
AUTONOMOUS UNIVERSITY OF BARCELONA, FINAL DEGREE PROJECT, HARDWARE SPECIALTY 1

CMS-SIM PROFILING

Alejandro Alonso, Josep Flix, and Juan Carlos Moure

Abstract—CERN produces millions of images from the collisions in the accelerator. This images must be cleaned up to
extract important data. PIC is one of the organizations that processes the images.

It is expected that the amount of data to process increases on a 7x factor on the next few years. However, the budget for the
organizations doesn’t increase each year, so the hardware can only be updated with better hardware that the market offers
with the same price as the hardware acquired years before. This update is not able to accomplish the expected 7x factor, so
we need to find ways to optimize money, resources and applications.

————————————————

—————————— ◆ ——————————

1 FIRST LOOK AT CMS-SIM

CMS-SIM is the part of the program that simulates
montecarlo events using a sql file with data of the collider
sensors and structure. It has the following elements:

Input: SQLite file with collider detector data, the file is
only some MB, it is located on repositories in CERN and
USA. But we make use of a squid cache to access this data
more efficiently, so the actual input comes from PIC squid
server.

Event compute: Main operation in the execution, it’s the
part of the program that generates one image that
represents 1 collision of two particles. Other versions of
cms-sim, like “gen-sim-digi-reco”, add more particle
collisions on each event, which is closer to the real images
that we get from particle collision.

Output: .root file with the “ttbar” simulations. The size of
the file depends on the number of events, it’s size is (
nEvents * sizeof(image) + 1MB) where nEvents is the
number of events.

Structure: Analyzing logs and profiling graphs we can
extract 3 parts:

Initialization: This is the sequential part where the
needed plugins are loaded and also the SQLite file is
loaded to memory. Apparently this part can be runned in
2 threads but not more. Also this part time may vary,
since we depend on the server we are accessing to
download the file.

Core event computing: This is the main part of the sim
where the simulation compute happens. This part can be
parallelized to a maximum number of threads, since each
thread will compute 1 event at a time. So at the beginning
of the event, the thread reads data from the SQL file

located in memory and computes the event, once it's
finished it will write the results on memory and they’re
only written back to disk once the buffer is full.

Termination: The program closes all threads and writes
back to disk some of the remaining event data. Notice that
resilient event data on this face is not really big since
we’re writing the data periodically on the second part.
We will see this behaviour on the I/O graphs.

2 PIC TEST ENVIRONMENT
To profile cms-sim, we have isolated one of PIC’s nodes.
This node has 2 sockets of 8 cores with hyperthreading
each. That makes a total of 32 possible threads in 16 cores.
The actual processors are “Intel(R) Xeon(R) CPU
E5-2640 v3 @ 2.60GHz” which have a intel Haswell
architecture.
The memory is 64GB and disk is about some teras.
To execute the code we use the CVMFS, the shared file
system that allows us to run cms-sim without loading it
from repositories everytime that we need to run it.
The cms-sim version that is used for the analysis is
CMSSW_10_2_9.

To profile cms-sim, we used 3 different profilers:
PrMon [3]
Trident [4]: Trident can only be runned in intel Haswell
architecture due to the use of specific hardware counters.
Linux Perf [5]

3 NUMBER OF THREADS AND EVENTS ANALYSIS

To start profiling, we executed cms-sim with different
threads and number of events. The numbers where the
following: number of threads as nthreads (1,8,16,32),
number of events as nEvents (128,512,1024,2048,4096).
To judge performance we will use the number of events

https://docs.google.com/document/d/1EFN-zb16IbeLdIBbkFJeW0MV8IUCFXcI522rgUtpV0M/edit#heading=h.244m8qfxhj7v
https://docs.google.com/document/d/1EFN-zb16IbeLdIBbkFJeW0MV8IUCFXcI522rgUtpV0M/edit#heading=h.244m8qfxhj7v
https://docs.google.com/document/d/1EFN-zb16IbeLdIBbkFJeW0MV8IUCFXcI522rgUtpV0M/edit#heading=h.244m8qfxhj7v
https://docs.google.com/document/d/1EFN-zb16IbeLdIBbkFJeW0MV8IUCFXcI522rgUtpV0M/edit#heading=h.244m8qfxhj7v
https://docs.google.com/document/d/1EFN-zb16IbeLdIBbkFJeW0MV8IUCFXcI522rgUtpV0M/edit#heading=h.244m8qfxhj7v

2 JULY 2019

per second, since computing events is the main goal of
cms-sim. So output divided per amount of time is what
really matters.

