TFG EN ENGINYERIA INFORMATICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

MASKDADQOS.com, la web de ayuda a los
juegos de rol desarrollada en Google Cloud

Platform usando CICD con Jenkins y
aplicando la escalabilidad de Kubernetes.

Ronny Romero Navarrete

Resumen- En este articulo queda reflejado todo el proceso de desarrollo de una aplicacién web
utilizando las tecnologias actuales de Cloud Computing. El proyecto construye las bases de una
plataforma online que ayuda a los jugadores a disponer de una herramienta extra para sus partidas.
Esta herramienta consiste en una pagina web de ayuda a los juegos de rol de mesa, incorporando
un sistema de login y gestion personal de fichas de personaje. Con esa finalidad, el proyecto se ha
desarrollado aplicando la metodologia CICD a lo largo de todo el proceso. A través de la plataforma
de Google Cloud Platform se ha creado toda la infraestructura y los servicios necesarios para operar
en la nube, terminando con un despliegue mediante el uso de Kubernetes y el beneficio de su
escalabilidad.

Palabras clave—- Google Cloud Platform, Cloud Computing, GCP, Jenkins, CICD, Kubernetes,
Google Kubernetes Engine, Docker, Spring Boot, Angular, JWT, rol, web, juego.

Abstract— This article reflects the entire process of developing a web application using current
Cloud Computing technologies. The project builds the foundations of an online platform that helps
players to have an extra tool for their games. The application consists of a web page to help tabletop
role-playing games, incorporating a personal login system and management of character sheets. To
that end, the project has been developed by applying the CICD methodology throughout the entire
process. Through the Google Cloud Platform, all the necessary infrastructure and services have
been created to operate in the cloud, ending with a deployment through the use of Kubernetes and
the benefits of its scalability.

Keywords— Google Cloud Platform, Cloud Computing, GCP, Jenkins, CICD, Kubernetes, Google
Kubernetes Engine, Docker, Spring Boot, Angular, JWT, role, web, game.

<+

1 INTRODUCCION

cacion web de gestion de ayuda a los juegos de rol
en mesa, utilizando las ventajas de la computacién
en la nube, aplicando la metodologia CICD en todo el pro-
ceso de desarrollo y aprovechando la escalabilidad que ofre-
ce Kubernetes para el despliegue.
La eleccion del tema de proyecto ha surgido de la idea de

ESTE proyecto tratard sobre el desarrollo de una apli-

e E-mail de contacte: ronnyrom3 @ gmail.com
e Mencio realitzada: Enginyeria del Software
o Treball tutoritzat per: Fernando Vilarifio

o Curs 2019/20

crear una aplicacién real utilizando tecnologias actuales,
inspirado por las udltimas tendencias en el desarrollo. Por
ello, el trabajo realizado en este informe se divide en cua-
tro partes: Computacion en la nube, CICD, Kubernetes y
el desarrollo de una aplicaciéon web utilizando Angular y
Spring Boot.

2 OBJETIVOS

Como se ha comentado en la introduccién, este proyecto
consiste en crear una aplicaciéon web de ayuda a los juegos
de rol de mesa, utilizando la infraestructura y servicios de
Google Cloud aplicando la metodologia CICD para desple-
gar la aplicacion utilizando Kubernetes. Para conseguirlo se
han establecido 4 objetivos:

Septembre de 2020, Escola d’Enginyeria (UAB)

= Montar la arquitectura en Google Cloud Platform uti-
lizando las diferentes herramientas que ofrece su nube
para crear la infraestructura y servicios que necesitara
el proyecto.

= Aplicar la metodologia CICD (Continous Integration
+ Continuous Delivery + Continuos Deployment) uti-
lizando Jenkins para poder automatizar todo el proceso
que va desde la entrega de software hasta el despliegue
en Kubernetes de Google Cloud con todas sus fases.

= Utilizar la herramienta de Google Kubernetes Engi-
ne para desplegar toda la aplicacion en ella pudiendo
aprovechar las escalabilidad que ofrece Kubernetes.

= Desarrollar una aplicaciéon web de ayuda para los jue-
gos de rol utilizando una arquitectura de micro servi-
cios API REST separando claramente la parte del front
end y la parte del back end.

3 ESTADO DEL ARTE

En la actualidad las tecnologias con las que se trabajard
en este proyecto son cada vez mds usadas.

3.1.

Cada vez mas, las empresas comienzan a dejar de usar
su propia infraestructura para el despliegue o desarrollo
de aplicaciones con la intencién de externalizarlo hacia el
“Cloud computing”. Delegan toda esta parte a terceras em-
presas que operan en la nube que se encargardn de gestio-
narlo todo. Actualmente, junto con Google Cloud Platform
hay muchas empresas que que se dedican a ofrecer servicios
en la nube, entre ellas las que mas destacan a nivel mundial
son [1]:

Cloud computing

= AWS: Amazon Web Services [2] ofrece un gran con-
tenido de servicios en la nube, tiene muchas similitu-
des a Google Cloud Platform ofreciendo herramien-
tas muy parecidas a las usadas en este proyecto como
EKS(Elastic Kubernetes Service), inicialmente se es-
tudié la opcién de desarrollar el proyecto en esta pla-
taforma pero finalmente se opt6 por la nube de Google
por las facilidades que da a nuevos usuarios.

= Azure: La nube de Microsoft es la mas utilizada ac-
tualmente a nivel mundial ya que provee un uso muy
profundo de las tres capas de la nube (laaS,SaaS y
PaaS).

3.2. CICD

Actualmente la herramienta mds utilizada para aplicar la
metodologia CICD es Jenkins pero también se usan otras
como Gitlab CI [3] la cual contiene un Registry para
imagenes incorporado.

3.3. Google Kubernetes Engine

GKE es la plataforma de Kubernetes que nos ofrece Goo-
gle en su nube, pero Amazon tiene Elastic Kubernetes Ser-
vice la cual es muy parecida en funcionalidad pero sin una
gestién automatica de la herramienta tan alta.

EE/UAB TFG INFORMATICA: MASKDADOS.COM

3.4. Web de rol

En la actualidad hay paginas como www.rol120.net
que ofrecen servicios parecidos a la aplicacién que se va a
desarrollar, esta web puede ayudar mucho a obtener ideas
y contemplar situaciones que no se habian pensado. A dife-
rencia de maskdados.com esta web estd pensada como una
plataforma para jugar online y no como una web de ayuda
a las partidas de rol en mesa.

4 METODOLOGIA

Este proyecto ha sido creado haciendo uso de Ia

metodologia Feature Driven Development [4]. FDD es
una metodologia 4gil que se basa en el desarrollo por
caracteristicas, la cual consiste en ir haciendo pequeiias
iteraciones definidas en cinco procesos: desarrollar un mo-
delo global, hacer un listado de caracteristicas, planificar
para cada funcion, disefiar y construir.
Estas iteraciones se centran en entregar una funcionalidad
tangible del proyecto, ayudando a monitorearlo constante-
mente y comprobando que cada una de las funcionalidades
haya sido creada correctamente.

Dentro de las fases de FDD, las tres primeras (Desarro-
Ilar un modelo global, hacer un listado de caracteristicas y
planificar cada funcién) son lineales y se hacen al principio
del proyecto. Las tdltimas dos (Disefiar y construir) se hacen
en cada iteracion.

