.

• OpenCV [18]: Provides functions to analyze images.
In our case, it allows us to detect a face within a photo
frame using the Raspberry Pi’s hardware.

• Google Vision API [3] : Analyzes images and identi-
fies features.

Figure 4 shows how the libraries are connected within the
robot’s control system.

Fig. 4: Software dependencies interaction

6.4 Robot State Machine

In this section, I will describe the robot’s behaviour.
When the robot’s PSU and Raspberry Pi are connected to
a power source, the robot first initializes all motors to a
known starting position. This position is the middle point
of each servomotor’s movement range. The reason for this,
is that we can’t know the position of the servomotors before
starting the robot, and when we first initialize them through
code, they will move as fast as possible to the first position
we ask them to. This can negatively affect the servomotors
if the robot was left in a configuration too far away from
the initial conditions. I chose the middle point as the ini-
tial position because it is reasonably easy to replicate with
the robot turned off, minimizing the distance needed for
the motors to travel for the initialization.You can find the
Robot’s state diagram in figure 5.

Fig. 5: State Machine

7 TESTING

Every robot component had software module has been
tested. I utilized the following tests for this project:

• Unit Test: Tests a single component or software func-
tion. This was done to verify that every single hard-
ware component was functioning properly, and that
the methods implemented were working properly. The
following unit tests were made:

• Integration Testing: Verifies whether the interaction
between components or methods provoke unforeseen
behaviour.I used this to verify that the hardware com-
ponent’s functionalities did not interfere with the exe-
cution of control software.

• System Testing: Verifies the correct functionality of
the system as a whole.



6 EE/UAB TFG INFORMÀTICA: Face-following robot arm with emotion detection

SW / HW
Unit

Tested
Purpose Status

Servo(x3) Establish our servo’s duty cycle
limits OK

Servo(x3)
Verify that all our servos can

achieve their full range of
movement

OK

LED Ring

Verify that all LED’s can achieve
a visually similiar color given the

same values, and how power
requirements vary given different

colors and brightness values

OK

PCA9685

Verify that the PWM generated
by the driver translates to the

same range of movement on the
servomotors

OK

Raspberry
Pi

Setup environment and verify that
all libraries work correctly OK

Pi Camera Verify capture timings and image
quality OK

Face
Detection

Verify that it detects a face in a
frame OK

Emotion
Detection

Verify the accuracy of detected
emotions OK

TABLE 3: UNIT TESTS

After completing the system test, I ran into the only is-
sue in the project. Integrating the code that runs with the
Neopixel Library with the code that runs the servomotor
movement can occasionally result in a small time frame
where the robot does not move the servo motor due to a
conflict with the Python Global Interpreter Lock, where the
thread running the LED control module is holding up CPU
focus while the thread in charge of moving the servomo-
tors is waiting for release. This problem can be solved by
migrating from using threads for the program to using the
multiprocess python library, but this in turn would create
issues with the methods in charge of getting the response
from the Google Cloud Vision API call. As this problem
only results in a small time frame (¡2 seconds) where the
servomotors appear to stop tracking, and is a very rare oc-
currence, I decided to not migrate the code from Threads to
Processes, as the ”unknown” factor of potential problems
arising from process-specific issues was too big of a risk
factor.

8 RESULTS

8.1 Cloud Vision API testing results

To test the accuracy of the Vision API, I used the Cohn-
Kanade dataset. The Cohn-Kanade dataset, CK dataset
from now on, is a well-known dataset for facial expres-
sions. To test the dataset, I first had to prepare it. The
original dataset consists of 10.708 images, grouped in 593
sequences across 123 subjects. Not all these images are
labeled for emotions, but they provide a helpful file sys-
tem where every image that has emotion data has a corre-

SW/HW
Module
Tested

Purpose Status

Pi camera
+ Face

Detection

Verify that we can take a frame
from the camera directly to the

face detection algorithm and get a
correct detection

OK

Face
Detection
+ Emotion
Recogni-

tion

Verify that a frame that was
detected as containing a face by

the Face Detection algorithm can
be successfully analized by the
Emotion Recognition method

