
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Development of a remote-control system for
GNSS sensors using AWS IoT

Arnau Ochoa Bañuelos

Resum– La Internet de les coses (IoT en anglès) s’està convertint en una de les tecnologies més
importants i s’espera que seguirà en creixement en el futur. Per tal de desenvolupar un sistema IoT
existeix l’opció de desenvolupar tota la infraestructura, però també és una opció utilitzar una de les
solucions que algunes empreses proveeixen. Un pot imaginar que la segona opció serà millor en
la majoria de casos, ja que serà una solució més ràpida i sovint funcionarà millor. Aquest article
presenta com una de les solucions més utilitzades, la que proporciona Amazon Web Services, s’ha
utilitzat en un projecte real. Aquesta tecnologia s’ha utilitzat per a desenvolupar un sistema IoT per a
controlar remotament els dispositius que s’utilitzen com a sensors GNSS en el projecte Cloud GNSS
Rx. Els components d’AWS IoT s’expliquen en aquest document i es detalla com aquests s’han
utilitzat per a desenvolupar el sistema. A més, també es detalla com s’ha implementat un dashboard
web el qual s’utilitza com a front-end per a l’usuari.

Paraules clau– Amazon Web Services, Internet of Things, Ruby on Rails, Raspberry Pi,
Cloud GNSS Receiver.

Abstract– The Internet of Things (IoT) is becoming one of the main technologies of the present, and
it is expected to keep growing in the future. In order to develop an IoT system there is the option
of developing all the infrastructure, but it is also an option to use one of the solutions that some
companies provide. One can imagine that the second option will be better in most cases as it will
be a faster and usually a better solution. This article presents how one of the most used solutions,
the one provided by Amazon Web Services, is used in a real project. This technology to develop an
IoT system to remotely control devices that are used as GNSS sensors within the Cloud GNSS Rx
project. The AWS IoT components are explained on this document and, then, it is detailed how they
have been used to develop the system. Furthermore, the implementation of a web dashboard that is
used as the front-end for the user is also detailed.

Keywords– Amazon Web Services, Internet of Things, Ruby on Rails, Raspberry Pi, Cloud
GNSS Receiver.

F

1 INTRODUCTION

THE Cloud GNSS Rx is a project developed and im-
plemented by the SPCOMNAV1 research group at
UAB and funded by the European Space Agency.

This project consists on the development of a Global Navig-
ation Satellite System (GNSS) receiver on the cloud, which
allows a device to capture the samples of the GNSS signals

• Contact email: arnau.ochoa@e-campus.uab.cat
• Specialisation: Information Technology
• Project supervised by: José A. López Salcedo (TES)
• Academic year 2018/19

1http://spcomnav.uab.es/

and to send them to the cloud receiver. Once received, the
cloud receiver processes the signal samples and returns the
desired information (e.g. the position) to the device [1, 2].

This solution is a paradigm shift with respect to the typ-
ical GNSS receivers, which implement all the signal pro-
cessing on the receiver device. This fact involves a high
complexity on the design of the device and an also high
power consumption [3]. Furthermore, new global position-
ing systems will soon be completely operational, resulting
on the coexistence of 4 different systems, i.e. The American
GPS, the European Galileo, the Russian GLONASS and the
Chinese Beidou. This will solve some of the current prob-
lems in these systems such as the availability and will also
improve accuracy. Nonetheless, this evolution will also in-
crease the complexity of the signal processing and, hence,

June 2019, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT

Fig. 1: Illustration of the Cloud GNSS Rx paradigm [2].

the computational requirements will be greater.
The development of a GNSS receiver on the cloud aims

to solve the previously mentioned problems, since the sig-
nal processing is moved from the main device to specific-
ally dedicated machines, which have much bigger compu-
tational capacities [4]. This characteristic makes the Cloud
GNSS Rx a very good solution for many applications which
require to compute the position, but it is specially pertin-
ent for Internet of Things (IoT) applications. These kind of
applications require low-complexity devices with also low
cost and power consumption. Therefore, it is quite difficult
to implement a GNSS receiver on IoT devices, specially
when a high precision is required. Furthermore, having a
GNSS receiver on the cloud also provides another capacity
which is very useful for IoT applications: the capability
to analyse a group of data obtained from different receiv-
ers. This capacity allows to obtain additional information
apart from the position of the receivers. For example, the
measurements obtained by different receivers that are geo-
graphically distributed can be used to locate the source of
an interference signal.

Within this context, a typical application would have
various devices or sensors which would, more or less con-
tinuously, capture the GNSS signals to send them to the
cloud receiver. This receiver would return the position
of the receivers and the other information required to the
devices and/or to a centralised server, which would man-
age this information, figure 1 illustrates the Cloud GNSS
Rx paradigm from a high level. This situation becomes
complex when the system incorporates a large number of
devices or when these devices are geographically disperse,
since the status of the sensors must be possible to track and
control. In order to solve this problem, a system has been
implemented to allow the visualisation and modification of
the state of the devices from a web dashboard. The IoT ser-
vice provided by Amazon Web Services (AWS) is the tech-
nology that has been selected to implement the communic-
ation between the devices and the central server. Later on,
the objectives of this project are detailed.