5 REQUERIMIENTOS DEL SISTEMA

Una vez se han tenido claros los objetivos del proyecto,
se ha creado una tabla con los requerimientos que debe tener
junto con su prioridad. [Tabla 1]

6 PLANIFICACION DEL TRABAJO

La planificacién del trabajo cambié completamente cuan-

do, a causa del COVID-19, se tuvo que hacer un reinicio del
mismo proyecto. Inicialmente iba a ser un proyecto que se
realizaria en la empresa MANGO vy trataria sobre la im-
plantacion de un sistema de radiofrecuencia en el sistema
de etiquetado dentro de las diferentes tiendas de la marca.
A causa de la pandemia y de la finalizacién de mi estancia
en la empresa, el proyecto estuvo un tiempo sin un rum-
bo claro mientras se estudiaban diferentes maneras de rees-
tructurarlo. Inicialmente se planteé como un estudio de la
metodologia CICD aplicado en un pequefo caso y se dedi-
caron los meses de marzo y mayo a hacer una investigacién
de todo ello, centrandose en las diferentes fases de la inte-
gracién/entrega/despliegue continuo.
En junio, cuando se decidi6 que el proyecto se entregaria en
septiembre, se volvié a hacer otra reestructuracion del pro-
yecto hasta decidir el objetivo actual. Tras este proceso, y
después de dividir el proyecto en sus cuatro pilares (GCP,
CICD, GKE, API REST) se dedicaron los siguientes Sprints
o iteraciones de una o dos semanas cada uno:

= Sprint 0: Configuracién de la nube de Google Cloud
Platform (GCP).

www.roll20.net

Ronny Romero Navarrete: MASKDADOS.COM

TABLA 1: REQUERIMIENTOS DEL SISTEMA

’ Requerimientos del sistema

El sistema debe desarrollarse haciendo un uso
completo de la nube de Google Cloud Plat-
form (GCP).

alta

El sistema debe hacer uso de la metodologia

CICD utilizando Jenkins. alta

La aplicacion web del sistema debe desplegar-
se usando la herramienta de Google Kuberne-
tes Engine (GKE).

alta

La aplicaciéon web del sistema debe ser una
API REST teniendo la parte del back end y
front end completamente separadas.

alta

La parte front end de la web del sistema sera

desarrollada usando Angular. alta

La parte back end de la web del sistema serd
desarrollada utilizando el framework de Sprint
enJava 11.

alta

La aplicacién web permitird a los usuarios re-

gistrarse y hacer login en ella. alta

La aplicacién web permitird a los usuarios
crear fichas de personaje de juegos de rol a
través de plantillas.

alta

La aplicaciéon web permitird a los usuarios
consultar y editar sus fichas de personaje crea-
das.

alta

La comunicacién entre el back end y el front
end de la web del sistema se hard utilizando
la seguridad del estindar JSON Web Token
JWT).

media

La aplicacién web tendra un dominio puiblico

y utilizard un certificado SSL. media

La aplicacién web ofrecera a los usuarios la

opcién de crear plantillas personalizadas. baja

La aplicacién web debe ser responsive para to-

do tipo de tamafio de pantallas. baja

La aplicacién web debe ofrecer una experien-

. e .. baja
cia de usuario facil de utilizar. J

= Sprint 1: Instalacién de Jenkins en GCP y su configu-
racion inicial.

= Sprint 2: Implantacién de la herramienta de Google
Kubernetes Engine y creacidn del clister donde se des-
plegara el back end y el front end.

= Sprint 3: Implementacién de la conexién de Jenkins
con el clister de GKE usando Services Acounts de
GCP.

= Sprint 4: Definicién de la estructura de la aplicacién
web.

= Sprint 5: Disefio de los contenedores Docker de des-
pliegue para el front end y el back end.

= Sprint 6: Disefo de la estructura de Kubernetes y co-
dificacidn de sus manifiestos necesarios.

= Sprint 7: Disefio de la base de datos no relacional uti-
lizando MongoDB Atlas.

= Sprint 8: Disefio de la fases de la metodologia CICD
y su implantacién para el desarrollo de la aplicacion
web.

= Sprint 9: Implementacién del back end de la aplica-
cién web.

= Sprint 10: Implementacién del front end de la aplica-
cién web.

= Sprint 11: Implementacion de la seguridad con JSON
Web Token.

= Sprint 12: Implementacion del dominio publico
www.maskdados.com.

= Sprint 13: Implementacion del certificado SSL usando
las herramientas que ofrece GKE.

En el Apéndice [A.1] se puede ver el diagrama de Gantt del
proyecto.

7 ARQUITECTURA CLOUD

7.1.

La base del proyecto consiste en realizar el sistema utili-
zando todas las herramientas posibles que ofrece la nube de
Google Cloud.

Google Cloud Platform es la externalizacion de los servi-
cios de computacién que siempre ha ofrecido Google pe-
ro ahora ahora unificadas en una misma plataforma. Estos
servicios incluyen aspectos como maquinas virtuales perso-
nalizables que son facturadas por uso, herramientas de ges-
tién de contenedores, servicios de Big Data y plataformas
de Machine Learning entre otros. Gracias a Google Cloud
se podra externalizar toda la infraestructura necesaria para
el desarrollo de este proyecto, pudiendo asi delegar a la nu-
be todo lo referente al despliegue de la aplicacion.

Google Cloud Platform(GCP) nos ofrece sus productos
agrupados en diferentes partes segtin su funcién, algunos
de esos grupos mas importantes son:

Google Cloud Platform

= Computacion: Aqui estdn las diferentes herramientas
que ofrece Google para la computacién en la nube,
desde la creaciéon de maquinas virtuales con las ca-
racteristicas deseadas con Compute Engine, App En-
gine para crear aplicaciones escalables en diferentes
lenguajes de programacién o Google Kubernetes En-
gine la cual se utilizara en este proyecto.

= Almacenamiento: En este area estan las diferentes he-
rramientas de almacenamiento, tanto para tener discos
duros en la nube como para la gestion de bases de da-
tos.

= Big Data: En esta agrupacién se encuentran diferentes
aplicaciones que son utilizadas para trabajar con el Big
Data, nos permiten analizar, procesar y visualizar datos
de manera ripida.

= Inteligencia Artificial: En esta parte estdn todos los
productos para trabajar con inteligencia artificial y ha-
cer uso del Machine Learning.

= Redes: Los productos aqui presentes permiten contro-
lar todo lo relacionado con la red: gestion de dominios,
VPN, cortafuegos...

7.2. Componentes utilizados

Una vez estudiada y planteada la estructura que deberia
tener el proyecto, se decidi6 usar los siguientes componen-
tes o servicios:

= Maquinas virtuales: En total se han creado un nime-

EE/UAB TFG INFORMATICA: MASKDADOS.COM

que seran usados para el front end y back end respecti-
vamente. Una vez conseguidos, se utiliz6 la herramien-
ta de Cloud DNS para crear una zona por cada domi-
nio; configurdndolas se asociard el nombre adquirido
con la IP externa creada previamente.

ro de cuatro mdquinas virtuales en Google Cloud en
la regién europe-west: tres de ellas son administra-
das completamente por Google Kubernetes Engine y
la otra se ha creado usando la herramienta de Compute
Engine donde se instalard Jenkins y se gestionara todo
el CICD. Esta tltima ha sido nombrada Jenkins y es-
tablecida con unas caracteristicas sencillas para correr
el software de Jenkins: es una mdquina del tipo e2-
medium con 2 vCPU, 4GB de memoria RAM y con el
sistema operativo Ubuntu 20.04.

Almacenamiento: Se ha creado una unidad de alma-
cenamiento de 200GB con la herramienta de Storage
que es asignada a la VM de Jenkins.

Google Kubernetes Engine (GKE): Utilizando esta
herramienta se han creado tres maquinas virtuales que
seran los nodos de nuestro clister de Kubernetes. En
estos nodos serd donde se desplegaran los pods de la
aplicacién web. Estas mdquinas han sido construidas
con 2 vCPU y 4GB de RAM, ademas tienen un disco
duro persistente de 100GB cada una.