OK

Face
Detection
+ Servo
Move-
ment

Verify that the servomotor’s
movement methods are precise

and fast enough to keep a detected
face within defined boundaries in

the camera’s field of vision

OK

TABLE 4: INTEGRATION TESTS

System
Tested Purpose Status

Face
Tracking

+ Emotion
Reaction

Verify that integration
between the face tracking
module with the Emotion
reaction module for the

addressable LEDs is
possible

(!)
One
Issue

TABLE 5: SYSTEM TESTS

sponding FACS label file. Facial Action Coding System,
or FACS, is a system to taxonomize human facial move-
ments by their appearance on the face, based on a system
originally developed by a Swedish anatomist named Carl-
Herman Hjortsjö. The dataset was labeled based on what
expression was requested rather than what may have been
performed. The provided final emotion labels are the re-
sult of analyzing the FACS labels and transforming them
into recognizable, “simple” emotions. The FACS labeling
system and how to interpret FACS formulas are beyond the
scope of this project, so we will be using the emotion labels
provided by the dataset authors. To prepare de CK dataset,
I wrote a python script to hunt down the image files that had
emotion labels attached to them.

The CK Images folder contains around 120 folders la-
beled SXXX (where XXX is a three-digit number) each
with up to 6 other subfolders labeled YYY. Within these
folders, we have the actual images of the dataset, labeled
SXXX YYY ZZZZZZZ.png, after the two folders above
their path.

The Emotion folder follows a similar structure with text
files named SXXX YYY ZZZZZZZ emotion.txt, after the
file they are describing. Within these text files, we find a sin-
gle float number in scientific notation. The number is in the
0 to 7 range, describing the following emotions: 0=neutral,
1=anger, 2=contempt, 3=disgust, 4=fear, 5=happy, 6=sad-
ness, 7=surprise.

Now, in this we find two main problems:

1. Their classification system is more precise than what



Vernon Stanley Albayeros Duarte: TÍTOL DEL TREBALL 7

TABLE 6: ORIGINAL DATA RESULTS

Row Labels Hits Misses Total Accuracy
R Anger 29 64 93 0.31
R Joy 69 22 91 0.76
R Sorrow 26 32 58 0.45
R Surprise 82 3 85 0.96
Total 206 121 327 0.63

Google can classify with their Vision API. We see
that the CK dataset provides a couple more emotions
than what the Google API returns. Cloud Vision has
the following emotions: Anger, Joy, Sorrow and Sur-
prise, while the CK dataset includes labels for Neutral,
Anger, Contempt, Disgust, Fear, Happy, Sadness and
Surprise. Now, we have a couple of choices on how to
move forward on our test:

(a) We discard every CK file that has a label that
doesn’t match with Vision API’s label system.

(b) We try to group CK labels into Cloud Vision API
labels.

2. There are several instances where the maximum likeli-
hood that the Vision API returns does not give a clear
enough picture of what emotion the face is expressing.
We might be able to solve or reduce this problem by
solving the previous problem first.

For the first problem, I decided to explore option B. Tak-
ing all the data we have aggregated into a single spread-
sheet (“Comparison” sheet in CK Data.xlsx), we can play
around with Excel’s filters and sorting systems. A quick
look around and we find that there are plenty of occasions
where the emotion detected by the Vision API as most likely
to be in the image does match the CK emotion label, but
there are also many rows where the Vision API doesn’t give
a similar answer to what we expected judging from the CK
labels, many of which don’t exist in the Vision API label
system.

TABLE 7: RESULTS COMPARISON

Labels A C D F H S Su
R Anger 29 10 50 1 0 2 1
R Joy 1 6 3 12 69 0 0
R Sorrow 15 2 6 9 0 26 0
R Surprise 0 0 0 3 0 0 82
Grand Total 45 18 59 25 69 28 83

After considering this table and the PREVIOUS ONE,
we can notice that some new tags could be “joined” into
the Cloud Vision API to better interpret the results. Anger
could very well be interpreted as disgust or contempt by
CK’s methods using the more nuanced FACS nomencla-
ture, for example. Taking this into account, I merged the
following emotions:

• Anger: Contains Anger, Contempt and Disgust.