This paper is structured as follows. First of all, the ob-
jectives and requirements are detailed in section 2. Then,
section 3 explains which technologies have been selected to
develop the system and why. Later, in section 4, the meth-
odology that has been followed during the development is
explained and the planning of this development is detailed.
Section 5 describes the AWS IoT components some related

services offered by AWS. Later on, in section 7 the resulting
system capabilities are shown. Finally, some conclusions
are drawn in section 8 and some future work is left open in
section 9.

2 OBJECTIVES

The main objective of this project is to obtain a communic-
ation system between the sensor devices and the adminis-
trator, so that the devices can be remotely configured and
controlled. This main objective is divided in for specific
requirements, which are described next.

• The devices must be remotely controllable and
whenever the parameters of a device are modified, this
device must maintain these new parameters until a new
definition is done.

• It must be possible for the administrator to remotely
initiate a capture of GNSS signals and also to program
a capture every certain time.

• It must be possible to define the parameters of any
device even when the devices are not connected to the
Internet. When the devices recover the connection, the
new parameters must be automatically updated with
the last definition.

• The monitoring and control of the devices’ state must
be done from a web dashboard.

3 SELECTED TECHNOLOGIES

In order to solve the objectives previously described, it has
been decided to utilise a Platform-as-a-Service solution,
since these solutions allow to notably simplify the imple-
mentation of the system [5]. This is because the communic-
ation protocols have already been defined, no infrastructure
has to be built and the security is partially implemented by
the service itself.

The platform that has been selected is the IoT service
offered by Amazon Web Services (AWS) 2 since this plat-
form is used on other parts of the project [2], such as in the
database or in the cloud computational services. This way,
all the services are in the same company which simplifies
the management and the communication between modules.
Also, this service is one of the most used for implementing
IoT systems [6].

For the development of the website, the selected tech-
nology has been Ruby on Rails, since this web dashboard
will be included as a module on the web platform of the
Cloud GNSS Rx project, which has been already developed
in Ruby on Rails.

4 METHODOLOGY AND PLANNING

The development of this project has been carried out in an
iterative manner. Since some of the technologies used were
unknown at the beginning of this project, the development
of some features has required a previous phase of acknow-
ledgement of the technology. Then, the implementation of

2https://aws.amazon.com/iot/



ARNAU OCHOA BAÑUELOS: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT 3

the system has been done by the iterative development of
new features, following a feature-driven development pro-
cess. This process, included in the Agile methodology,
bases the development on the definition of various features.
Once the features are defined and planned, these are imple-
mented one after the other, testing each one of them before
starting the development of the next feature. Also, the Git
software is used with the GitHub platform in order to keep
track of the versions of the software. A Raspberry Pi Zero
W has been used as the testing device, since the prototype
sensors of the Cloud GNSS Rx are based on this device.

In order to solve the requirements specified in section
2, the implementation of the system is divided on two
main parts which can be clearly differentiated. The first
part consists in the development of the communication sys-
tem between the central AWS IoT server and the various
sensors. This part requires the configuration of the server
and the implementation of the software which will carry
the communication routine and the execution orders on the
devices.

The second part of the system development consists in
the development of a web dashboard which allows the ad-
ministrator to visualise and configure the devices’ states.
Furthermore, the administrator has to be able to add or re-
move devices from the system using the same web dash-
board. This web is needed since the control console offered
by Amazon is not designed for the final users but for the de-
velopers of the system. Therefore, this is not a user-friendly
environment and it is also not very versatile, since it does
not allow the control of the selected values. Also, this con-
trol dashboard has to be added to the already developed web
of the Cloud GNSS Rx.

4.1 Planning
The development of the system previously described has
been divided in 6 tasks in order to better organise the imple-
mentation over the time. Each of these tasks includes one
or various features to be added to the system and their tests.
Next, a revision of these tasks is provided in chronological
order. The three first tasks are related with the first part of
the development while the 3 last tasks are related with the
second part of the development, as explained before in this
section.

4.1.1 Basic controller

In order to know how the AWS IoT platform and its
SDK work and also to understand how the communication
between devices and the server work, a basic routine was
implemented at the beginning of the development. This
basic routine offered a basic communication with which a
variable mode could be modified from the AWS IoT dash-
board. This variable had no effect on the device and it was
only used for communication test purposes.

4.1.2 Complete controller

Once the communication was properly working between
the server and the device, the complete control program was
implemented. On this controller, all the parameters required
to control the device were added. Also, these parameters
were saved on a file and updated on every new request from

the server. Finally, the call to capture signal samples was
also implemented.