Container Registry: Esta herramienta proporciona un
almacenamiento privado y seguro de imdgenes Docker
dentro de Google Cloud Platform. En el proyecto se
usa para la fase de entrega continua dentro del CICD
ya que las imdgenes Docker generadas se almacenaran
alli.

Administracion de Identidades y Accesos (IAM):
IAM define quién tiene acceso a qué funcién de Goo-
gle Cloud. Para ello, dentro de las diferentes opciones
que ofrece este recurso, se hard uso de las cuentas de
servicio: estas son cuentas con permisos definidos ma-
nualmente para una aplicaciéon y no para un usuario, lo
cual permitird que los diferentes elementos de nuestra
nube se puedan autenticar y comunicarse entre ellos de
manera auténoma. En este proyecto se ha creado una
cuenta de servicio con los permisos necesarios para ac-
ceder al clister de Kubernetes, y ha sido asignada a la
maquina virtual Jenkins.

Direcciones IP externas: Para poder desplegar la apli-
cacion publicamente se han requerido dos IP externas
fijas globales que nunca cambien, ya que seran las di-
recciones que usard la aplicaciéon web en el back end
y el front end. Se han generado con esta herramienta
dentro de la agrupacién Redes, después seran asigna-
das a cada parte de la aplicacion.

Cloud DNS: Para poder hacer que la aplicacién sea
accesible al usuario se tenfa que afadir un dominio
para cada direccién IP externa. Este fue adquirido en
los proveedores de dominio hostalia.com e ionos.es.
Se adquirié maskdados.com 'y maskdados.es, dominios

£ Google Cloud Platform

Regidn: europe-westl

Zona: europe-westl-b

Cluster de Kubernetes

o6 g{n}
node node node

Nodo 1 Nodo 2 Nodo 3

N

N g

-.-,- -\-.-

usuarios

Cloud DNS Cloud
External
IP
Addresses
) Container
GitHub Registry
Region: europe-west2
Zona: europe-west2-
_—
Cloud W<’ Cloud IAM
Storage Jenkins VM

Fig. 1: Arquitectura en Google Cloud Platform

7.3. Costes asociados

Una de las ventajas que tiene Google Cloud Platform pa-
ra nuevos usuarios es que ofrece 300$ gratis como crédito
para usar sus servicios durante 90 dias, esto ha servido para
poder desarrollar el proyecto a un coste minimo. *Gastos

TABLA 2: COSTES ASOCIADOS POR MES

’ Costes asociados por mes

1x Jenkins e2-Medium 2GB RAM 26.68€/mes
3x Nodos e2-Medium 4GB RAM 68.33€/mes
2x Cloud DNS zones 0.34€/mes
Gastos variables™* 0,022€/mes x GB

variables: Movimiento de GBs en Cloud Registry.

8 KUBERNETES Y GKE

En esta seccidn se explicardn conceptos de contenedo-
res y como se ha desarrollado el despliegue en Kubernetes

Ronny Romero Navarrete: MASKDADOS.COM

usando la herramienta de Google Kubernetes Engine y su
estructura.

8.1.

Primero de todo se ha de comprender el concepto de la
containerizacion, la cual permite desplegar aplicaciones au-
to contenidas. Esto quiere decir que se permite aislar nues-
tro c6digo con tnicamente las herramientas necesarias para
ejecutarlo correctamente, lo cual hard que pueda usarse en
cualquier maquina sin importar qué otro software tenga ins-
talado; asi se eliminan problemas de incompatibilidades y
se asegura su ejecucion en todo tipo de maquinas.

Cuando se habla de containerizacion se tiene que hablar de
Docker [5], ya que es la tecnologia mas usada para la crea-
cion de contenedores. Con €1, podemos crear las imagenes
de contenedores personalizadas que deseemos, subirlas a
repositorios de imdgenes publicos o privados o descargar
imdgenes creadas por otras personas para utilizarlas.

Las imagenes Docker se crean a partir de Dockerfiles, que
son archivos de texto plano que contienen una serie de ins-
trucciones para construir una imagen. Estas imagenes se
construyen usando el comando de Docker “build” y lue-
go se ejecutaran usando “run”.

La tecnologia de Docker ha sido una de las bases para el
desarrollo de este proyecto. Se han creado principalmente
tres imdgenes de contenedores:

Containerizacion y Docker

= Jenkins: La primera imagen. Esta contiene todo lo ne-
cesario para poder configurar Jenkins y ejecutar cada
una de las fases del CICD. Por ello, nuestro Docker-
file contiene todas las instrucciones para descargarse
una imagen oficial de Jenkins que tenga preinstalado
Java 11 y una vez descargada instalar en ella diferen-
te software. Maven para trabajar con nuestro proyec-
to de Java; Docker ya que este contenedor necesitard
crear otros contenedores; Kubectl para poder hacer
uso de Kubernetes; gcloud para poder acceder a nues-
tro clister de GKE.

= Back end: Para desplegar la parte del back end de la
aplicacion web se cre6 una imagen a través de un Doc-
kerfile que crearia un contenedor a partir de una ima-
gen oficial de Java 11: expone el contenedor por el
puerto 8095 que es donde Spring Boot estd configu-
rado para oir, transfiere el ejecutable .jar compilado
previamente hacia nuestro contenedor y establece que
al arrancar el contenedor se lance el ejecutable de Java
para que inicie la aplicacién.

= Front end: La imagen creada para la parte del front
end ha sido construida con un Dockerfile multistage,
que no es mas que generar un archivo Dockerfile que
contiene mds de una etapa. En este caso, en la primera
etapa se crea una imagen a partir de una imagen ofi-
cial de Node que es necesaria para Angular, se hace
un “npm install” para instalar las dependencias nece-
sarias y se ejecuta un “npm run build” para construir la
aplicacién de Angular. En la segunda etapa se utiliza
una imagen “nginx:alpine”, la cual es un nginx muy
ligero, y se le afiade toda la aplicacién construida en
la anterior etapa en la carpeta html de nginx. Esto hard
que nuestra aplicacién web esté disponible cuando ac-
cedamos al contenedor por su puerto 80.

8.2. Kubernetes y Google Kubernetes Engine

Kubernetes [6] es una plataforma open source conside-

rada como un orquestador de contenedores, que automatiza
las operaciones con ellos y ayuda a solucionar los proble-
mas de los procesos manuales. Esta herramienta nos per-
mite administrar un gran nimero de contenedores de ma-
nera féacil, ayuda a vigilar, organizar y controlar los conte-
nedores. Como ejemplo, Kubernetes estard vigilando que el
ndmero de contenedores definidos estén activos; si uno de
ellos se cae, volvera a levantar otro mas hasta tener el nime-
ro establecido.
Como este proyecto se estd desarrollando en Google Cloud,
se trabajard con Google Kubernetes Engine, el servicio de
Kubernetes gestionado por Google que nos ofrece ventajas
como una facil creacion de clusters, auto-escalabilidad, ba-
lanceos de carga, actualizaciones, reparaciones automaticas
y un monitoreo de los logs. Un concepto importante que se
ha de conocer es el de los manifiestos de Kubernetes. Es-
tos son ficheros .yaml que contienen las instrucciones para
crear los componentes de Kubernetes. En el Apéndice [A.6]
se puede ver el manifiesto de una parte del back end.

8.3. Recursos en GKE

Para ello se usan diferentes recursos que ofrece Kuberne-
tes en GKE, los cuales se describen a continuacion:

» Clusters: Un cluster [7] es la base de Kubernetes, es
el set de “nodos” que ejecutan aplicaciones en conte-
nedores. Al ejecutar Kubernetes estds ejecutando un
claster.

= Nodos: Los nodos son cada mdaquina (ya sea fisica
o virtualizada) que compone un clister de Kuberne-
tes. Cada nodo estd gestionado por un componente
master y tiene los elementos necesarios para ejecutar
los “pods”.

