
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

MASKDADOS.com, la web de ayuda a los
juegos de rol desarrollada en Google Cloud

Platform usando CICD con Jenkins y
aplicando la escalabilidad de Kubernetes.

Ronny Romero Navarrete

Resumen– En este artı́culo queda reflejado todo el proceso de desarrollo de una aplicación web
utilizando las tecnologı́as actuales de Cloud Computing. El proyecto construye las bases de una
plataforma online que ayuda a los jugadores a disponer de una herramienta extra para sus partidas.
Esta herramienta consiste en una página web de ayuda a los juegos de rol de mesa, incorporando
un sistema de login y gestión personal de fichas de personaje. Con esa finalidad, el proyecto se ha
desarrollado aplicando la metodologı́a CICD a lo largo de todo el proceso. A través de la plataforma
de Google Cloud Platform se ha creado toda la infraestructura y los servicios necesarios para operar
en la nube, terminando con un despliegue mediante el uso de Kubernetes y el beneficio de su
escalabilidad.
Palabras clave– Google Cloud Platform, Cloud Computing, GCP, Jenkins, CICD, Kubernetes,
Google Kubernetes Engine, Docker, Spring Boot, Angular, JWT, rol, web, juego.

Abstract– This article reflects the entire process of developing a web application using current
Cloud Computing technologies. The project builds the foundations of an online platform that helps
players to have an extra tool for their games. The application consists of a web page to help tabletop
role-playing games, incorporating a personal login system and management of character sheets. To
that end, the project has been developed by applying the CICD methodology throughout the entire
process. Through the Google Cloud Platform, all the necessary infrastructure and services have
been created to operate in the cloud, ending with a deployment through the use of Kubernetes and
the benefits of its scalability.

Keywords– Google Cloud Platform, Cloud Computing, GCP, Jenkins, CICD, Kubernetes, Google
Kubernetes Engine, Docker, Spring Boot, Angular, JWT, role, web, game.

F

1 INTRODUCCIÓN

ESTE proyecto tratará sobre el desarrollo de una apli-
cación web de gestión de ayuda a los juegos de rol
en mesa, utilizando las ventajas de la computación

en la nube, aplicando la metodologı́a CICD en todo el pro-
ceso de desarrollo y aprovechando la escalabilidad que ofre-
ce Kubernetes para el despliegue.
La elección del tema de proyecto ha surgido de la idea de

• E-mail de contacte: ronnyrom3@gmail.com
• Menció realitzada: Enginyeria del Software
• Treball tutoritzat per: Fernando Vilariño
• Curs 2019/20

crear una aplicación real utilizando tecnologı́as actuales,
inspirado por las últimas tendencias en el desarrollo. Por
ello, el trabajo realizado en este informe se divide en cua-
tro partes: Computación en la nube, CICD, Kubernetes y
el desarrollo de una aplicación web utilizando Angular y
Spring Boot.

2 OBJETIVOS

Como se ha comentado en la introducción, este proyecto
consiste en crear una aplicación web de ayuda a los juegos
de rol de mesa, utilizando la infraestructura y servicios de
Google Cloud aplicando la metodologı́a CICD para desple-
gar la aplicación utilizando Kubernetes. Para conseguirlo se
han establecido 4 objetivos:

Septembre de 2020, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: MASKDADOS.COM

Montar la arquitectura en Google Cloud Platform uti-
lizando las diferentes herramientas que ofrece su nube
para crear la infraestructura y servicios que necesitará
el proyecto.

Aplicar la metodologı́a CICD (Continous Integration
+ Continuous Delivery + Continuos Deployment) uti-
lizando Jenkins para poder automatizar todo el proceso
que va desde la entrega de software hasta el despliegue
en Kubernetes de Google Cloud con todas sus fases.

Utilizar la herramienta de Google Kubernetes Engi-
ne para desplegar toda la aplicación en ella pudiendo
aprovechar las escalabilidad que ofrece Kubernetes.

Desarrollar una aplicación web de ayuda para los jue-
gos de rol utilizando una arquitectura de micro servi-
cios API REST separando claramente la parte del front
end y la parte del back end.

3 ESTADO DEL ARTE

En la actualidad las tecnologı́as con las que se trabajará
en este proyecto son cada vez más usadas.

3.1. Cloud computing
Cada vez más, las empresas comienzan a dejar de usar

su propia infraestructura para el despliegue o desarrollo
de aplicaciones con la intención de externalizarlo hacia el
“Cloud computing”. Delegan toda esta parte a terceras em-
presas que operan en la nube que se encargarán de gestio-
narlo todo. Actualmente, junto con Google Cloud Platform
hay muchas empresas que que se dedican a ofrecer servicios
en la nube, entre ellas las que mas destacan a nivel mundial
son [1]:

AWS: Amazon Web Services [2] ofrece un gran con-
tenido de servicios en la nube, tiene muchas similitu-
des a Google Cloud Platform ofreciendo herramien-
tas muy parecidas a las usadas en este proyecto como
EKS(Elastic Kubernetes Service), inicialmente se es-
tudió la opción de desarrollar el proyecto en esta pla-
taforma pero finalmente se optó por la nube de Google
por las facilidades que da a nuevos usuarios.

Azure: La nube de Microsoft es la más utilizada ac-
tualmente a nivel mundial ya que provee un uso muy
profundo de las tres capas de la nube (IaaS,SaaS y
PaaS).

3.2. CICD
Actualmente la herramienta más utilizada para aplicar la

metodologı́a CICD es Jenkins pero también se usan otras
como Gitlab CI [3] la cual contiene un Registry para
imágenes incorporado.

3.3. Google Kubernetes Engine
GKE es la plataforma de Kubernetes que nos ofrece Goo-

gle en su nube, pero Amazon tiene Elastic Kubernetes Ser-
vice la cual es muy parecida en funcionalidad pero sin una
gestión automática de la herramienta tan alta.