4.1.3 Error control

The parameters that define the state of the devices may
have invalid values, since these parameters are transmitted
in JSON format, which has no control of the possible values
that a variable can take. Therefore, the validity of these val-
ues must be controlled by the receiver. On the other hand,
the software that controls the capture of the GNSS signals
may also cause some errors. Therefore, a control of these
possible errors was implemented, which acts accordingly to
the kind of error raised.

4.1.4 Basic website

In order to familiarise with the Ruby on Rails environment
and its AWS IoT SDK, a basic web was developed first.
This basic web showed the name of a single device and its
parameters. Also, the parameters of this device could be
modified with a basic form. Therefore, the bidirectional
communication between the website and the server was
tested and, hence, so was the communication between the
website and the device.

4.1.5 Complete website

Once the correct operation of the previous task was
checked. A more complete website was developed, which
showed all the devices saved on the AWS IoT server. Also,
navigation between screens was implemented and the inter-
face used to modify the devices’ parameters was improved,
from a very basic form to a more user-friendly environ-
ment. Finally, the control of the possible values was also
implemented, so only the valid values could be selected for
a given parameter.

4.1.6 Add/delete devices

Later on, the options of adding and removing devices from
the system were implemented. In the case of adding a new
device, the required credentials can be generated and down-
loaded. Besides that, whenever a device is deleted from the
system, its corresponding credentials are invalidated.

4.1.7 Messages visualisation

The last feature that was implemented was the visualisation
on the website of the control messages that the devices send,
differentiating the normal messages and the error messages.
Also, during this phase, the aesthetic of the website was
improved. Even though the final style of this website will be
defined when it is joined with the Cloud GNSS Rx website,
it is interesting to have a better visualisation for the tests
that other members of the project team may carry.

4.1.8 Final tests

Although every one of the previous tasks has included its
own tests, a final test task was carried in order to check
the right behaviour of the system in all possible situations.
Here, functionality and security tests have been carried out,



4 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT

such as code injection tests on the forms that the website
contains.

5 DESCRIPTION OF AWS IOT

AWS is a collection of cloud computing platforms called
services offered by Amazon. The purpose of these services
is to provide solution to individuals or organisations to de-
velop their systems. AWS offers various systems for dif-
ferent applications among which are EC2 (Compute), S3
(Storage), DynamoDB (Database) and many others. Every
service can be used on its own or can be joint with other
services in order to build a system.

This section details the characteristics of AWS IoT, the
service which is used in this project to implement the com-
munication with the devices. This service defines proto-
cols that developers have to use in order to develop their
project and it includes an API and many SDK’s for differ-
ent programming languages so that it can be adapted to the
different characteristics of the implementation. Next, a de-
scription of the main components of this service are detailed
in order to better understand how the system works, which
is explained later on this paper. In this section, some re-
lated AWS IoT services are briefly explained. These other
services are not used on this project but it is interesting to
know them in the case that further extensions of the system
are required.

5.1 Components of AWS IoT

The Device gateway is the door that allows the devices
for connecting and efficiently communicating with AWS
IoT, either to communicate with other devices or to do
so with the applications or clients. All this communica-
tion is handled by the Message broker, which is a mech-
anism that allows the devices and applications for pub-
lishing and receiving messages. It is based on MQTT,
which is a machine-to-machine connectivity protocol de-
signed as a lightweight publish/subscribe messaging trans-
port [7]. With this broker, the clients (devices and applica-
tions) can subscribe and publish messages to topics so that
everyone subscribed to one topic will receive the messages
published to it. Although it is based on MQTT, it is also
possible to use HTTP REST in order to publish messages
to topics. All this communication can be processed with
the Rules engine. This component provides message pro-
cessing and integration with other AWS services. Using an
SQL-based language one can select data from message pay-
loads, process the data and send the data to other AWS ser-
vices, such as Amazon S3, Amazon DynamoDB and AWS
Lambda. The message broker can also be used to republish
messages to other subscribers.

In order to manage all the physical devices from the
cloud, there is the Thing registry. This component is used
to identify the IoT devices in the AWS Cloud, represent-
ing them as things. Every thing can have assigned certific-
ates, MQTT client IDs and up to three custom attributes.
There is also the Group registry component, so that differ-
ent things can be managed at the same time using groups.
These groups can also be grouped so that a hierarchical
structure can be built.

In order to guarantee the security and identity of the sys-
tems, the Security and identity service provides the com-
ponents to ensure both authorisation and authentication.
The authentication provides security to the system valid-
ating the identity of the clients that use the service. This
is achieved by using digital certificates for all the involved
parties. It also ensures the confidentiality in the commu-
nication as it uses the TLS protocol. The authorisation de-
termines what an identity can do. It is given by the use
of policies, which are assigned to a certificate. A policy
defines the actions that the identity related to the certificate
can do, for example connect, subscribe or publish.
It also defines the resources that the identity is allowed to
use, such as topics, clients or other resources.