= Pods: Es la unidad desplegable mas pequefia que se
puede crear y gestionar en Kubernetes. Es un conjunto
de uno o mds contenedores implantados en un tnico
nodo. En este proyecto los pods son los contenedo-
res Docker de nuestra aplicacion, habran pods del back
end y del front end.

= ReplicaSet: Un ReplicaSet es un recurso que asegu-
ra que siempre se ejecute un nimero de réplicas de
un pod determinado. Nos asegura que un conjunto de
pods siempre estd funcionando y disponible.

= Deployment: El Deployment es una unidad de alto
nivel de Kubernetes que nos permite tener un con-
trol de nuestros ReplicaSet, controlar la escalabilidad,
actualizar los pods, hacer despliegues automaticos y
hacer rollbacks a versiones anteriores. Un ReplicaSet
Unicamente se encarga de tener activos un nimero de
pods, pero solamente el Deployment puede actualizar
las imdgenes que usan esos pods. Cuando se crea un
Deployment automdticamente se crea un ReplicaSet
asociado.

= Service: Un Service es una abstracciéon que define un
conjunto de pods que implementan un tinico microser-
vicio. Por ejemplo, en este proyecto todos los pods del

back end tienen un servicio tnico. Hay varios tipos de
servicios. En este proyecto se han utilizado los de tipo
NodePort, el cual nos crea una IP interna dentro del
clister y nos expone un puerto entre el rango 30000-
40000 al exterior desde donde serd accesible.

= Ingress: GKE nos permite crear un objeto Ingress pa-
ra el balanceo de cargas de HTTP(S). Este proporciona
las reglas para enrutar el trafico externo HTTP(S) a las
aplicaciones que se ejecutan en el clister. El recurso
Ingress se asocia con uno o mds recursos Service y
también puede ser asociado a IPs estéticas proporcio-
nadas por Google y “ManagedCertificates”.

= ManagedCertificate: Google ofrece certificados SSL
administrados por €l, estos se aprovisionan, renuevan
y administran para los nombres de dominio.

8.4. Estructura utilizada en GKE

Al definir la estructura del proyecto se decidieron dos
partes claras que serian desplegadas en GKE, el back end
y el front end. Se decidié que ambos compartieran clister
con los mismos nodos, pero cada uno con su propia estruc-
tura de Kubernetes. A continuacién se mostrard una imagen
de la estructura del front end.

) Google Cloud Platform

e
S
Pl
us'lT’i'os
@ —
LW
Certificate Clnud
Manager Exlemal
Ingress
9 Addresses

=T 8
000

Fig. 2: Estructura Kubernetes front end.

Como se puede observar, la estructura ha sido disefiada
con tres Pods administrados que ejecutan la aplicacion web.
Estos son creados en los nodos que tiene nuestro cldster.
Tienen un NodePort que expone un puerto entre el 30000
y 40000 al exterior y un Ingress asociado que contiene un

EE/UAB TFG INFORMATICA: MASKDADOS.COM

ManagedCertificate para afiadir el certificado SSL y ser ac-
cesible via HTTPS. Se le establece al Ingress una IP exter-
na estdtica creada previamente en Google Cloud. Esta P
tiene asociada el nombre de domino maskdados.com. Por
dltimo, los usuarios accederdn a nuestra aplicacion a través
del Ingress, el cual hard de balanceador de carga entre los
diferentes pods y nodos.

8.5. Escalabilidad en GKE

Una de las grandes ventajas que tiene usar Google Ku-
bernetes Engine es la gran escalabilidad que ofrece. Sim-
plemente con un comando se puede modificar el nimero
de Nodos utilizados en el cldster para ajustar a la deman-
da necesaria, indicarle cudntos Pods se quiere tener activos,
cuanta RAM dedicarle a cada Pod y muchas mas opciones.
Por otro lado, GKE nos ofrece cuatro vias de autoescalado
gestionadas por la misma nube:

= Carga de trabajo- horizontal: Este autoescalado se
basa en afiadir o eliminar Pods segun la utilizacién del
CPU u otras métricas personalizadas.

= Carga de trabajo- vertical: El autoescalado de carga
de trabajo vertical analiza continuamente el uso de la
CPU y la memoria de los pods y modifica los pods para
encajar en ello.

= Infraestructura - horizontal: Este autoescalado se
basa en afiadir o eliminar nodos segun la utilizacién
de los mismos.

= Infraestructura - vertical: El autoescalado a nivel de
infraestructura vertical modifica los nodos para las ne-
cesidades de los pods utilizados.

9 CICD

CICD [8] es una metodologia para distribuir aplicaciones
con frecuencia, mediante el uso de la automatizacion en las
etapas del desarrollo de las aplicaciones. Encarna una cultu-
ra, principios y practicas que permiten a los desarrolladores
tramitar cambios de cédigo de manera mas frecuente y fia-
ble.

Las siglas CICD hacen referencia a los aspectos de “Inte-
gracién Continua (CI)”, “Entrega Continua (CD)” y “Des-
pliegue Continuo (CD)”, los cuales han sido integrados en
el proceso de desarrollo de la aplicacién web.

A continuacién se describird cada uno de ellos y su aplica-
cion en este proyecto.

9.1.

La Integracion Continua ayuda a implementar c6digo con
mayor frecuencia y afladir pequefios cambios y modifica-
ciones a la aplicacion, todo esto siguiendo un proceso auto-
matizado que implemente ese nuevo cédigo. De esta manera
se evita tener que hacer toda la fusién del trabajo de todos
los desarrolladores en un tnico dia y continuamente se va
integrando nuevo c6digo. Una vez se fusionan los cambios
se validan a través de una serie de pruebas automatizadas
definidas en esta fase de la Integraciéon Continua. Si no hay
ningun error el c6digo nuevo quedard integrado.

Integracion Continua

Ronny Romero Navarrete: MASKDADOS.COM

9.2. [Entrega continua

Una vez la nueva integracién de cdédigo ha sido imple-
mentada correctamente y se ha comprobado que no hay
ningin error se pasa a la fase de Entrega Continua, la cual
automatiza la distribucién del cédigo hacia un repositorio.
Esto nos permite tener un repositorio con nuestra ultima
version del cddigo lista para ser desplegada.

9.3. Despliegue continuo

Esta tdltima fase de CICD se encarga de automatizar el
despliegue de una aplicacién, que va desde la ultima ver-
sién valida del cédigo que estd en el repositorio donde se
ha entregado en la fase anterior, hasta la plataforma de des-
pliegue.

94. Jenkins

Una de las herramientas mas utilizadas cuando se imple-
menta CICD es Jenkins, el cual es un sistema desplegado
en un servidor que nos permite automatizar procesos. Esto
hace que sea una herramienta ideal para implantar las fases
de integracién, entrega y despliegue continuo.

Algunos de los conceptos importantes de Jenkins que se han
de tener claros en este proyecto son:

= Plugins: Los plugins ofrecen una gran cantidad de fun-
cionalidades extras que se pueden afiadir al servidor
de Jenkins. Estos han sido creados por diferentes desa-
rrolladores para solucionar algtin problema existente o
para integrar alguna tercera tecnologia al servidor.

= Jobs: Los Jobs son las tareas configuradas en Jenkins.
Contienen una serie de instrucciones a ejecutar.

= Pipelines: Uno de los conceptos mds importantes y
utilizados en este proyecto son las pipelines, estas de-
finen el flujo de trabajo por donde tiene que pasar el
codigo para llegar a produccién. Este flujo viene defi-
nido por los “Stage” que son las diferentes fases que
tiene el ciclo de vida de la Pipeline, y los “Steps”, que
son las tareas que tiene esa fase. En CICD, la Pipeline
tendra todas las fases necesarias que van desde que el
desarrollador afiade c6digo a un repositorio, hasta que
se despliega la nueva version de la aplicacion.