• Joy: Contains Happy.

• Sorrow: Contains Fear and Sadness.

• Surprise: Contains Surprise.

With these changes in mind, I can re-make both previous
tables and judge the results based on this.

TABLE 8: MODIFIED DATA RESULTS

Row Labels Original Data
Accuracy

Modified Data
Accuracy

R Anger 0.31 0.96
R Joy 0.76 0.76
R Sorrow 0.45 0.6
R Surprise 0.96 0.96
Total 0.63 0.84

We can see an immediate improvement over the old ac-
curacy after we made these changes. I believe that this ac-
curacy is more than adequate for our Use Case, since the
camera feed will be polled periodically for new expressions,
and there is a good chance we never go more than a few
seconds without getting an accurate facial recognition hit. I
think it’s interesting to note that the Vision API misses for
Joy are mostly failing in favor of CK’s Fear label.

After testing, I checked the logs of the duration of every
query to the Vision API, and found that it averaged 0,45 sec-
onds over one hundred thousand API calls. I consider this
fast enough for our application, given that we don’t need to
update the user’s emotion faster than once every few sec-
onds. Figure 6 describes how the Vision API Control loop
works.

Fig. 6: Cloud Vision Implementation

8.2 Response time

There are three functions that the robot has to be able to
perform fast enough for them to be perceived in ”real time”:

• Emotion Recognition: The results for the speed tests of
the Emotion Recognition functionality were gathered



8 EE/UAB TFG INFORMÀTICA: Face-following robot arm with emotion detection

when testing the Cloud Vision API. We can reliably
get a recognized emotion provided there is a face in
the camera’s frame every 0,45 seconds.

• Face Detection: When unit testing the face detection
module over one million iterations, the average time
needed to complete a frame capture to face detection
was under 0,048 seconds. This translates to a real time
tracking with over 20 updates to a face’s relative posi-
tion within a frame per second.

• Servomotor Movement: The servomotors move at a
near instantaneous rate for small angle deltas like the
ones we use for face tracking. Their movement is
solely limited by how fast the Face Detection algo-
rithm performs, and since it performs in real time, so
do the servos.

9 CONCLUSIONS

At the start of the project, we had a series of objectives.
This section will summarize the achievement status of these
objectives.

First, we had three ”meta-objectives”. Regarding the first
objective, we have explored Raspberry Pi and Raspbian OS
as the main controller of a robot, and successfully imple-
mented a control system for a robot with sensors and actua-
tors within this OS. This objective is considered completed.

The objective to research and implement Google Cloud’s
API into a robot and use it as a means to offload a compu-
tational task that would otherwise take too long for a Rasp-
berry Pi to complete has also been achieved.

I also set out to make the classes I used to control the
servomotors and Google Cloud Vision access into public
packages. Unfortunately, Google’s terms and conditions
are unclear on this matter, and given the doubt I will not
publish the Google cloud access classes of my project. I
did, however, make available the servomotor classes as li-
braries through the Python Package Index. This library
can be installed using the command: ”pip install –index-url
https://test.pypi.org/simple/ tfg-servo-arm ”

Regarding the objectives of the robot, I believe I achieved
all of the points after the system testing phase. The is-
sues regarding the Python Global Interpreter Lock are very
rare, and could probably be fixed by implementing a lower-
level library for controlling the LEDs or partially migrating
Threads to Processes instead. Regardless, the issue has been
extremely rare to encounter while executing the robot.

In all, I believe I succeeded in completing the main objec-
tives of this project. I have learned how to use a Raspberry
Pi as a robot controller, I investigated the use of Google’s
API to offload one of the robot’s function to it, and designed
the control system for the robot arm.