The Thing shadow is another component provided to rep-
resent the state of a device in the cloud. A shadow is a JSON
document associated to a thing that represents the state of
the device. These JSON is initially made up of two inner
JSON, the desired and the reported. The first one
represents the state which it is wanted the device to be in.
The second represents the actual state of the device. All
the shadows are managed with the Thing shadows service,
which allows having a representation of the states of all the
devices. It also provides the usability of shadows. When
there are differences between desired and reported,
a third inner JSON is automatically generated. This inner
JSON is named delta and includes the parameters that
are different between desired and reported. When
a delta is generated, a message is published to a spe-
cific topic in order to communicate that modification to
the pertinent device. On the the listing 1, an example of
a device shadow can be seen. This could be the shadow
of a device used to remotely control the temperature of a
pool. There, the three parts of the shadow can be observed,
namely the desired, the reported and the delta.
The last one has been generated because the mode and the
desired temp have different values on the desired
and the reported. Therefore, an MQTT message has
now been published to the Device-Shadow topic with the
delta portion of the shadow. Whenever the sensor re-
solves the delta, it will publish an MQTT message to the
same topic including the reported parameters, which
will be received by the AWS IoT server.

{
"desired":{

"mode": "auto",
"desired_temp": "28",
"actual_temp": "25"

}
"reported":{

"mode": "off",
"desired_temp": "26",
"actual_temp": "25"

}
"delta":{

"mode": "auto",
"desired_temp": "28"

}
}

Listing 1: Example of a device shadow



ARNAU OCHOA BAÑUELOS: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT 5

Fig. 2: Representation of the system’s architecture

Then, the server will delete the current delta and it will
update the reported parameters with the last received ones.
At this time, if the desired and the reported portions
were not equal, the process would start again.

For some applications, a certain automation of some ac-
tions will be needed. In this cases, the Jobs service will be
useful. Using jobs one can define remote operations that
will be automatically realised when certain conditions are
accomplished. Some examples of applications could be the
downloading of firmware or restarting the device.

Finally, for scalability purposes, there is the Device provi-
sioning service. With this component devices can be added
to the system based on established models that describe the
parameters of the thing, the certificate type and the policies.

5.2 Other AWS IoT services
What has been previously described constitutes the main
AWS IoT services, over which a complete IoT infrastruc-
ture can be developed. Even so, AWS provides two addi-
tional services that are very related to AWS IoT and provide
supplementary functionalities. This services are named
Amazon IoT Core and Amazon IoT Core AWS IoT Device
Management. But around these, more AWS IoT can be used
to develop a more complex system. Those services and the
functionalities they offer are described next.

5.2.1 AWS Greengrass

AWS Greengrass is a software that can be configured on
the IoT devices to add local computation capabilities, mes-
saging data caching, synchronisation and Machine Learning
inference capabilities. The software joins all these function-
alities with the services previously explained. The Green-
grass software, named Greengrass Core, can be installed on
devices that run Linux. The devices running Greengrass
Core act as a hub that can communicate with other devices
that have an AWS IoT Device SDK installed. These devices
can be configured to communicate with one another in a

Greengrass Group. If the Greengrass Core device is not
connected to the cloud, devices in the group can keep on
communicating with each other. This service offers some
benefits that can be applied on an IoT solution. The first
one is that the devices can operate offline following the spe-
cified rules. When the core device reconnects, all the in-
formation is synchronised. Another benefit is the capability
to respond to local events without having to communicate
to the cloud, which is faster and less costly.

5.2.2 AWS IoT Analytics

AWS IoT Analytics is a service that allows to run sophist-
icated analytics on massive volumes of IoT data in a sim-
plified way. The analysis of IoT data is usually complex
and costly, as there are a lot of data that can be noisy and
have significant gaps. Furthermore, IoT data is often more
meaningful in the contest of other external data. This ser-
vice offers an interface between the capture and the storing
of data. This interface can filter, transform and enrich the
IoT data before storing it, and all these actions can be con-
figured.

6 SYSTEM’S ARCHITECTURE

In this section, the implementation of the developed sys-
tem is explained, detailing its architecture. This architec-
ture can be observed in the diagram of figure 2. This sec-
tion is divided on two parts: first, the device-to-server com-
munication is explained, which refers to the right half of
the diagram. The developed software that is installed on
the device to enable communication can be downloaded
from this GitHub repository: https://github.com/
arnauochoa/AWS_IoT-sensor. Later, the website-
to-server communication is detailed, which is the left half
of the diagram. The source code of this website can also
be downloaded from its GitHub repository: https://
github.com/arnauochoa/SensorDashboard.