3.4. Web de rol
En la actualidad hay páginas como www.roll20.net

que ofrecen servicios parecidos a la aplicación que se va a
desarrollar, esta web puede ayudar mucho a obtener ideas
y contemplar situaciones que no se habı́an pensado. A dife-
rencia de maskdados.com esta web está pensada como una
plataforma para jugar online y no como una web de ayuda
a las partidas de rol en mesa.

4 METODOLOGÍA

Este proyecto ha sido creado haciendo uso de la
metodologı́a Feature Driven Development [4]. FDD es
una metodologı́a ágil que se basa en el desarrollo por
caracterı́sticas, la cual consiste en ir haciendo pequeñas
iteraciones definidas en cinco procesos: desarrollar un mo-
delo global, hacer un listado de caracterı́sticas, planificar
para cada función, diseñar y construir.
Estas iteraciones se centran en entregar una funcionalidad
tangible del proyecto, ayudando a monitorearlo constante-
mente y comprobando que cada una de las funcionalidades
haya sido creada correctamente.

Dentro de las fases de FDD, las tres primeras (Desarro-
llar un modelo global, hacer un listado de caracterı́sticas y
planificar cada función) son lineales y se hacen al principio
del proyecto. Las últimas dos (Diseñar y construir) se hacen
en cada iteración.

5 REQUERIMIENTOS DEL SISTEMA

Una vez se han tenido claros los objetivos del proyecto,
se ha creado una tabla con los requerimientos que debe tener
junto con su prioridad. [Tabla 1]

6 PLANIFICACIÓN DEL TRABAJO

La planificación del trabajo cambió completamente cuan-
do, a causa del COVID-19, se tuvo que hacer un reinicio del
mismo proyecto. Inicialmente iba a ser un proyecto que se
realizarı́a en la empresa MANGO y tratarı́a sobre la im-
plantación de un sistema de radiofrecuencia en el sistema
de etiquetado dentro de las diferentes tiendas de la marca.
A causa de la pandemia y de la finalización de mi estancia
en la empresa, el proyecto estuvo un tiempo sin un rum-
bo claro mientras se estudiaban diferentes maneras de rees-
tructurarlo. Inicialmente se planteó como un estudio de la
metodologı́a CICD aplicado en un pequeño caso y se dedi-
caron los meses de marzo y mayo a hacer una investigación
de todo ello, centrándose en las diferentes fases de la inte-
gración/entrega/despliegue continuo.
En junio, cuando se decidió que el proyecto se entregarı́a en
septiembre, se volvió a hacer otra reestructuración del pro-
yecto hasta decidir el objetivo actual. Tras este proceso, y
después de dividir el proyecto en sus cuatro pilares (GCP,
CICD, GKE, API REST) se dedicaron los siguientes Sprints
o iteraciones de una o dos semanas cada uno:

Sprint 0: Configuración de la nube de Google Cloud
Platform (GCP).

www.roll20.net


Ronny Romero Navarrete: MASKDADOS.COM 3

TABLA 1: REQUERIMIENTOS DEL SISTEMA

Requerimientos del sistema
El sistema debe desarrollarse haciendo un uso
completo de la nube de Google Cloud Plat-
form (GCP).

alta

El sistema debe hacer uso de la metodologı́a
CICD utilizando Jenkins. alta

La aplicación web del sistema debe desplegar-
se usando la herramienta de Google Kuberne-
tes Engine (GKE).

alta

La aplicación web del sistema debe ser una
API REST teniendo la parte del back end y
front end completamente separadas.

alta

La parte front end de la web del sistema será
desarrollada usando Angular. alta

La parte back end de la web del sistema será
desarrollada utilizando el framework de Sprint
en Java 11.

alta

La aplicación web permitirá a los usuarios re-
gistrarse y hacer login en ella. alta

La aplicación web permitirá a los usuarios
crear fichas de personaje de juegos de rol a
través de plantillas.

alta

La aplicación web permitirá a los usuarios
consultar y editar sus fichas de personaje crea-
das.

alta

La comunicación entre el back end y el front
end de la web del sistema se hará utilizando
la seguridad del estándar JSON Web Token
(JWT).

media

La aplicación web tendrá un dominio público
y utilizará un certificado SSL. media

La aplicación web ofrecerá a los usuarios la
opción de crear plantillas personalizadas. baja

La aplicación web debe ser responsive para to-
do tipo de tamaño de pantallas. baja

La aplicación web debe ofrecer una experien-
cia de usuario fácil de utilizar. baja

Sprint 1: Instalación de Jenkins en GCP y su configu-
ración inicial.

Sprint 2: Implantación de la herramienta de Google
Kubernetes Engine y creación del clúster donde se des-
plegará el back end y el front end.

Sprint 3: Implementación de la conexión de Jenkins
con el clúster de GKE usando Services Acounts de
GCP.

Sprint 4: Definición de la estructura de la aplicación
web.

Sprint 5: Diseño de los contenedores Docker de des-
pliegue para el front end y el back end.

Sprint 6: Diseño de la estructura de Kubernetes y co-
dificación de sus manifiestos necesarios.

Sprint 7: Diseño de la base de datos no relacional uti-
lizando MongoDB Atlas.

Sprint 8: Diseño de la fases de la metodologı́a CICD
y su implantación para el desarrollo de la aplicación
web.

Sprint 9: Implementación del back end de la aplica-
ción web.

Sprint 10: Implementación del front end de la aplica-
ción web.

Sprint 11: Implementación de la seguridad con JSON
Web Token.

Sprint 12: Implementación del dominio público
www.maskdados.com.

Sprint 13: Implementación del certificado SSL usando
las herramientas que ofrece GKE.

En el Apéndice [A.1] se puede ver el diagrama de Gantt del
proyecto.