We will now discuss the differences between different
number of events and threads executions with the results
of PrMon [3]:

Figure 1 . Events per second of CMSSW_10_2_9 with different
number of threads and events.

Spee
dup

128
events

512
events

1024
events

2048
events

4096
events

8
threads

6.00 7.08 7.21 7.30 7.23

16
threads

10.40 11.80 13.01 13.01 13.13

32
threads

11.14 14.00 14.23 14.52 14.69

Table 1 . Speedup based on sequential execution.

Looking at Figure 1 judgement will be that a threaded
execution is a decent optimization since it almost doubles
the performance when doubling the threads.
Hyperthreading doesn’t usually help, so it is common to
see that 32 threads isn’t much better than 16, but in this
scenario it gives a little more performance. We will see
with further analysis why 32 threads gives this
improvement.

You can notice at Table 1 that the higher the number of
events, the better is the performance, for example a 32
thread version gets only a 11.14 speedup with 128 events
but it reaches 14 when increasing the number of events.
Also the higher is the number of threads it requires a
higher number of events to get the maximum
performance, for example, the 8 thread version has less
difference in performance between the least number of
events and the maximum.
Having better performance with a higher number of
events is due to the “initialization” part mentioned in the
previous section, which means that a certain number of
events makes the “core event computing” part big
enough to make “initialization” part insignificant so the
threads will be dividing the main work of the program.

In Figure 1 we can see how each number of threads
behaves with different number of events. For all number
of threads 1024 events seems to be a stable number, since
it doesn’t increase too much with a higher number. So a
1024 event execution is a valid execution to judge from
the point of resource usage.

4 RESOURCE USAGE ANALYSIS
We could use PrMon [3] for a resource usage analysis, but
since we are on a Haswell architecture we can use a more
accurate tool named Trident [4] that gives us much more
information than PrMon [3]. The only problem is that
Trident only allows us to run executions that fully load
the processors of the machine including hyperthreading,
this means we must run 32 threads executions.
The following graph corresponds to a raw cms-sim
execution with 1024 events, 32 threads and 1 process:

4.1 CPU efficiency

Figure 2 . IPC of each HyperThread and cycles assigned on CPU to
that thread.

Figure 2 shows at the bottom graph, for each
hyperthreaded-core, how many instructions per cycle
(IPC) the thread achieves. Note that each core has 2
hyperthreads, so the actual core IPC is double the amount
shown. That gives us in a 0,8 * 2 = 1,6 IPC vs 4 IPC as the
maximum the computer can achieve.
You could say that it is pretty inefficient due to the IPC
being 2,4 cycles lower than the actual maximum, but
actually these are decent performance results since it is
almost impossible to get the maximum IPC due to several
reasons. Also a lot of instructions are divided into micro
operations, which means that our processor is doing more
work, since the maximum IPC doesn’t consider that.
Figure 2 green colour shows us the amount of core cycles
assigned to that thread, this only gives us the information
that the thread is almost getting all the core cycles posible
which means the scheduler is giving the 100% of the CPU.
This helps us see the different phases of the application
mentioned on section 2. As you can see during
initialization and termination the core cycles assigned are
lower than the one assigned on the event computing.

4.2 Processor pipeline port usage
Each cpu core has different ports where the micro
instructions are placed, each port can process a different
type of instruction and each type of instruction has a
duration in cycles different from each other.

Taking a look at the Haswell port distribution on Figure

ALEJANDRO ALONSO: CMS-SIM PROFILING 3

3, which shows what instructions are being executed on
each port and will tell us how the program works at
assembler instruction level:

Figure 3 . Pipeline scheme of the processor used.

Figure 3 shows which micro instructions are managed on
each port. Ports 0,1,5,6 are associated to compute
instructions and 2,3,4,7 to memory instructions.

Figure 4 . Use percentage of each pipeline port for each Hyper
Thread

Figure 4 shows the percentage of cycles per second we
spend on each processor pipeline port. The ratio of cycles
per HP determines how many cycles the port was busy.
The most used resources are ports 2,3 which make
memory operations, those reach a 17,5% of use, if we
calculate the core usage it duplicates due to using 2
threads on each one. This means we have a maximum
usage of 35%, even though results are taken from a
fraction of time and this usage can be higher at some
point, the program is pretty stable and 35% is a very low
resource usage, so we could almost confirm that there are
no CPU resources saturated.
As CPU is not a problem, let's go on and check memory
and disk.

5 MEMORY HIERARCHY AND DISK ANALYSIS
Trident [4] and PrMon [3] have several features but
neither of that tools can measure cache misses, that's why
Linux Perf [5] is used to measure that.