= Jenkinsfile: Jenkinsfile [9] es un fichero de texto el
cual contiene todas las instrucciones para crear la Pi-
peline con sus fases. Este fichero se almacena y se ver-
siona junto con el cédigo de la aplicacién en el repo-
sitorio, define cada “Stage” y cada “Step” de nuestra
Pipeline de CICD. Gracias a tenerlo en el repositorio
obtenemos todas las ventajas del control de versiones
y nuestras fases de integracidn, entrega y despliegue
continuo pueden variar segun las necesidades del pro-
yecto. En el Apéndice [A.5] se muestra el codigo del
archivo Jenkinsfile del back end.

9.5. Estructura CICD

Cuando se decidi6 la estructura que tendria el proyecto y
se cred la arquitectura de Google Kubernetes Engine nece-
saria, se comenz0 a trabajar con la creacion de dos Pipelines

que implementarian toda la metodologia CICD para el desa-
rrollo del back end y el front end de la aplicacién web.
Una vez instalada y configurada nuestra maquina virtual de
Jenkins en Google Cloud Platform se afiadi6 una cuenta de
servicio (IAM) de GCP para poder comunicar Jenkins con
el cluster de Kubernetes y el Registry de imdgenes en la nu-
be de Google.

Para implementar la automatizacién del CICD se configurd
el repositorio de cédigo de Github para que lanzara un
“Webhook” cada vez que se hiciese un commit a nuestro re-
positorio. Esto lanzaria un Trigger a la IP de nuestra maqui-
na Jenkins que arrancaria la Pipeline con el nuevo cédigo.
Esta Pipeline se definid con las siguientes fases:

Commit |” I

Trigger Developer

>

Build Push

L

o

Google
Kubernetes
Engine

Google
Container
Registry

Fig. 3: Pipeline CICD.

» Build: Este primer “Stage” se encarga de hacer un
build de nuestro cédigo, en Java se usard Maven pa-
ra ello y en Angular crearemos la imagen a través del
Dockerfile, ya que esta tiene el build incorporado.

= Test: Esta fase solo estd presente en el pipeline del
back end. Aqui se utiliza Maven para ejecutar los test
unitarios de nuestra aplicacién Spring Boot. Esto eje-
cuta los test nuevos y los test presentes previamente. Si
hay algtin fallo en ellos, el proceso de automatizacién
terminard y nos indicard donde estd el error. Hasta este
punto consiste la parte de la Integracion Continua.

= Push: La fase de Push implementa la parte de Entre-
ga Continua y crea la imagen a partir del Dockerfile
definido, a continuacidn esta se guarda en Google Con-
tainer Registry.

= Deploy: Deploy implementa la tltima parte del CICD,
el Despliegue Continuo. Aqui desplegamos la aplica-
cién en Google Kubernetes Engine haciendo uso de
los manifiestos de Kubernetes creados previamente y
el comando kubectl, que como se tienen las credencia-
les de el clister gracias a la cuenta de servicio IAM, se
podra desplegar desde la médquina virtual de Jenkins.

= Clean: Esta tltima fase se ha creado por la necesi-
dad surgida de limpiar Google Container Registry de
imagenes previas guardadas. Esto se ha decidido para
minimizar los costes que GCP tiene por almacenar da-
tos en su Registry. Borramos todas las imdgenes guar-
dadas en el registro que no tengan el fag:latest, y eli-
minamos las imagenes generadas en la maquina virtual

de Jenkins, dejando tnicamente la dltima versién co-
rrecta guardada.

10 MASKDADOS.com

MASKDADOS es una aplicaciéon web de ayuda a los jue-
gos de rol que estd pensada como herramienta para la ges-
tién de partidas en mesa.

Para entender la utilidad de esta aplicacion se hard una bre-
ve explicacion de los siguientes conceptos:

= Juego de Rol: Es un juego interpretativo en el que uno
0 mds jugadores desempefian un papel o rol a lo largo
de una historia o trama. Hay dos tipos de jugadores, el
director de juego y los personajes.

= Director de juego: El curso de las partidas estd super-
visado por el director de juego, que es quien cumple
las funciones de narrador de la historia y de mediador
entre jugadores.

= Personaje: Los jugadores no narradores interpretaran
a diferentes personajes. Estos suelen ser personajes
imaginarios que siguen unas pautas de juego preesta-
blecidas conocidas como sistema de juego, los datos
de esos personajes estaran escritos en fichas.

= Fichas: Las fichas contienen todos los datos de los per-
sonajes que juegan en la historia. Segtn el sistema de
juego pueden tener datos como caracteristicas fisicas o
habilidades. Cuando se juega, la ficha es necesaria pa-
ra poder desempeifiar los papeles y acciones que hacen
los personajes.

Teniendo estos conceptos claros, se ha creado la aplicacion
web para ofrecer ayudas a la partida como un lugar online
donde gestionar todos los datos de las fichas de los perso-
najes y tener todo lo necesario para poder jugar a los juegos
rol. De esta manera se soluciona uno de los problemas que
mads suele ocurrir, el no tener las fichas de los personajes
cuando se va a jugar, ya que ahora siempre tendremos un
Iugar online y no se necesitara el papel fisico.

10.1.

Uno de los primeros objetivos fue crear la web separando

claramente la parte 16gica y de gestién de la base de datos
en el back end y la parte visual con la que interactda el
usuario como el front end.
Para ello se han usado dos tecnologias muy diferentes que
interactdan entre ellas a partir de peticiones web, la parte
front hard peticiones HTTP al back end, el cual le devolvera
los datos que requiere.

Aplicacion web

10.1.1. Spring Boot

Spring [10] es un framework de cédigo abierto que fa-
cilita el desarrollo de aplicaciones web en Java. Tiene una
estructura modular y una gran flexibilidad para implemen-
tar diferentes tipos de arquitecturas.

En este proyecto se ha usado Spring Boot, la cual es una he-
rramienta que simplifica ain més el desarrollo de las aplica-
ciones web creadas con el framework de Spring y contiene

EE/UAB TFG INFORMATICA: MASKDADOS.COM

un Tomcat embebido que se lanza al ejecutar nuestra apli-
cacidn, el cual nos servird como servidor para escuchar las
peticiones HTTP.

Para la construccién de la parte back end se ha decidido usar
el IDE Eclipse, el cual tiene un plugin para Spring que faci-
lita su programacioén. En cuanto a la estructura del codigo,
se ha trabajado en un proyecto Maven de Java, que ofrece
un archivo de configuracién POM que contiene todas las
dependencias necesarias.

Se ha decidido hacer una aplicacién basada en micro servi-
cios multi modular dentro del mismo proyecto Java. En la
aplicacién se han generado diferentes Endpoints, los cua-
les reciben peticiones HTTP, y si estas estdn autenticadas
correctamente devuelve el valor solicitado. La aplicacién
contiene los siguientes micro servicios:

= AuthController: Este micro servicio es muy impor-
tante ya que trata con todo lo referente a la seguirdad
de la web, tramita los registros de usuarios y se encar-
ga de generar los tokens de autenticacién a los que han
hecho login correctamente.

= FichaController: FichaController contiene los End-
points que tratan con las fichas de personajes que con-
tiene la base de datos, como por ejemplo obtener el
listado de personajes de un usuario, editar la ficha de
un personaje y obtener sus datos. Para poder acceder a
este servicio se ha de estar autenticado con un Token
vélido.

= PlantillaController: Cuando un usuario decide crear
una ficha lo hace través de una plantilla, la cual con-
tiene la informacién para que el front end sepa como
mostrarla. En este servicio estdn los “Endpoints” para
obtener las plantillas de la base de datos. Se ha de estar
autenticado con un Token vélido.