7 ARQUITECTURA CLOUD

7.1. Google Cloud Platform
La base del proyecto consiste en realizar el sistema utili-

zando todas las herramientas posibles que ofrece la nube de
Google Cloud.
Google Cloud Platform es la externalización de los servi-
cios de computación que siempre ha ofrecido Google pe-
ro ahora ahora unificadas en una misma plataforma. Estos
servicios incluyen aspectos como máquinas virtuales perso-
nalizables que son facturadas por uso, herramientas de ges-
tión de contenedores, servicios de Big Data y plataformas
de Machine Learning entre otros. Gracias a Google Cloud
se podrá externalizar toda la infraestructura necesaria para
el desarrollo de este proyecto, pudiendo ası́ delegar a la nu-
be todo lo referente al despliegue de la aplicación.
Google Cloud Platform(GCP) nos ofrece sus productos
agrupados en diferentes partes según su función, algunos
de esos grupos mas importantes son:

Computación: Aquı́ están las diferentes herramientas
que ofrece Google para la computación en la nube,
desde la creación de máquinas virtuales con las ca-
racterı́sticas deseadas con Compute Engine, App En-
gine para crear aplicaciones escalables en diferentes
lenguajes de programación o Google Kubernetes En-
gine la cual se utilizará en este proyecto.

Almacenamiento: En este área están las diferentes he-
rramientas de almacenamiento, tanto para tener discos
duros en la nube como para la gestión de bases de da-
tos.

Big Data: En esta agrupación se encuentran diferentes
aplicaciones que son utilizadas para trabajar con el Big
Data, nos permiten analizar, procesar y visualizar datos
de manera rápida.

Inteligencia Artificial: En esta parte están todos los
productos para trabajar con inteligencia artificial y ha-
cer uso del Machine Learning.

Redes: Los productos aquı́ presentes permiten contro-
lar todo lo relacionado con la red: gestión de dominios,
VPN, cortafuegos...



4 EE/UAB TFG INFORMÀTICA: MASKDADOS.COM

7.2. Componentes utilizados

Una vez estudiada y planteada la estructura que deberı́a
tener el proyecto, se decidió usar los siguientes componen-
tes o servicios:

Máquinas virtuales: En total se han creado un núme-
ro de cuatro máquinas virtuales en Google Cloud en
la región europe-west: tres de ellas son administra-
das completamente por Google Kubernetes Engine y
la otra se ha creado usando la herramienta de Compute
Engine donde se instalará Jenkins y se gestionará todo
el CICD. Esta última ha sido nombrada Jenkins y es-
tablecida con unas caracterı́sticas sencillas para correr
el software de Jenkins: es una máquina del tipo e2-
medium con 2 vCPU, 4GB de memoria RAM y con el
sistema operativo Ubuntu 20.04.

Almacenamiento: Se ha creado una unidad de alma-
cenamiento de 200GB con la herramienta de Storage
que es asignada a la VM de Jenkins.

Google Kubernetes Engine (GKE): Utilizando esta
herramienta se han creado tres máquinas virtuales que
serán los nodos de nuestro clúster de Kubernetes. En
estos nodos será donde se desplegarán los pods de la
aplicación web. Estas máquinas han sido construidas
con 2 vCPU y 4GB de RAM, además tienen un disco
duro persistente de 100GB cada una.

Container Registry: Esta herramienta proporciona un
almacenamiento privado y seguro de imágenes Docker
dentro de Google Cloud Platform. En el proyecto se
usa para la fase de entrega continua dentro del CICD
ya que las imágenes Docker generadas se almacenarán
allı́.

Administración de Identidades y Accesos (IAM):
IAM define quién tiene acceso a qué función de Goo-
gle Cloud. Para ello, dentro de las diferentes opciones
que ofrece este recurso, se hará uso de las cuentas de
servicio: estas son cuentas con permisos definidos ma-
nualmente para una aplicación y no para un usuario, lo
cual permitirá que los diferentes elementos de nuestra
nube se puedan autenticar y comunicarse entre ellos de
manera autónoma. En este proyecto se ha creado una
cuenta de servicio con los permisos necesarios para ac-
ceder al clúster de Kubernetes, y ha sido asignada a la
máquina virtual Jenkins.

Direcciones IP externas: Para poder desplegar la apli-
cación públicamente se han requerido dos IP externas
fijas globales que nunca cambien, ya que serán las di-
recciones que usará la aplicación web en el back end
y el front end. Se han generado con esta herramienta
dentro de la agrupación Redes, después serán asigna-
das a cada parte de la aplicación.

Cloud DNS: Para poder hacer que la aplicación sea
accesible al usuario se tenı́a que añadir un dominio
para cada dirección IP externa. Este fue adquirido en
los proveedores de dominio hostalia.com e ionos.es.
Se adquirió maskdados.com y maskdados.es, dominios

que serán usados para el front end y back end respecti-
vamente. Una vez conseguidos, se utilizó la herramien-
ta de Cloud DNS para crear una zona por cada domi-
nio; configurándolas se asociará el nombre adquirido
con la IP externa creada previamente.

Fig. 1: Arquitectura en Google Cloud Platform

7.3. Costes asociados
Una de las ventajas que tiene Google Cloud Platform pa-

ra nuevos usuarios es que ofrece 300$ gratis como crédito
para usar sus servicios durante 90 dı́as, esto ha servido para
poder desarrollar el proyecto a un coste mı́nimo. *Gastos

TABLA 2: COSTES ASOCIADOS POR MES

Costes asociados por mes
1x Jenkins e2-Medium 2GB RAM 26.68e/mes
3x Nodos e2-Medium 4GB RAM 68.33e/mes
2x Cloud DNS zones 0.34e/mes
Gastos variables* 0,022e/mes x GB

variables: Movimiento de GBs en Cloud Registry.