6 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT

Fig. 3: Capture of the tool provided in the AWS IoT
dashboard to modify a shadow.

6.1 Device-to-Server communication

The software that runs on the device, which controls the
communication between the device and the cloud, has been
implemented using the AWS IoT SDK for JavaScript [8].
JavaScript has been the language selected because of its low
power consumption compared to the other languages that
are available for AWS IoT [9]. This low power consump-
tion is important because typically the devices will have a
limited energy source. The controller software is imple-
mented with the Node.js environment, which allows to run
JavaScript code on the device. The event-driven architec-
ture of Node.js is also very suitable, since in this project,
the devices have a behaviour which is similar to the typ-
ical server behaviour: the devices will be constantly wait-
ing to receive orders, and once they receive one they act
consequently and they return the desired information.

First of all, the AWS IoT SDK for JavaScript must be in-
stalled on the device, this can be done using the npm pack-
age manager built in Node.js. Also, some certificates and
keys must be assigned to thee device in order to identify and
validate both parts on the communication with the cloud.
As it is explained later on this document, these certificates
and keys can be automatically generated and downloaded
from the web dashboard developed in this project. The re-
quired certificates and keys are described next:

• Server CA certificate. This certificate allow the devices
to verify that they are communicating with the AWS
IoT cloud and not another server impersonating AWS
IoT.

• Client certificate. This certificate allows the server to
verify that it is communicating with the given device.

• Client public key. The public key related to the client
certificate.

• Client private key. The private key related to the client
certificate.

Fig. 4: Capture of the tool provided in the AWS IoT
dashboard to visualise the MQTT messaged.

The server certificate can be obtained from the AWS de-
veloper guide [10], while the device’s certificate can be ob-
tained from the AWS IoT console or it can be generated
and self-signed by the developer. These certificates and
keys are saved on the device. Once the certificates are cre-
ated and assigned to the device, the corresponding policy
must be defined. This policy defines what actions can the
device do in relation to the communication with the AWS
IoT server. For example, a given device could be forbid-
den to subscribe to a given MQTT topic. In this case, the
policies are equally set for all the devices and they include
permission to publish and subscribe to the topics that are
used in the project, namely the Device-Shadow topic which
is specific to each device and the Devices-Control topic that
is used for all devices.

Once the AWS IoT SDK has been installed and the cer-
tificates have been saved in the device, a JSON file named
params.json is created. This file includes all the config-
uration parameters of the device (e.g. the capture duration,
the number of captures or the centre frequency). Once this
file is created, it is all ready to run the controller program.
The operation of this program is detailed next.

Whenever the device changes from inactive to connec-
ted, which means that it is turned on and it has Internet con-
nection, it is registered to its Device-Shadow topic. This
is the MQTT topic used between the AWS IoT server and
the device for the communication related with the device’s
shadow. Once the device is subscribed, it updates its
shadow (i.e. the parameters defining the state of the device).
These parameters are saved in the AWS IoT server in the
reported portion of the device shadow. As it is explained
before in 5, the AWS IoT server will check if all the para-
meters of the shadow are equal between the desired and
reported portions of the shadow and if so it will do noth-
ing but wait to new changes. In the case of these two parts
of the device shadow being different, a delta is generated.
The delta, which is a part of the shadow in the AWS IoT
server, details the values of the parameters in the desired
part that are different from the reported. This message



ARNAU OCHOA BAÑUELOS: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT 7

is then published to the Device-Shadow topic.
Once the device has been subscribed to the Device-

Shadow topic, whenever a delta is published on this
topic, the delta handler function will be triggered. This
function will first save the new values of the specified para-
meters on the params.json file. Then in the case a para-
meter named mode is set to true, the capturing routine will
be triggered. This routine will call a Python script which is
in charge of carrying the GNSS signal capture. This Python
script will read from the params.json file the parameters
with which the capture will be carried on. If the capture is
realised properly, the capturing script will return a no-error
flag to the controller program. Then, the device will send a
message to the Devices-Control topic, telling that the cap-
ture has been realised properly and specifying the device’s
name. In the case of having any error during the capture of
the GNSS signals, the capturing script will return the error
message to the controller program. This error message will
be then sent to the Devices-Control topic, together with the
name of the device. This routine will be repeated as many
times as specified by the corresponding parameter on the
device’s shadow.

Until this point, the device can be controlled from the
AWS IoT dashboard. There, the device’s shadow can be
modified by editing the JSON that describes the shadow.
This can be observed in figure 3, where the shadow-edition
tool is shown and the device’s shadow can be partially ob-
served.

6.2 Website-to-Server communication
As stated previously in this document, there is the necessity
to develop a website for the administrators of the devices to
use it as the control dashboard of these sensors. Also, this
website has to be developed in Ruby on Rails in order to
subsequently add it to the Cloud GNSS Rx website, which
already has many functionalities implemented such as the
control of the users. Therefore, the website implemented
on this project does not include some of the functionalities
that will be provided after this website is included into the
Cloud GNSS Rx one.