Para probar el c6digo se han hecho pruebas unitarias a los
servicios de Spring con Junit 5 y se ha utilizado la herra-
mienta PostMan [11] para probar que los Endpoints funcio-
nen correctamente.En el Apéndice [A.8] se puede ver una
prueba con Postman al endpoint de login en AuthController.

10.1.2. Angular

Para crear la parte front end se ha decidido utilizar el fra-
mework de Angular [12], el cual es un framework opensour-
ce desarrollado por Google que facilita la programacién de
aplicaciones web de una sola pagina (Single Page Applica-
tion). Gracias a ello la pagina no tiene que recargar cuando
se navegue por ella ya que todo estara previamente cargado.
La estructura de Angular esta definida por componentes los
cuales cada uno contiene tres partes, los estilos CSS, la es-
tructura de la vista HTML y un archivo .zs escrito en types-
cript que contiene toda la 16gica del componente. Ademads
una de las ventajas de Angular es que disponemos de servi-
cios que son utilizados para tramitar datos entre componen-
tes o para hacer peticiones a Endpoints como nuestro back
end en Spring Boot.

Dentro de la aplicacion se han creado componentes para ca-
da elemento de la web. Los mas importantes son:

= LoginComponent: Este componente contiene todo lo
necesario para mostrar la pantalla de login y poder va-
lidar los campos escritos. Cuando el usuario hace clic

Ronny Romero Navarrete: MASKDADOS.COM

a login este elemento usara un servicio que hace una
peticiéon POST a la API REST de Login del micro ser-
vicio AuthController. Apéndice [A.4.3]

= RegisterComponent: RegisterComponent contiene el
formulario de registro donde los campos son valida-
dos antes de enviar al micro servicio de registro, el
cual guardar el usuario en la base de datos. Apéndice
[A4.2]

= Plantilla-dungeon-hack-Component: Una de las
plantillas creadas ha sido la de el juego de rol Dun-
geon Hack, cuando el usuario quiere crear una ficha
de este juego, el componente lee el archivo JSON de
la plantilla obtenido de la BD y muestra una ficha de
ese juego para rellenar, validando cada campo escrito.
Apéndice [A.4.4]

= Ficha-dungeon-Component: Este component es muy
similar al de Plantilla-dungeon-hack-Component con
la diferencia que recibira de la base de datos todos los
datos de la ficha, los cuales mostrara de manera similar
a la ficha real del juego. El usuario podra editar los
campos de la ficha que quiera y guardar esos cambios
en la base de datos. Apéndice [A.4.5].

= Card-ficha-component: Cuando un usuario seleccio-
na “Mis fichas” la aplicacién Angular hard una con-
sulta al back end y cargard en pantalla unas tarjetas
con informacién minima de las fichas de los diferen-
tes personajes del usuario. Si el usuario selecciona una
de ellas, se hard otra llamada al back end para obtener
la informacioén restante y llamard al componente de la
ficha respectiva. Apéndice [A.4.1].

En el Apéndice [A.2] se dispone de un diagrama de secuen-
cia para la creacién de una ficha.

10.1.3. Seguridad

La aplicacién web tiene dos puntos importantes en cuanto
a la seguridad, uno de ellos es la implantacién de certifica-
dos SSL para poder acceder via HTTPS y que la conexién
sea segura. La otra parte es la referente a la comunicacién
entre Spring Boot y Angular, ya que como el back end tiene
una serie de “Endpoints” ptiblicos cualquiera podria acce-
der y obtener informacién de la base de datos o del sistema.
Para evitarlo se ha implantado la seguridad con JSON Web
Token (JWT), el cual es un estandar de codigo abierto basa-
do en JSON para crear tokens de acceso que nos permiten
segurizar las comunicaciones entre un cliente y un servi-
dor. Este token se genera a partir de un secreto. Cuando el
usuario hace un login correctamente, el back end devuelve
a la peticién de login un token que el navegador del cliente
guarda en su ordenador. Este token tiene una fecha de cadu-
cidad y hasta entonces las futuras peticiones HTTP que se
hagan desde Angular tienen incorporado en el header el to-
ken generado. Spring Security es un plugin de Spring boot
el cual esta afiadido al POM del proyecto, gracias a él pode-
mos configurar los recursos CORS para definir quién acce-
de a que servicio REST, ya sea requiriendo un rol especial
o simplemente comprobando si tiene un token valido. En la
aplicacién web maskdados.com, todos los servicios REST
estdn configurados para requerir un token vélido excepto
los de iniciar sesion y registrarse. Apéndice [A.7]

10.1.4. MongoDB

Después de definir la estructura de la aplicaciéon web se
hizo un estudio para decidir qué tipo de base de datos se
implementarfa, y al final se opté porque seria una base de
datos no relacional. Esto fue asi por el tipo de estructura que
se trabajaria en la web ya que se guardarian muchos tipos
de fichas de personaje con campos y tamafios muy diferen-
tes los cuales requeririan un trabajo mucho mayor en tablas
relacionales, por eso se decidid, por la libertad que ofrece
en este aspecto MongoDB. En cuanto al lugar de desplie-
gue de la base de datos se optd por varias opciones. Una
de ellas era desplegar un Docker en una maquina virtual
de GCP con MongoDB en ella, pero se descartd por el alto
coste econdmico que tendria aiadir otra maquina. Por eso
al final se decidi6 usar la plataforma de MongoDB Atlas, ya
que ofrece de manera gratuita hasta 512MB de almacena-
miento usando un vCPU compartido, lo cual era mas que
suficiente para los requerimientos actuales.

11 RESULTADOS

En este punto se expondran los resultados obtenidos te-
niendo en cuenta los objetivos establecidos en el segundo
punto de este informe y los requerimientos del sistema.

11.1.

El objetivo era montar la arquitectura en GCP y se ha
cumplido de manera correcta, todo el despliegue de la apli-
cacion y el servidor de Jenkins estd montado en la nube de
Google. Se hacen uso de muchos elementos de ella excepto
para la base de datos por los motivos explicados en el punto
anterior.

Google Cloud Platform

11.2. CICD

El segundo objetivo era desarrollar la aplicacion hacien-
do uso de la metodologia CICD, y ha sido otro objetivo
cumplido; toda la aplicacién ha sido desarrollada teniendo
la Pipeline de CICD funcionando. Cuando esta fue confi-
gurada correctamente, cada vez que se hacia un commit del
codigo al repositorio de Github, todos esos cambios se in-
troducian en el flujo CICD hasta llegar al despliegue final,
automatizando asi todo el despliegue final de la aplicacién
y con ello poder centrarse inicamente en el desarrollo de la
aplicacion web.

11.3. Google Kubernetes Engine

Este objetivo requeria desplegar toda la aplicacién ha-
ciendo uso de la ha herramienta de Kubernetes Engine que
ofrece Google y ha sido cumplido en su totalidad. Las dos
partes de la aplicacién web (Spring Boot y Angular) estan
corriendo en el clister de GKE dénde estan replicadas tres
veces, y el cual contiene tres nodos donde desplegar la apli-
cacion. Ademads se puede escalar la aplicacién vertical u ho-
rizontalmente con un simple comando segtin la necesidad.

11.4. MASKDADOS.COM

La aplicaciéon web maskdados.com ha sido desarrollada
aunque no se han podido cumplir todos los requerimientos

10

establecidos por falta de tiempo. Aun asi se ha conseguido
un muy buen progreso y una muy buena base donde, con
toda la estructura del proyecto montada, solo hace falta de-
dicarle horas en programacién web para afiadir mas funcio-
nalidades.