8 KUBERNETES Y GKE

En esta sección se explicarán conceptos de contenedo-
res y cómo se ha desarrollado el despliegue en Kubernetes



Ronny Romero Navarrete: MASKDADOS.COM 5

usando la herramienta de Google Kubernetes Engine y su
estructura.

8.1. Containerización y Docker
Primero de todo se ha de comprender el concepto de la

containerización, la cual permite desplegar aplicaciones au-
to contenidas. Esto quiere decir que se permite aislar nues-
tro código con únicamente las herramientas necesarias para
ejecutarlo correctamente, lo cual hará que pueda usarse en
cualquier máquina sin importar qué otro software tenga ins-
talado; ası́ se eliminan problemas de incompatibilidades y
se asegura su ejecución en todo tipo de máquinas.
Cuando se habla de containerización se tiene que hablar de
Docker [5], ya que es la tecnologı́a mas usada para la crea-
ción de contenedores. Con él, podemos crear las imágenes
de contenedores personalizadas que deseemos, subirlas a
repositorios de imágenes públicos o privados o descargar
imágenes creadas por otras personas para utilizarlas.
Las imágenes Docker se crean a partir de Dockerfiles, que
son archivos de texto plano que contienen una serie de ins-
trucciones para construir una imagen. Estas imágenes se
construyen usando el comando de Docker “build” y lue-
go se ejecutaran usando “run”.
La tecnologı́a de Docker ha sido una de las bases para el
desarrollo de este proyecto. Se han creado principalmente
tres imágenes de contenedores:

Jenkins: La primera imagen. Esta contiene todo lo ne-
cesario para poder configurar Jenkins y ejecutar cada
una de las fases del CICD. Por ello, nuestro Docker-
file contiene todas las instrucciones para descargarse
una imagen oficial de Jenkins que tenga preinstalado
Java 11 y una vez descargada instalar en ella diferen-
te software. Maven para trabajar con nuestro proyec-
to de Java; Docker ya que este contenedor necesitará
crear otros contenedores; Kubectl para poder hacer
uso de Kubernetes; gcloud para poder acceder a nues-
tro clúster de GKE.

Back end: Para desplegar la parte del back end de la
aplicación web se creó una imagen a través de un Doc-
kerfile que crearı́a un contenedor a partir de una ima-
gen oficial de Java 11: expone el contenedor por el
puerto 8095 que es donde Spring Boot está configu-
rado para oı́r, transfiere el ejecutable .jar compilado
previamente hacia nuestro contenedor y establece que
al arrancar el contenedor se lance el ejecutable de Java
para que inicie la aplicación.

Front end: La imagen creada para la parte del front
end ha sido construida con un Dockerfile multistage,
que no es mas que generar un archivo Dockerfile que
contiene más de una etapa. En este caso, en la primera
etapa se crea una imagen a partir de una imagen ofi-
cial de Node que es necesaria para Angular, se hace
un “npm install” para instalar las dependencias nece-
sarias y se ejecuta un “npm run build” para construir la
aplicación de Angular. En la segunda etapa se utiliza
una imagen “nginx:alpine”, la cual es un nginx muy
ligero, y se le añade toda la aplicación construida en
la anterior etapa en la carpeta html de nginx. Esto hará
que nuestra aplicación web esté disponible cuando ac-
cedamos al contenedor por su puerto 80.

8.2. Kubernetes y Google Kubernetes Engine
Kubernetes [6] es una plataforma open source conside-

rada como un orquestador de contenedores, que automatiza
las operaciones con ellos y ayuda a solucionar los proble-
mas de los procesos manuales. Esta herramienta nos per-
mite administrar un gran número de contenedores de ma-
nera fácil, ayuda a vigilar, organizar y controlar los conte-
nedores. Como ejemplo, Kubernetes estará vigilando que el
número de contenedores definidos estén activos; si uno de
ellos se cae, volverá a levantar otro más hasta tener el núme-
ro establecido.
Como este proyecto se está desarrollando en Google Cloud,
se trabajará con Google Kubernetes Engine, el servicio de
Kubernetes gestionado por Google que nos ofrece ventajas
como una fácil creación de clústers, auto-escalabilidad, ba-
lanceos de carga, actualizaciones, reparaciones automáticas
y un monitoreo de los logs. Un concepto importante que se
ha de conocer es el de los manifiestos de Kubernetes. Es-
tos son ficheros .yaml que contienen las instrucciones para
crear los componentes de Kubernetes. En el Apéndice [A.6]
se puede ver el manifiesto de una parte del back end.

8.3. Recursos en GKE
Para ello se usan diferentes recursos que ofrece Kuberne-

tes en GKE, los cuales se describen a continuación:

Clústers: Un clúster [7] es la base de Kubernetes, es
el set de “nodos” que ejecutan aplicaciones en conte-
nedores. Al ejecutar Kubernetes estás ejecutando un
clúster.

Nodos: Los nodos son cada máquina (ya sea fı́sica
o virtualizada) que compone un clúster de Kuberne-
tes. Cada nodo está gestionado por un componente
máster y tiene los elementos necesarios para ejecutar
los “pods”.

Pods: Es la unidad desplegable más pequeña que se
puede crear y gestionar en Kubernetes. Es un conjunto
de uno o más contenedores implantados en un único
nodo. En este proyecto los pods son los contenedo-
res Docker de nuestra aplicación, habrán pods del back
end y del front end.

ReplicaSet: Un ReplicaSet es un recurso que asegu-
ra que siempre se ejecute un número de réplicas de
un pod determinado. Nos asegura que un conjunto de
pods siempre está funcionando y disponible.

Deployment: El Deployment es una unidad de alto
nivel de Kubernetes que nos permite tener un con-
trol de nuestros ReplicaSet, controlar la escalabilidad,
actualizar los pods, hacer despliegues automáticos y
hacer rollbacks a versiones anteriores. Un ReplicaSet
únicamente se encarga de tener activos un número de
pods, pero solamente el Deployment puede actualizar
las imágenes que usan esos pods. Cuando se crea un
Deployment automáticamente se crea un ReplicaSet
asociado.