The functional requirements of this website are:

• The capacity to visualise all the sensors in the system.

• The capacity to visualise and change the parameters of
any given sensor.

• The capacity to create a sensor and, afterwards, to ob-
tain its certificates and keys.

• The capacity to delete any sensor of the system and,
consequently, invalidate its certificates and keys.

• The capacity to visualise the messages sent by the
sensor devices.

The web dashboard used to control the devices is imple-
mented using the AWS IoT SDK for Ruby on Rails [11] and
the MQTT library provided by the same framework [12].
It is also required to obtain the access keys for the SDK
and API access to the AWS IoT server. These access keys
are needed on the web dashboard since it will obtain and
modify information on the AWS IoT server. This keys can

be created and obtained by the developer on the AWS IoT
console.

For this website, a database has been used over the SQL-
ite3 database management system, since this is the default
system in Ruby on Rails. Also, SQLite3 provides a good
trade-off between performance, reliability and application
complexity. The database contains two tables that are used
for saving the information needed to communicate to the
AWS IoT server and also for saving the information that
can be visualized and modified from the web dashboard.
The first table is called Sensors and it contains the in-
formation of the devices that is needed to retrieve their
shadow parameters from the AWS IoT server. This table
contains the following attributes for each table entry (i.e.
each sensor):

• Sensor name: Name defined by the system adminis-
trator to identify the sensor devices.

• Type name: Name of the type of sensor. Used to
identify different groups of devices in case it is needed.

• Certificate ID: Code used to identify the certificate as-
signed to the device. It is necessary for the communic-
ation between the website and the AWS IoT server.

• Thing ARN: The thing Amazon Resource Name
uniquely identifies a device inside the AWS IoT sys-
tem. This is also used for communication purposes
between the website and the AWS IoT server.

• Policy name: The name of the policy assigned to each
sensor. Now it is the same for all the sensors, but it has
been left as an attribute for scalability purposes.

This Sensors table is updated every time the devices
of the system are listed on the main page of the website.
Therefore, it is assured that the devices on the AWS IoT
server and the devices on the website are the same. Also,
this table is modified when a sensor is created or deleted.
On the one hand, whenever a device is created, the inform-
ation of the new device (i.e. its name and the type name)
is sent to the AWS IoT server including also the shadow
of the device, which is created equally for all the devices.
Once the thing (i.e. the representation of the device on the
AWS IoT server) has been created, the Thing ARN is ob-
tained from the server. After that, a new entry is introduced
to the table including the sensor name, the type name and
the Thing ARN. Later on, when the certificates are created
and downloaded by the administrator, the certificate ID and
the policy name are added to the sensor’s entry on the data-
base table. On the other hand, whenever a device is deleted,
a message is sent to the AWS IoT server asking for the de-
letion of this device and the invalidation of its credentials
(i.e. certificate and keys). When a confirmation of the dele-
tion has been received from the AWS IoT server, the table
entry corresponding to the deleted sensor is erased from the
database.

The second table is called Messages and it is used to
save the MQTT messages that are published by the devices
on the Devices-Control topic, which include information
about the state of the devices and any possible error that
may occur during the signal capture. This table contains
the following attributes:



8 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT

• Sensor name: Name of the sensor that has published
the given MQTT message.

• Error: Boolean flag that indicates if the message is an
error report or it is not.

• Content: The main content of the message, for ex-
ample the description of an error or the notification that
the capture has been finished.

• Time: The time when the message has been published
at.

This table is important because the messages are not
saved on the AWS IoT server. Therefore, whenever a mes-
sage is published by a device on the Devices-Control Topic,
it is received on the web dashboard which is subscribed to
the topic. The messages are thence saved to the database in
order to be able to visualise them from the website.

The modification of the device’s shadow can be accom-
plished from the detail visualisation of a device. There, the
desired parameters of the shadow can be visualised and
modified using a form. This form has been implemented so
that the validity of the parameters is checked. There are,
hence, four types of parameters defined. The first type are
the boolean parameters, which are modified so that only
two possible values can be set (i.e. true or false). The
second type are the values that are numbers, which values
are checked to be actually numbers and a step between val-
ues is defined to be 0.01. The third type is the e-mail ad-
dress, which validity is also checked. Finally, the fourth
type is the text, which has a maximum length of 30. All
these values are required and, if they are not set or are in-
valid, an error message is shown on the given field. This
form is also resistant to various code injection attacks. On
the one hand, the values introduced on the form are not
used or saved on the database, so no SQL injection attacks

Fig. 5: Visualisation of the list of devices.

Fig. 6: Page to create a new device.

can be done. On the other hand, the coding recommenda-
tions from the Ruby on Rails official guidelines ([13]) for
securing Rails applications have been followed on the im-
plementation of the website.