5.1 Cache misses

Figure 5 . Percentage of load access to L1 that result on miss in
comparison to the program instructions.

L1 is the closest cache to CPU, so the fastest to access, and
there is one for each core, so it is shared only by the 2 core
hyperthreads. That’s the reason why looking at Figure 5
we see that the 32 thread version has x1,75 more misses,
almost double the misses. This is because 2 threads are
trying to load information from the same cache, which is
causing more collisions, and the other versions only 1
thread loads from cache so it doesn't collide with another
thread accesses.

Figure 6 . Percentage of load access to LLC that result on miss in
comparison to the program instructions.

Figure 6 shows the ratio of misses in LLC (Last Level
Cache), which is the closest cache to memory, so the
slowest cache to access but still faster than memory
access. This cache is shared by all cores, so the higher the
number of threads the higher the number of accesses.

This only shows how the cache misses scale with the
number of threads compared to the total instructions, but
if you take a look at the number of cache accesses
compared to the number of misses, you will see that the
cache misses are between a 6-10% on L1 and 2-4% on
LLC. This added to the fact that memory access is very
low on cms-sim, makes cache misses almost irrelevant on
this executions.

Also, note that when using 32 threads we get more cache
misses, but actually thanks to hyperthreading, when one

4 JULY 2019

thread wastes time with a cache miss, the other thread
will make use of the CPU, so we aren’t wasting any time
with cache misses and memory accés on 32 threads. This
is the reason why 32 threads is slightly better than 16.

Let's move again to Trident [4] to check the main memory
behaviour and see if there’s something wrong:

5.2 Memory accesses

Figure 7 . Percentage of each main memory access type, each type
explained below:
ME_PHIT - Memory transaction resulting in page hit
ME_PEMP - Memory transaction resulting in page empty
ME_PMSS - Memory transaction resulting in page miss

In Figure 7 one can see that almost all the access that are
made result on a Page empty, this is actually pretty bad.
Page Empty access takes double the time than a Page Hit
and a Page Miss takes double the time of a Page Empty.
These results are due to inefficient memory access, data
from the memory is being accessed in a very sparse way.

This would worsen the performance if it wasn’t by the
fact that the number of memory bytes accessed are pretty
low as we can see on Figure 8. Note that this behaviour
would affect the program if in some way we raise the
amount of memory access. This can be done by raising the
number of threads, which we can’t see due to our
computer limits, or by rising the number of processes.

Figure 8 . Number of bytes read and written to main memory.

ME_REBW - Memory read bandwidth
ME_WRBW - Memory write bandwidth

5.3 IO Access
Figure 9 shows on the bottom how many times per
second do we access IO and on the top how many bytes
are transferred with each access, on the right the % of
usage is displayed, showing how much impact have the
numbers related to the system.

Figure 9 . Disk bytes transferred and number of operations.

As one can see the IO is very sparse and doesn’t really
take an impact on the system if one takes a look at the %.
Some of these IO accesses may reach 80% bandwidth
utilization but it’s not enough to affect the system in any
way.
Having low amount of IO also tells us that all the data
we’re accessing is located into memory since we don’t
have to load it from disk during the execution.

6 PROCESS DISTRIBUTION EXPERIMENT
To test if the number of memory accesses affect the
program, we made a test executing more than one process
instead of using the maximum number of threads with
one process. This has been done with the docker version
of this program, which is not different from the normal
version on a single process execution.

Figure 10 . Main memory bytes transferred and type of memory
access percentage.

Running 32 sequential processes instead of 1 process of 32
threads, means that we do 32 times the initialization part,
so we are loading 32 SQL files into the current memory,
these files will be accessed by 32 different processes
which means the memory bus will have to access even
more sparse data on the memory and the amount of data
to be accessed will be bigger.

ALEJANDRO ALONSO: CMS-SIM PROFILING 5

Looking at Figure 10 we see that this results only make
the execution increase from 1500 seconds to 1650 seconds
which is a 10% more time spend on execution, this is the
worst case scenario for rising the number of processes. 4
processes or 8 processes give almost the same
performance as 1 process.
This doesn’t affect enough the performance to worry
about it. Just be careful with the number of process used.

At last we will take a look at the IO of the program using
Trident [4] again, but the program behavior so far shows
that there won’t be a IO problem due to the number of
access.

7 FINAL ANALYSIS
We have seen that the program scales properly with the
number of threads on a high number of events, and that
the only problem that we have is some inefficient memory
accesses. To confirm that the application behaviour scales
properly we will use perf to see how IPC behaves on
each thread since we can’t use Trident [4] or PrMon [3] for
this:

Figure 11 . Core IPC for CMSSW_10_2_9 with different number of
threads and 1024 events.