11.4.1. Requerimientos cumplidos

La web es funcional y es accesible via HTTPS. Los datos
son seguros y el usuario se conecta directamente a la web en
Angular, la cual hace peticiones a la API REST de Spring
Boot. Los usuarios pueden registrarse en la web y sus datos
quedan guardados en la Base de datos. Las contrasefias son
cifradas en el back end con un encoder antes de guardarse
en MongoDB y las conexiones entre Angular y Spring Boot
también son cifradas gracias al certificado SSL que se ha
afiadido al Endpoint de Spring Boot. Los usuarios pueden
crear fichas del juego de rol Dungeon Hack y luego con-
sultaras o editarlas. En el Apéndice [A.2] se puede ver el
diagrama de casos de uso.

Por dltimo , se puede acceder a la web a través del siguiente
dominio:
https://www.maskdados.com

@%@@@Eﬂ@f—

Bienvenido a la web de gestion de fichas de Rol

En esta pagina podrds almacenar t fichas de peronsaje de los diferentes juegos de rol,asf estes donde estes siempre estarén

fichas guardadas
3 e
© 2020 Copyright. Ronny Romero

Fig. 4: Pagina inicial +kDa2

11.4.2. Requerimientos no cumplidos

Por falta de tiempo no se han podido cumplir los tres tlti-
mos requerimientos de prioridad baja. Ahora mismo la web
solo permite crear fichas a través de plantillas pero no crear
la propia plantilla y, aunque la web es responsive en apro-
ximadamente un 50 %, hay partes que no estin adaptadas
para pantallas pequefias.

12 CONCLUSIONES

Como se ha visto en el informe, se han cumplido casi en
su totalidad todos los objetivos establecidos. Esto ha sido
posible gracias a la implantacién metddica de cada una de
las partes.

Como conclusién global de proyecto, se ha de decir que la
elaboracién del mismo ha sido un continuo desafio y apren-
dizaje desde el dia uno. Los conocimientos adquiridos en el
momento de finalizar el proyecto difieren enormemente de
los iniciales.

Por eso mismo, el resultado final es muy satisfactorio y,
aunque el trabajo realizado ha sido muy duro hasta llegar
al punto actual, ha valido la pena.

EE/UAB TFG INFORMATICA: MASKDADOS.COM

12.1. Problemas encontrados

A la hora de realizar el trabajo se han encontrado algunos

problemas. El primero de todos era la falta de experiencia
con las tecnologias tratadas; previamente al proyecto solo
se habia trabajado con Spring Boot y todas las demads tec-
nologias han requerido de investigacion y aprendizaje pro-
fundo para poder desarrollar este proyecto.
Otro problema encontrado ha sido el no gestionar correcta-
mente el almacenamiento de las maquinas virtuales usadas,
pues por ello se tuvo que reiniciar la parte de Jenkins desde
0 ya que la maquina anterior qued6 inhabilitada con todo el
trabajo hecho.

12.2. Futuras lineas de mejora

Una vez construido todo lo descrito en este informe, solo
falta dedicarle horas de trabajo a la aplicacion web.
Como futuros objetivos, se afladirian mas plantillas de dife-
rentes juegos rol, se podrian crear salas donde los jugadores
puedan unirse con sus fichas y usarlas para poder hacer ac-
ciones como hablar en un chat o lanzar dados.
Otra linea de mejora futura serfa la implantacion de una IA
que, a partir de una foto a una ficha fisica, pueda crearla en
la aplicacién web.
Y por tltimo, se podria crear una aplicacién nativa para An-
droid o IOS que utilice la API REST de Spring Boot para
poder ser mas accesible para usuarios moviles.

AGRADECIMIENTOS

Agradecer al tutor de mi proyecto, Fernando Vilarifio, su
ayuda y consejos para la orientacion de este trabajo a lo lar-
go de sus meses de elaboracién. Agradecer a mi familia por
todo el soporte incondicional durante mi etapa universitaria.

REFERENCIAS

[1] Forbes, https://www.forbes.com/sites/bobevans1/2017/06

/05/meet-the-cloud-wars-top-10-the-worlds-most-
powerful-cloud-computing-vendors/1b86f0a34ele

[En linea]

[2] Aws, https://aws.amazon.com/es/what-is-aws/ [En li-
nea)

[3] GitLab CI, https://about.gitlab.com/stages-devops-

lifecycle/continuous-integration/ [En linea]
FDD, http://www.agilemodeling.com/essays/fdd.htm
Turnbull, James (2014) The Docker Book.

(4]
(5]
(6]
is-kubernetes [En linea]
(7]
is-a-kubernetes-clister [En linea]
Paul M. Duvall (2007), Continuous Integration impro-
ving software Quality and reducing Risk.

(8]

[9]
[En linea]
Spring,
[En linea]
PostMan, https://learning.postman.com/docs/getting-
started/introduction/ [En linea]

[12] Angular, https://angular.io/docs [En linea]

[10] https://spring.io/projects/spring-framework

[11]

Redhat, https://www.redhat.com/es/topics/containers/what-

RedHat, https://www.redhat.com/es/topics/containers/what-

Jenkins, https://www.jenkins.io/doc/book/pipeline/jenkinsfile/

https://www.maskdados.com

Ronny Romero Navarrete: MASKDADOS.COM

APENDICE

A.l.

Diagrama de Gantt

Diagrama de Gant

Tjun 8un 15un. 22un 294un. Ejul 13qul 20-ul 27-ul. 3-age. 10-ago. 17-ago. 24-ago. 31-ag0. 7T-sEp.

Sprint 0 E——
Sprint 1 —
Sprint 2

Sprint 3 -
Sprine 4]
Sprine 5 -
Sprint 6

Sprine 7 -

Sprine 8
Sprint g
Sprine 10
Sprine 11
Sprine 12
Sprine 13

Fig. 5: Diagrama de Gantt

A.2. Diagrama de Secuencia

Angular

o

Usuario Registrado

)
3

getlista
Plantillas

getListaPlantillas

Spring Boot

-

getListaPlantillas.

DE—

(e
-

validarFicha
-

crearFicha

Mostrar Plantilla

crearFicha

-

{ :D waldarFcha

saveFicha

MongoDB

Fig. 6: Creacién de ficha por plantilla

A.3. Diagrama de casos de uso

Registrarse

Usuario

Editar
Ficha

Fig. 7: Diagrama casos de uso

A.4. MASKDADOS.COM

A4.1.

Lista Fichas

Fichas del jugador

Bron Dave

Jack

Ir a ficha l [

Ir a ficha

Fig. 8: Seccién Mis fichas.

A.4.2. Registro

User

Contrasefia invalida, minimo 5 caracteres.

’ Repite contrasefia

La contrasefia no es igual a la anterior.