The reported parameters can also be visualised in this
page. The shadow of the device is modified on the AWS
IoT server using the HTTP protocol. Whenever the desired
parameters of the shadow are modified, a JSON is created
including the modifications of the shadow and this is sent
to the AWS IoT server, which changes them after verify-
ing the web client with its certificate. Once, the shadow is
modified on the AWS IoT server, a delta is raised and
a message is sent to the Device-Shadow topic correspond-
ing to the given device. Then, the routine that handles this
delta on the device is started as explained previously in
this section. When any device is visualised the shadow of
the device is requested to the AWS IoT server with an HTTP
GET method and then it is shown on the device’s detail
page.

7 RESULTS

With the implementation detailed on the previous section,
an administrator of the system devices is now able to visual-
ise all the sensors on the system and the parameters of each
of these devices. The administrator is also able to know
how the devices behave and if there is any error on these
by means of the MQTT messages that are published on the

Fig. 7: Detail view of a device.

Fig. 8: Page to download the certificates for a new device.



ARNAU OCHOA BAÑUELOS: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT 9

Fig. 9: Detail view of a device with messages showing a
normal behaviour.

Devices-Control topic, which can also be visualised on the
web dashboard. Finally the administrator can also create a
new device and obtain the certificates and keys needed and
he also can delete any sensor from the system. In this sec-
tion, the functionalities provided by the system implemen-
ted are shown by means of some screenshots of the website
and the console of the Raspberry device used for the devel-
opment.

The first page of the web dashboard shows a table with
all the sensors that are included in the system (see Fig 5).
From this screen, the administrator can also do three main
actions: access to the detail of one device, create another
device or delete an existing one. The creation of a new
device can be seen in figure 6, where a new name is set for
the device and the type of device can be selected. After the
creation of a new device, the certificates can be generated
and downloaded from the page that can be seen in figure
8. Once the certificates are generated and downloaded, they
can not be downloaded again for security purposes. This is
shown by disabling the button to download but, nonetheless,
if the user manages to try to download again the certificates,
the controller checks if they have already been downloaded
and, if so, it does not allow to download them again.

The detail of a sensor can be accessed from the first page
and it has two sections, which can be seen in figure 7. On
the left par of the page, the shadow of the device is detailed
on both the desired and the reported values. The desired
values of the device’s shadow can be modified with a form
included in the table. On the right side of the image is where
the MQTT messages sent from the device are shown. These
messages are shown in green if they are normal messages
and they are shown in red if they are an error report. Both
situations can be seen in the figures 9 and 10, respectively.

As it has been explained before in this document,
whenever the shadow parameters are changed and submit-
ted on the website, these are sent to the AWS IoT server
and, then a message is published so the devices know which
parameters should be modified and how. This procedure
is used for defining the parameters that must be used for
the signal captures but also for triggering the capture itself.
This can be seen on the figure 11, which shows a screenshot

Fig. 10: Detail view of a device with messages showing
there has been an error.

Fig. 11: Capture messages on the device’s terminal.

of the messages shown in the device’s terminal during the
signal capture.

8 CONCLUSIONS

This project has shown how to develop a system to re-
motely control a fleet of GNSS sensors included on the
Cloud GNSS Rx project using the IoT platform provided
by AWS. Still, it has shown how a system of this kind can
be implemented in any kind of application. This document
has explained how all the initial requirements have been ful-
filled, and how the AWS IoT is a very useful platform to
develop an IoT infrastructure.

This document has introduced first the problem to solve
and it has contextualised the system by briefly describing
the project within which it is included. Then, the techno-
logies that have been selected to develop the project have
been introduced, and the reason why these have been selec-
ted has been explained. Later on, the methodology and the
planning that have been followed on this project has been
explained, detailing the different tasks that have been fol-
lowed during the development. After that, the AWS IoT
platform has been described, which is the main technology
that has allowed to implement the system. There, the main
components of the platform have been described and some
illustrative examples have been shown. Also, some related
services have been explained, which are not actually used in
this project but they are very interesting for future upgrades
of the system that has been developed in this project. With
the knowledge of the previous section, the architecture of
the system has been deeply detailed next. There, the device-
to-server communication has been explained first, showing



10 EE/UAB TFG INFORMÀTICA: DEVELOPMENT OF A REMOTE CONTROL SYSTEM FOR GNSS SENSORS USING AWS IOT

the AWS IoT Console that has been used during the devel-
opment for test purposes. After this part of the architecture,
the website-to-server communication has been described,
including all the main steps that are followed on each action
carried out from the website. Finally, the resulting system
has been described, showing some descriptive images of the
different operations that the system offers.