Service: Un Service es una abstracción que define un
conjunto de pods que implementan un único microser-
vicio. Por ejemplo, en este proyecto todos los pods del



6 EE/UAB TFG INFORMÀTICA: MASKDADOS.COM

back end tienen un servicio único. Hay varios tipos de
servicios. En este proyecto se han utilizado los de tipo
NodePort, el cual nos crea una IP interna dentro del
clúster y nos expone un puerto entre el rango 30000-
40000 al exterior desde donde será accesible.

Ingress: GKE nos permite crear un objeto Ingress pa-
ra el balanceo de cargas de HTTP(S). Este proporciona
las reglas para enrutar el tráfico externo HTTP(S) a las
aplicaciones que se ejecutan en el clúster. El recurso
Ingress se asocia con uno o más recursos Service y
también puede ser asociado a IPs estáticas proporcio-
nadas por Google y “ManagedCertificates”.

ManagedCertificate: Google ofrece certificados SSL
administrados por él, estos se aprovisionan, renuevan
y administran para los nombres de dominio.

8.4. Estructura utilizada en GKE

Al definir la estructura del proyecto se decidieron dos
partes claras que serı́an desplegadas en GKE, el back end
y el front end. Se decidió que ambos compartieran clúster
con los mismos nodos, pero cada uno con su propia estruc-
tura de Kubernetes. A continuación se mostrará una imagen
de la estructura del front end.

Fig. 2: Estructura Kubernetes front end.

Como se puede observar, la estructura ha sido diseñada
con tres Pods administrados que ejecutan la aplicación web.
Estos son creados en los nodos que tiene nuestro clúster.
Tienen un NodePort que expone un puerto entre el 30000
y 40000 al exterior y un Ingress asociado que contiene un

ManagedCertificate para añadir el certificado SSL y ser ac-
cesible vı́a HTTPS. Se le establece al Ingress una IP exter-
na estática creada previamente en Google Cloud. Esta IP
tiene asociada el nombre de domino maskdados.com. Por
último, los usuarios accederán a nuestra aplicación a través
del Ingress, el cual hará de balanceador de carga entre los
diferentes pods y nodos.

8.5. Escalabilidad en GKE
Una de las grandes ventajas que tiene usar Google Ku-

bernetes Engine es la gran escalabilidad que ofrece. Sim-
plemente con un comando se puede modificar el número
de Nodos utilizados en el clúster para ajustar a la deman-
da necesaria, indicarle cuántos Pods se quiere tener activos,
cuánta RAM dedicarle a cada Pod y muchas más opciones.
Por otro lado, GKE nos ofrece cuatro vı́as de autoescalado
gestionadas por la misma nube:

Carga de trabajo- horizontal: Este autoescalado se
basa en añadir o eliminar Pods según la utilización del
CPU u otras métricas personalizadas.

Carga de trabajo- vertical: El autoescalado de carga
de trabajo vertical analiza continuamente el uso de la
CPU y la memoria de los pods y modifica los pods para
encajar en ello.

Infraestructura - horizontal: Este autoescalado se
basa en añadir o eliminar nodos según la utilización
de los mismos.

Infraestructura - vertical: El autoescalado a nivel de
infraestructura vertical modifica los nodos para las ne-
cesidades de los pods utilizados.

9 CICD

CICD [8] es una metodologı́a para distribuir aplicaciones
con frecuencia, mediante el uso de la automatización en las
etapas del desarrollo de las aplicaciones. Encarna una cultu-
ra, principios y prácticas que permiten a los desarrolladores
tramitar cambios de código de manera más frecuente y fia-
ble.
Las siglas CICD hacen referencia a los aspectos de “Inte-
gración Continua (CI)”, “Entrega Continua (CD)” y “Des-
pliegue Continuo (CD)”, los cuales han sido integrados en
el proceso de desarrollo de la aplicación web.
A continuación se describirá cada uno de ellos y su aplica-
ción en este proyecto.

9.1. Integración Continua
La Integración Continua ayuda a implementar código con

mayor frecuencia y añadir pequeños cambios y modifica-
ciones a la aplicación, todo esto siguiendo un proceso auto-
matizado que implemente ese nuevo código. De esta manera
se evita tener que hacer toda la fusión del trabajo de todos
los desarrolladores en un único dı́a y continuamente se va
integrando nuevo código. Una vez se fusionan los cambios
se validan a través de una serie de pruebas automatizadas
definidas en esta fase de la Integración Continua. Si no hay
ningún error el código nuevo quedará integrado.



Ronny Romero Navarrete: MASKDADOS.COM 7

9.2. Entrega continua
Una vez la nueva integración de código ha sido imple-

mentada correctamente y se ha comprobado que no hay
ningún error se pasa a la fase de Entrega Continua, la cual
automatiza la distribución del código hacia un repositorio.
Esto nos permite tener un repositorio con nuestra última
versión del código lista para ser desplegada.

9.3. Despliegue continuo
Esta última fase de CICD se encarga de automatizar el

despliegue de una aplicación, que va desde la última ver-
sión valida del código que está en el repositorio donde se
ha entregado en la fase anterior, hasta la plataforma de des-
pliegue.

9.4. Jenkins
Una de las herramientas mas utilizadas cuando se imple-

menta CICD es Jenkins, el cual es un sistema desplegado
en un servidor que nos permite automatizar procesos. Esto
hace que sea una herramienta ideal para implantar las fases
de integración, entrega y despliegue continuo.
Algunos de los conceptos importantes de Jenkins que se han
de tener claros en este proyecto son:

Plugins: Los plugins ofrecen una gran cantidad de fun-
cionalidades extras que se pueden añadir al servidor
de Jenkins. Estos han sido creados por diferentes desa-
rrolladores para solucionar algún problema existente o
para integrar alguna tercera tecnologı́a al servidor.