Usuario

user

Email no valido.;Ya tienes cuenta? / ingresar

|

&* Registrarse

A.4.3. Login

® 2020 Copyright. Ronny Romero

Fig. 9: Registro invalido.

admin

) Iniciar sesion

© 2020 Copyright. Ronny Romero

Fig. 10: Login

11

12 EE/UAB TFG INFORMATICA: MASKDADOS.COM

A.4.4. Crear ficha A.5. Jenkinsfile Spring Boot

1 pipeline {
environment {

Creacion a partir de plantillas

TMAGE_REP

DUNGEON HACK 5

11 agent any
12 stages {
Nombre Jugador s S fage('Build’) {
Clase y nivel Alineamiento 14 steps {
15 sh “chmod +x mynw”
Descripcion 16 sh "rm -rf ~/.m2/repository "
17 sh "./mynw -B -DskipTests clean install -Dhttps.protocols=TLSv1.2 '
Experiencia 18 }
< 19 1
CARACTERISTICAS 20 Stage(Test') {
21 steps {
2 echo 'test desde jenkins'
g g Z Z Z : 23 R ——
FUE DES con INT SAB CAR 24 bl
25 1
26 stage('Push’) {
27 steps {
OTROS RASGOS ARMAS 28 sh "docker build -t ${HOSTNAME}/${PROJIECT ID}/${IMAGE_REP} ."
29 echo 'PUSH"
& 30 h “whoami"”
el HOMBE] DANG: DUREZA; 31 ; "docker push S{HOSTNAME}/${PROJECT_ID}/${IMAGE REP}"
EnERGia a 22 i
33 3}
34 stage('Deploy') {
38 echo 'DEPLOY’
37 sh "kubectl apply -f manifest.yaml"
38 ;a “kubeet] rollout restart deployment.apps/spring’
COMPENTENCIAS PROTECCIONES = h "l aply ¥ dnrssanisispring.yeul
40
: 41 b3
o] NoMERE ABSORCION DUREZA a2 3
43 stage('CleanRepository’) {
© o {
45 echo 'Borramos la imdgen local creada y las imagenes del repositorio antiguas’
46 sh "docker rmi -f ${HOSTNAME}/${PROJECT_ID}/${IMAGE_REP}"
a7 sh “"gcloud container images list-tags eu.ger.io/projectok8s-286915/springhack
a8 —-filter='-tags:*' --format='get(digest)’ --limit=unlimited | xargs -I (arg}
a9 gcloud container images delete \"eu.ger.io/projectok8s-286915/springback@{arg\" --quiet”
£
VENTAJAS EQUIPO Y RIQUEZAS s y !
52 1

a osiETo oureza 53
543

a _ , ,
Fig. 13: Cédigo de la pipeline de Spring Boot.

MC MP ME MO MPT GEMAS

a o] (o8] o8] o8] o8] [o8

CAPACIDADES

A.6. Manifiesto Kubernetes

Ingrese todos los campos correctamente,
#1 CREAR

1 pipeline {

2 environment {

3 PROJECT = "Projectokds”

4 APP_NAME = "rolapp"

5 PROJECT_ID = "projectokss-286915"
6

7

8

Fig. 11: Crear ficha Dungeon Hack.

SOURCE_IMAC
HOSTHAME = "eu.ger.io”
IMAGE REP = "

A.4.5. Editar Ficha -

11 agent any
12 stages
13 stage('Build’) {
14 steps {
15 sh "chmod +x mynw”
DUNGEON HACK 16 sh "rm -cf ~/.m2/repository "
17 sh "./mymw -B -DskipTests clean install -Dhttps.protocols=TLSv1.2 *
18 }
Nombre Ron Jugador | Ronny 19 1
20 stage('Test') {
Claseynivel mago vl 2 Alineamienta | N 21 steps {
P p— = schy [Lest desie Jenkins
Experiencia | 2000 24 |
P 25 b
CARACTERISTICAS stage(CPush') ¢
27 steps {
28 sh “docker build -t ${HOSTNAME}/${PROJECT ID}/${IMAGE_REP} ."
1 11 2 18 iy 16 29 echo "PUSH’
38 sh whoami®
FUE DES con INT SAB AR 31 sh "docker push ${HOSTNAME}/${PROJECT ID}/${IMAGE_REP}"
32 }
33 }
OTROS RASGOS ARMAS i e ey
EH steps {
36 e:he *DEPLOY’
SALUD e P NOMBRE DANO DUREZA 37 "kubectl apply -f manifest.yaml™
38 ;a "kubectl rollout restart deployment.apps/spring’
B = ” baston 144 108 33 sh "kubectl apply -f ingresAndSslSpring.yaml”
4 }
COMPENTENCIAS PROTECCIONES a2
a3 stage('CleanRepository’) {
NOMERE ABSORCION DUREZA | steps {
uarias 45 echo 'Borramos la imégen local creada y las imagenes del repositorio antiguas’
- N o 26 sh "docker rmi -f ${HOSTNAME}/${PROJECT ID}/${IMAGE REP}"
a7 sh "gcloud container images list-tags eu.ger.io/projectok8s-286915/springback
a8 --filter="-tags:*' --format='"get(digest)' --limit=unlimited | xargs -I {arg}
49 geloud container images delete \“eu.ger.io/projectok8s-286915/springback@{arg}\” --quiet™
58 K
51 }
52 }
VENTAJAS EQUIPO Y RIQUEZAS :
541
R OBIETO DUREZA

e et contenion e Fig. 14: Archivo .yaml del manifiesto del back end.

llave de oro 1d100
detectar magia

MC MP ME MO MPT GEMAS

1 1 1 1 1 1

EDITAR

© 2020 Copyright. Ronny Romero

Fig. 12: Consultar y editar ficha.

Ronny Romero Navarrete: MASKDADOS.COM

A.7. Jason Web Token

spring
boot

Username: User
Password: xxxxx

=

POST lauthl/login

- Consulta User/password correcto
Comprueba user/pass
- User/password correcto .
Creacion del Token]
con el secreto establecido :
I
I
— \
Devuelve Token valido }
I
Peticién afiadiendo en el Header: |
Authorization: Bearer XXXXXXX(Token) }
l Comprobacion de la firma del token |
y gue no haya caducado }
- I
|
I
- I
- Devuelve recurso salicitado |
I
| |
| I
I | I
I | I
I 1 '
Fig. 15: Diagrama JWT
A.8. Postman
Untitled Request BUILE Z =

POST v | hitpsilimaskdados.es/auth/login
Params Authorization Headers (10) Body ® Pre-request Script Tests Settings
none form-data x-www-form-urlencoded ® raw binary GraphQL JSON Beaurify
1A
2 "username”:"admin", |
3 "password”
4
5
Body Cookies Headers (15) TestResults €% 2000k 367ms 750B Save Response v
Prerty Raw Preview Visualize JSON ~ 5 r. Q
1 f 1
2 “token": "eylhbGciDilIUzUxMil9.ey)zdWIi0iThZG1pbilsImlhdCIEMTYWMDCINTAyMywiZXhwIjoxNjAwODEXMDIZFQ.

IBUOVI3TW7E_NSBLUFYEWKEX7 isplTG11bX4vmSXogIHun1TgoPKIXEYCKYA0E - OyMAQgek 64 TWMINGrBKFSQ",
"bearer": "Bearer"”,

3

4 "username”: "admin”,

5 "authorities": [

g {

7 "authority": "ROLE_USER"
8

9

Fig. 16: Prueba Login Postman

	Introducción
	Objetivos
	Estado del arte
	Cloud computing
	CICD
	Google Kubernetes Engine
	Web de rol

	Metodología
	Requerimientos del sistema
	Planificación del trabajo
	Arquitectura cloud
	Google Cloud Platform
	Componentes utilizados
	Costes asociados

	Kubernetes y GKE
	Containerización y Docker
	Kubernetes y Google Kubernetes Engine
	Recursos en GKE
	Estructura utilizada en GKE
	Escalabilidad en GKE

	CICD
	Integración Continua
	Entrega continua
	Despliegue continuo
	Jenkins
	Estructura CICD

	MASKDADOS.com
	Aplicación web
	Spring Boot
	Angular
	Seguridad
	MongoDB

	Resultados
	Google Cloud Platform
	CICD
	Google Kubernetes Engine
	MASKDADOS.COM
	Requerimientos cumplidos
	Requerimientos no cumplidos

	Conclusiones
	Problemas encontrados
	Futuras líneas de mejora
	Diagrama de Gantt
	Diagrama de Secuencia
	Diagrama de casos de uso
	MASKDADOS.COM
	Lista Fichas
	Registro
	Login
	Crear ficha
	Editar Ficha

	Jenkinsfile Spring Boot
	Manifiesto Kubernetes
	Jason Web Token
	Postman