10 FUTURE WORK

The robot can be improved in a number of ways. Multi-
process could be implemented in the CPU-dependent mod-
ules to get around the Python GIL limitations of only be-
ing able to run one python thread at a time. The servomo-

tors could be replaced with metal axis variants of the SG90
models. A higher end PWM driver could be implemented to
increase the number of steps available to the servomotors,
resulting in slightly less jerky motion. A more powerful
PSU can also be placed in the box to allow everything to
run from a single button press instead of needing to connect
the Raspberry Pi separately. While the Pi Camera’s image
quality is very good, it doesn’t perform too well under low
light conditions, so a way to improve this could be to imple-
ment some computer vision trickery to improve low-light
images or changing the camera module for one with better
performance.

As I have used a Raspberry Pi for the robot, it could be
extended with another service, like a Telegram chat-bot to
gain more interaction, an Android/iOS application serving
as a remote control, maybe even an IR communication sys-
tem to have two robots ”play” among them.

11 ACKNOWLEDGEMENTS

I would like to thank my tutor, Fernando Vilariño, for
the continued support throughout this project’s develop-
ment and through the graduate as a professor and mentor.
I thank my family for supporting me through my college
years and would also like to thank my partner for putting up
with me through crunch times.

REFERENCES

[1] Andrew K Dennis. Raspberry Pi Home Automation
with Arduino. Packt Publishing Ltd, 2013.

[2] Robert Faludi. Building wireless sensor networks:
with ZigBee, XBee, arduino, and processing. ”
O’Reilly Media, Inc.”, 2010.

[3] Google. Google Cloud Vision API. https : / /
cloud.google.com/vision/. Last accessed
10 January 2019.

[4] Raspberry Pi Foundation. Raspbian OS. https://
www.raspbian.org/. Last accessed 10 January
2019.

[5] Friends of Fritzing Foundatio. Fritzing. http://
fritzing.org/home/. Last accessed 10 Jan-
uary 2019.

[6] FreeCAD Team. FreeCAD. https : / / www .
freecadweb . org/. Last accessed 10 January
2019.

[7] Onshape Inc. Onshape. https : / / www .
onshape.com/. Last accessed 10 January 2019.

[8] Simplify3D. Simplify3D. https : / / www .
simplify3d . com/. Last accessed 10 January
2019.

[9] Lucid Software. Lucidchart. https : / / www .
lucidchart . com/. Last accessed 10 January
2019.

[10] Microsoft. Microsoft Office. https://cloud.
google.com/vision/. Last accessed 10 Jan-
uary 2019.



Vernon Stanley Albayeros Duarte: TÍTOL DEL TREBALL 9

[11] Overleaf. Overleaf. https://www.overleaf.
com/about. Last accessed 10 January 2019.

[12] Microsoft. VS Code. https : / / code .
visualstudio.com/. Last accessed 10 January
2019.

[13] WinSCP.net. WinSCP. https://winscp.net/
eng/download.php. Last accessed 10 January
2019.

[14] RealVNC. RealVNC. https://www.realvnc.
com/en/. Last accessed 10 January 2019.

[15] Slant Concepts. LittleBig Robot. https://www.
littlearmrobot . com / littlearm - 2c -
details . html. Last accessed 20 September
2018. 2016.

[16] Adafruit. CircuitPython Library. https : / /
learn.adafruit.com/circuitpython-
on - raspberrypi - linux / installing -
circuitpython - on - raspberry - pi. Last
accessed 10 January 2019.

[17] Adafruit. Neopixel Library. https : / /
learn . adafruit . com / neopixels -
on - raspberry - pi / python - usage. Last
accessed 10 January 2019.

[18] Itseez Intel Corporation Willow Garage. OpenCV.
https://github.com/opencv/opencv.
Last accessed 10 January 2019.



10 EE/UAB TFG INFORMÀTICA: Face-following robot arm with emotion detection

A ANNEX

A.1 Videos

Youtube playlist with videos URL:
http://bit.ly/RobotArmPL

A.2 Frame Pictures

Fig. 7: Base Assembly

Fig. 8: Final Assembly

Fig. 9: Only Electronics



Vernon Stanley Albayeros Duarte: TÍTOL DEL TREBALL 11

A.3 Gantt Diagram