Jobs: Los Jobs son las tareas configuradas en Jenkins.
Contienen una serie de instrucciones a ejecutar.

Pipelines: Uno de los conceptos más importantes y
utilizados en este proyecto son las pipelines, estas de-
finen el flujo de trabajo por donde tiene que pasar el
código para llegar a producción. Este flujo viene defi-
nido por los “Stage” que son las diferentes fases que
tiene el ciclo de vida de la Pipeline, y los “Steps”, que
son las tareas que tiene esa fase. En CICD, la Pipeline
tendrá todas las fases necesarias que van desde que el
desarrollador añade código a un repositorio, hasta que
se despliega la nueva versión de la aplicación.

Jenkinsfile: Jenkinsfile [9] es un fichero de texto el
cual contiene todas las instrucciones para crear la Pi-
peline con sus fases. Este fichero se almacena y se ver-
siona junto con el código de la aplicación en el repo-
sitorio, define cada “Stage” y cada “Step” de nuestra
Pipeline de CICD. Gracias a tenerlo en el repositorio
obtenemos todas las ventajas del control de versiones
y nuestras fases de integración, entrega y despliegue
continuo pueden variar según las necesidades del pro-
yecto. En el Apéndice [A.5] se muestra el código del
archivo Jenkinsfile del back end.

9.5. Estructura CICD
Cuando se decidió la estructura que tendrı́a el proyecto y

se creó la arquitectura de Google Kubernetes Engine nece-
saria, se comenzó a trabajar con la creación de dos Pipelines

que implementarı́an toda la metodologı́a CICD para el desa-
rrollo del back end y el front end de la aplicación web.
Una vez instalada y configurada nuestra máquina virtual de
Jenkins en Google Cloud Platform se añadió una cuenta de
servicio (IAM) de GCP para poder comunicar Jenkins con
el clúster de Kubernetes y el Registry de imágenes en la nu-
be de Google.
Para implementar la automatización del CICD se configuró
el repositorio de código de Github para que lanzara un
“Webhook” cada vez que se hiciese un commit a nuestro re-
positorio. Esto lanzarı́a un Trigger a la IP de nuestra máqui-
na Jenkins que arrancarı́a la Pipeline con el nuevo código.
Esta Pipeline se definió con las siguientes fases:

Fig. 3: Pipeline CICD.

Build: Este primer “Stage” se encarga de hacer un
build de nuestro código, en Java se usará Maven pa-
ra ello y en Angular crearemos la imagen a través del
Dockerfile, ya que esta tiene el build incorporado.

Test: Esta fase solo está presente en el pipeline del
back end. Aquı́ se utiliza Maven para ejecutar los test
unitarios de nuestra aplicación Spring Boot. Esto eje-
cuta los test nuevos y los test presentes previamente. Si
hay algún fallo en ellos, el proceso de automatización
terminará y nos indicará donde está el error. Hasta este
punto consiste la parte de la Integración Continua.

Push: La fase de Push implementa la parte de Entre-
ga Continua y crea la imagen a partir del Dockerfile
definido, a continuación esta se guarda en Google Con-
tainer Registry.

Deploy: Deploy implementa la última parte del CICD,
el Despliegue Continuo. Aquı́ desplegamos la aplica-
ción en Google Kubernetes Engine haciendo uso de
los manifiestos de Kubernetes creados previamente y
el comando kubectl, que como se tienen las credencia-
les de el clúster gracias a la cuenta de servicio IAM, se
podrá desplegar desde la máquina virtual de Jenkins.

Clean: Esta última fase se ha creado por la necesi-
dad surgida de limpiar Google Container Registry de
imágenes previas guardadas. Esto se ha decidido para
minimizar los costes que GCP tiene por almacenar da-
tos en su Registry. Borramos todas las imágenes guar-
dadas en el registro que no tengan el tag:latest, y eli-
minamos las imágenes generadas en la máquina virtual



8 EE/UAB TFG INFORMÀTICA: MASKDADOS.COM

de Jenkins, dejando únicamente la última versión co-
rrecta guardada.

10 MASKDADOS.COM

MASKDADOS es una aplicación web de ayuda a los jue-
gos de rol que está pensada como herramienta para la ges-
tión de partidas en mesa.
Para entender la utilidad de esta aplicación se hará una bre-
ve explicación de los siguientes conceptos:

Juego de Rol: Es un juego interpretativo en el que uno
o más jugadores desempeñan un papel o rol a lo largo
de una historia o trama. Hay dos tipos de jugadores, el
director de juego y los personajes.

Director de juego: El curso de las partidas está super-
visado por el director de juego, que es quien cumple
las funciones de narrador de la historia y de mediador
entre jugadores.

Personaje: Los jugadores no narradores interpretarán
a diferentes personajes. Estos suelen ser personajes
imaginarios que siguen unas pautas de juego preesta-
blecidas conocidas como sistema de juego, los datos
de esos personajes estarán escritos en fichas.

Fichas: Las fichas contienen todos los datos de los per-
sonajes que juegan en la historia. Según el sistema de
juego pueden tener datos como caracterı́sticas fı́sicas o
habilidades. Cuando se juega, la ficha es necesaria pa-
ra poder desempeñar los papeles y acciones que hacen
los personajes.

Teniendo estos conceptos claros, se ha creado la aplicación
web para ofrecer ayudas a la partida como un lugar online
donde gestionar todos los datos de las fichas de los perso-
najes y tener todo lo necesario para poder jugar a los juegos
rol. De esta manera se soluciona uno de los problemas que
más suele ocurrir, el no tener las fichas de los personajes
cuando se va a jugar, ya que ahora siempre tendremos un
lugar online y no se necesitará el papel fı́sico.