9 FUTURE WORK

This project had very specific requirements defined by its
inclusion on a bigger project, namely the Cloud GNSS Rx.
Although all the requirements have been achieved, there are
some doors that are kept open for further extensions. On
the one hand, the first and obvious thing that should be done
after the realisation of this project is the inclusion of the web
dashboard that has been developed into the actual website
of the Cloud GNSS Rx, which is already active. This inclu-
sion will be done on the done shortly. On the other hand,
some ideas have been arisen during the development of the
project, which are presented next.

First, it would be interesting to obtain some hardware-
information of the device such as the available battery ca-
pacity and send it to the IoT over the Devices-Control topic.
This information could be then shown on the web dash-
board.

Another interesting option appears from the availability
of the AWS Greengrass and the AWS IoT Analytics ser-
vices. These services could be used to add new features to
the Cloud GNSS Rx or also to enhance the current effect-
iveness of the system. For example, the AWS Greengrass
could be used to enable the communication with devices
that have lost the connection with the Internet while they
can still communicate with a near device.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Prof. José A. López
Salcedo for offering me the opportunity to work on the
Cloud GNSS Receiver project at the SPCOMNAV group.
I would also like to thank my family and friends for their
personal support during the realisation of this project.

REFERENCES

[1] L. Romero-Holguin, G. Seco-Granados, J. A. Lopez-
Salcedo, and J. A. Garcıa-Molina, “Prototype of IoT
GNSS Sensor for Cloud GNSS Signal Processing,” in
6th International Colloquium on Scientific and Fun-
damental Aspects of GNSS / Galileo, Oct. 2017.

[2] V. Lucas-Sabola, G. Seco-Granados, J. A. Lopez-
Salcedo, J. A. Garcia-Molina, and M. Crisci, “Cloud
GNSS receivers: New advanced applications made
possible,” in 2016 International Conference on Loc-
alization and GNSS (ICL-GNSS). Barcelona, Spain:
IEEE, Jun. 2016, pp. 1–6.

[3] V. Lucas-Sabola, G. Seco-Granados, J. A. Lopez-
Salcedo, and J. A. Garcıa-Molina, “GNSS IoT Posi-
tioning From Conventional Sensors to a Cloud-Based

Solution,” Inside GNSS, vol. May/June, pp. 53–62,
May 2018.

[4] V. Lucas-Sabola, G. Seco-Granados, J. A. Lopez-
Salcedo, J. A. Garcıa-Molina, and M. Crisci, “Com-
putational performance of a cloud GNSS receiver us-
ing multi-thread parallelization,” in 2016 8th ESA
Workshop on Satellite Navigation Technologies and
European Workshop on GNSS Signals and Signal Pro-
cessing (NAVITEC). Noordwijk, Netherlands: IEEE,
Dec. 2016, pp. 1–8.

[5] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of Things (IoT): A vision, architectural
elements, and future directions,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sep.
2013.

[6] J. Guth, U. Breitenbucher, M. Falkenthal, F. Leymann,
and L. Reinfurt, “Comparison of IoT platform archi-
tectures: A field study based on a reference architec-
ture,” in 2016 Cloudification of the Internet of Things
(CIoT). Paris, France: IEEE, Nov. 2016, pp. 1–6.

[7] U. Hunkeler, H. L. Truong, and A. Stanford-Clark,
“MQTT-S — A publish/subscribe protocol for Wire-
less Sensor Networks,” in 2008 3rd International
Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE ’08), Jan.
2008, pp. 791–798.

[8] “AWS SDK for Ruby Developer Guide
- AWS SDK for Ruby.” [Online]. Avail-
able: https://docs.aws.amazon.com/sdk-for-ruby/v3/
developer-guide/welcome.html (Last accessed on 8
June 2019).

[9] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha,
J. P. Fernandes, and J. Saraiva, “Energy efficiency
across programming languages: how do energy, time,
and memory relate?” in Proceedings of the 10th ACM
SIGPLAN International Conference on Software Lan-
guage Engineering - SLE 2017. Vancouver, BC,
Canada: ACM Press, 2017, pp. 256–267.

[10] “X.509 Certificates and AWS IoT -
AWS IoT.” [Online]. Available: https:
//docs.aws.amazon.com/iot/latest/developerguide/
managing-device-certs.html#server-authentication
(Last accessed on 8 June 2019).

[11] “File: README — AWS SDK for Ruby V3.”
[Online]. Available: https://docs.aws.amazon.com/
sdk-for-ruby/v3/api/ (Last accessed on 8 June 2019).

[12] “Module: MQTT — Documentation for njh/ruby-
mqtt (master).” [Online]. Available: https://www.
rubydoc.info/github/njh/ruby-mqtt/MQTT (Last ac-
cessed on 8 June 2019).

[13] “Securing Rails Applications — Ruby on Rails
Guides.” [Online]. Available: https://guides.
rubyonrails.org/security.html (Last accessed on 8
June 2019).