As you can see on Figure 11, threading the program has
almost no performance loss on each thread, compared to
sequential execution. Note that 32 threads have double
than 16 threads but more than half the IPC so it means
that the thread performance is worst but the core
performance is better.

8 DIFFERENT CMS VERSIONS ANALYSIS
After doing a review of one of the newest versions of
CMS (CMSSW_10_2_9), we have decided to compare it to
other versions, not all are available since they were
compiled in a different environment.

Figure 12 . Execution of several instances of each version under the
same conditions to check deviation.

To ensure that all data collected from the versions is not
arbitrary data, we have made several executions and
checked if one executions can give different performance
from other just by odds.
As you can see on Figure 12, the boxplots are pretty small,
which means executions results are pretty close to each
other. Executions can only give a number of
events/second within the range of that box.

Figure 13 . Execution of several instances of each version with low
amount of events to check initialization deviation.

Figure 13 is the same as Figure 12 but a low amount of
events is used. This shows how the initialization part
behaves, and as you can see the boxes are pretty big. This
means that the duration of the initialization part is very
arbitrary. So comparisons of the versions on low amount
of events can give erroneous information.

Figure 14 . Comparison of the amount of events per second that
every version can do with a different number of events.

As we can see in Figure 14, we can group the versions
analysed in 3 groups:

Group one are the versions of the 10th family that reach
almost a 0.8 events/second on a high enough amount of
events. These are the versions used on the main analysis
of this project. Note that this versions use the gcc730

6 JULY 2019

compiler.

Group 2 are the versions of the 9th family, that reach 0.6
events/second on the correct amount of events, all the
versions follow almost the same pattern. Note that this
versions use the gcc630 compiler, but versions 9_1_1 and
9_0_1 can be configured to use gcc530.

Group 3 is only version 10_0_1 which shows an extrange
behaviour opposite to all versions and a really low
events/second, this version should be reviewed to look
for code problems. Note that this versions use the gcc630
compiler.

These 3 groups might be a hint to the compiler being a
very important factor on the application performance,
since the better versions use newer compilers and give a
25% more performance, which correlates with another
investigation by Caterina Marcon [6], which explains that
we can vary performance on a 25% more or less using
different compilers on a different application used at
CERN.

9 CONCLUSIONS

The scalability increasing the number of threads is
pretty good, only if the number of events is big enough
to make the initialization and termination part of the
execution negligible. The proper number of events is
about 100 events per thread.

CPU resources, E/S or memory bandwidth aren’t a
problem. Neither is memory capacity, since only 4% of
the memory is used for storage of the sql file, that we
need to compute the events, and also the generated
event information, which is periodically written to
disk.

We have seen that memory accesses can become a
problem if the number of accesses increases. The
number of accesses can increase if we increase the
number of threads, so it should be taken in
consideration if the application runs on a CPU with
higher number of threads. Also we know that one way
to solve this issue is run hyperthreads, so using a CPU
with more number of threads per core would help
with this problem.

At the end, we're achieving a 1,6 IPC per core which is
40% of the total execution capacity. The other 60% of
the execution capacity is not used probably due to the
slow memory accesses or slow instructions on the
code.

To achieve higher performance with this application
we could spend money on CPUs with more threads
and higher number of hyperthreads. Also optimizing

the code to achieve a performance higher than 40% IPC
is a good solution, or as the version analysis and other
compiler studies about CERN applications [6] have
shown, recompiling the code with newer compilers
might help with the IPC.

In case of trying to optimize the code, take in
consideration the idea of making a SIMD version of the
application. If SIMD is possible on the code, this means
it has a good parallelism on a instruction level, which
opens an option to a GPU version of cms-sim, since
GPUs need this instruction level parallelism to be
possible. Also, the memory usage is very low, which is
good for GPUs, because we need to copy the memory
data into GPU’s data structures.

REFERENCES
[1] Ttbar simulation

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideS
imulation

[2] Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz:
https://ark.intel.com/content/www/es/es/ark/products/833
59/intel-xeon-processor-e5-2640-v3-20m-cache-2-60-ghz.html

[3] PrMon: https://github.com/HSF/prmon
[4] Trident: https://gitlab.cern.ch/UP/Trident
[5] Linux Perf: https://perf.wiki.kernel.org/index.php/Tutorial
[6] Caterina Marcon: https://indico.cern.ch/event/772021/