10.1. Aplicación web
Uno de los primeros objetivos fue crear la web separando

claramente la parte lógica y de gestión de la base de datos
en el back end y la parte visual con la que interactúa el
usuario como el front end.
Para ello se han usado dos tecnologı́as muy diferentes que
interactúan entre ellas a partir de peticiones web, la parte
front hará peticiones HTTP al back end, el cual le devolverá
los datos que requiere.

10.1.1. Spring Boot

Spring [10] es un framework de código abierto que fa-
cilita el desarrollo de aplicaciones web en Java. Tiene una
estructura modular y una gran flexibilidad para implemen-
tar diferentes tipos de arquitecturas.
En este proyecto se ha usado Spring Boot, la cual es una he-
rramienta que simplifica aún más el desarrollo de las aplica-
ciones web creadas con el framework de Spring y contiene

un Tomcat embebido que se lanza al ejecutar nuestra apli-
cación, el cual nos servirá como servidor para escuchar las
peticiones HTTP.
Para la construcción de la parte back end se ha decidido usar
el IDE Eclipse, el cual tiene un plugin para Spring que faci-
lita su programación. En cuanto a la estructura del código,
se ha trabajado en un proyecto Maven de Java, que ofrece
un archivo de configuración POM que contiene todas las
dependencias necesarias.
Se ha decidido hacer una aplicación basada en micro servi-
cios multi modular dentro del mismo proyecto Java. En la
aplicación se han generado diferentes Endpoints, los cua-
les reciben peticiones HTTP, y si estas están autenticadas
correctamente devuelve el valor solicitado. La aplicación
contiene los siguientes micro servicios:

AuthController: Este micro servicio es muy impor-
tante ya que trata con todo lo referente a la seguirdad
de la web, tramita los registros de usuarios y se encar-
ga de generar los tokens de autenticación a los que han
hecho login correctamente.

FichaController: FichaController contiene los End-
points que tratan con las fichas de personajes que con-
tiene la base de datos, como por ejemplo obtener el
listado de personajes de un usuario, editar la ficha de
un personaje y obtener sus datos. Para poder acceder a
este servicio se ha de estar autenticado con un Token
válido.

PlantillaController: Cuando un usuario decide crear
una ficha lo hace través de una plantilla, la cual con-
tiene la información para que el front end sepa como
mostrarla. En este servicio están los “Endpoints” para
obtener las plantillas de la base de datos. Se ha de estar
autenticado con un Token válido.

Para probar el código se han hecho pruebas unitarias a los
servicios de Spring con Junit 5 y se ha utilizado la herra-
mienta PostMan [11] para probar que los Endpoints funcio-
nen correctamente.En el Apéndice [A.8] se puede ver una
prueba con Postman al endpoint de login en AuthController.

10.1.2. Angular

Para crear la parte front end se ha decidido utilizar el fra-
mework de Angular [12], el cual es un framework opensour-
ce desarrollado por Google que facilita la programación de
aplicaciones web de una sola página (Single Page Applica-
tion). Gracias a ello la página no tiene que recargar cuando
se navegue por ella ya que todo estará previamente cargado.
La estructura de Angular está definida por componentes los
cuales cada uno contiene tres partes, los estilos CSS, la es-
tructura de la vista HTML y un archivo .ts escrito en types-
cript que contiene toda la lógica del componente. Además
una de las ventajas de Angular es que disponemos de servi-
cios que son utilizados para tramitar datos entre componen-
tes o para hacer peticiones a Endpoints como nuestro back
end en Spring Boot.
Dentro de la aplicación se han creado componentes para ca-
da elemento de la web. Los mas importantes son:

LoginComponent: Este componente contiene todo lo
necesario para mostrar la pantalla de login y poder va-
lidar los campos escritos. Cuando el usuario hace clic



Ronny Romero Navarrete: MASKDADOS.COM 9

a login este elemento usará un servicio que hace una
petición POST a la API REST de Login del micro ser-
vicio AuthController. Apéndice [A.4.3]

RegisterComponent: RegisterComponent contiene el
formulario de registro donde los campos son valida-
dos antes de enviar al micro servicio de registro, el
cual guardará el usuario en la base de datos. Apéndice
[A.4.2]

Plantilla-dungeon-hack-Component: Una de las
plantillas creadas ha sido la de el juego de rol Dun-
geon Hack, cuando el usuario quiere crear una ficha
de este juego, el componente lee el archivo JSON de
la plantilla obtenido de la BD y muestra una ficha de
ese juego para rellenar, validando cada campo escrito.
Apéndice [A.4.4]

Ficha-dungeon-Component: Este component es muy
similar al de Plantilla-dungeon-hack-Component con
la diferencia que recibirá de la base de datos todos los
datos de la ficha, los cuales mostrará de manera similar
a la ficha real del juego. El usuario podrá editar los
campos de la ficha que quiera y guardar esos cambios
en la base de datos. Apéndice [A.4.5].

Card-ficha-component: Cuando un usuario seleccio-
na “Mis fichas” la aplicación Angular hará una con-
sulta al back end y cargará en pantalla unas tarjetas
con información mı́nima de las fichas de los diferen-
tes personajes del usuario. Si el usuario selecciona una
de ellas, se hará otra llamada al back end para obtener
la información restante y llamará al componente de la
ficha respectiva. Apéndice [A.4.1].

En el Apéndice [A.2] se dispone de un diagrama de secuen-
cia para la creación de una ficha.

10.1.3. Seguridad

La aplicación web tiene dos puntos importantes en cuanto
a la seguridad, uno de ellos es la implantación de certifica-
dos SSL para poder acceder vı́a HTTPS y que la conexión
sea segura. La otra parte es la referente a la comunicación
entre Spring Boot y Angular, ya que como el back end tiene
una serie de “Endpoints” públicos cualquiera podrı́a acce-
der y obtener información de la base de datos o del sistema.
Para evitarlo se ha implantado la seguridad con JSON Web
Token (JWT), el cual es un estándar de código abierto basa-
do en JSON para crear tokens de acceso que nos permiten
segurizar las comunicaciones entre un cliente y un servi-
dor. Este token se genera a partir de un secreto. Cuando el
usuario hace un login correctamente, el back end devuelve
a la petición de login un token que el navegador del cliente
guarda en su ordenador. Este token tiene una fecha de cadu-
cidad y hasta entonces las futuras peticiones HTTP que se
hagan desde Angular tienen incorporado en el header el to-
ken generado. Spring Security es un plugin de Spring boot
el cual está añadido al POM del proyecto, gracias a él pode-
mos configurar los recursos CORS para definir quién acce-
de a que servicio REST, ya sea requiriendo un rol especial
o simplemente comprobando si tiene un token válido. En la
aplicación web maskdados.com, todos los servicios REST
están configurados para requerir un token válido excepto
los de iniciar sesión y registrarse. Apéndice [A.7]

10.1.4. MongoDB

Después de definir la estructura de la aplicación web se
hizo un estudio para decidir qué tipo de base de datos se
implementarı́a, y al final se optó porque serı́a una base de
datos no relacional. Esto fue ası́ por el tipo de estructura que
se trabajarı́a en la web ya que se guardarı́an muchos tipos
de fichas de personaje con campos y tamaños muy diferen-
tes los cuales requerirı́an un trabajo mucho mayor en tablas
relacionales, por eso se decidió, por la libertad que ofrece
en este aspecto MongoDB. En cuanto al lugar de desplie-
gue de la base de datos se optó por varias opciones. Una
de ellas era desplegar un Docker en una máquina virtual
de GCP con MongoDB en ella, pero se descartó por el alto
coste económico que tendrı́a añadir otra máquina. Por eso
al final se decidió usar la plataforma de MongoDB Atlas, ya
que ofrece de manera gratuita hasta 512MB de almacena-
miento usando un vCPU compartido, lo cual era más que
suficiente para los requerimientos actuales.

11 RESULTADOS

En este punto se expondrán los resultados obtenidos te-
niendo en cuenta los objetivos establecidos en el segundo
punto de este informe y los requerimientos del sistema.

11.1. Google Cloud Platform
El objetivo era montar la arquitectura en GCP y se ha

cumplido de manera correcta, todo el despliegue de la apli-
cación y el servidor de Jenkins está montado en la nube de
Google. Se hacen uso de muchos elementos de ella excepto
para la base de datos por los motivos explicados en el punto
anterior.

11.2. CICD
El segundo objetivo era desarrollar la aplicación hacien-

do uso de la metodologı́a CICD, y ha sido otro objetivo
cumplido; toda la aplicación ha sido desarrollada teniendo
la Pipeline de CICD funcionando. Cuando esta fue confi-
gurada correctamente, cada vez que se hacı́a un commit del
código al repositorio de Github, todos esos cambios se in-
troducı́an en el flujo CICD hasta llegar al despliegue final,
automatizando ası́ todo el despliegue final de la aplicación
y con ello poder centrarse únicamente en el desarrollo de la
aplicación web.

11.3. Google Kubernetes Engine
Este objetivo requerı́a desplegar toda la aplicación ha-

ciendo uso de la ha herramienta de Kubernetes Engine que
ofrece Google y ha sido cumplido en su totalidad. Las dos
partes de la aplicación web (Spring Boot y Angular) están
corriendo en el clúster de GKE dónde están replicadas tres
veces, y el cual contiene tres nodos donde desplegar la apli-
cación. Además se puede escalar la aplicación vertical u ho-
rizontalmente con un simple comando según la necesidad.

11.4. MASKDADOS.COM
La aplicación web maskdados.com ha sido desarrollada

aunque no se han podido cumplir todos los requerimientos



10 EE/UAB TFG INFORMÀTICA: MASKDADOS.COM

establecidos por falta de tiempo. Aun ası́ se ha conseguido
un muy buen progreso y una muy buena base donde, con
toda la estructura del proyecto montada, solo hace falta de-
dicarle horas en programación web para añadir más funcio-
nalidades.

11.4.1. Requerimientos cumplidos

La web es funcional y es accesible vı́a HTTPS. Los datos
son seguros y el usuario se conecta directamente a la web en
Angular, la cual hace peticiones a la API REST de Spring
Boot. Los usuarios pueden registrarse en la web y sus datos
quedan guardados en la Base de datos. Las contraseñas son
cifradas en el back end con un encoder antes de guardarse
en MongoDB y las conexiones entre Angular y Spring Boot
también son cifradas gracias al certificado SSL que se ha
añadido al Endpoint de Spring Boot. Los usuarios pueden
crear fichas del juego de rol Dungeon Hack y luego con-
sultaras o editarlas. En el Apéndice [A.2] se puede ver el
diagrama de casos de uso.
Por último , se puede acceder a la web a través del siguiente
dominio:
https://www.maskdados.com

Fig. 4: Página inicial +kDa2

11.4.2. Requerimientos no cumplidos

Por falta de tiempo no se han podido cumplir los tres últi-
mos requerimientos de prioridad baja. Ahora mismo la web
solo permite crear fichas a través de plantillas pero no crear
la propia plantilla y, aunque la web es responsive en apro-
ximadamente un 50 %, hay partes que no están adaptadas
para pantallas pequeñas.

12 CONCLUSIONES

Como se ha visto en el informe, se han cumplido casi en
su totalidad todos los objetivos establecidos. Esto ha sido
posible gracias a la implantación metódica de cada una de
las partes.
Como conclusión global de proyecto, se ha de decir que la
elaboración del mismo ha sido un continuo desafı́o y apren-
dizaje desde el dı́a uno. Los conocimientos adquiridos en el
momento de finalizar el proyecto difieren enormemente de
los iniciales.
Por eso mismo, el resultado final es muy satisfactorio y,
aunque el trabajo realizado ha sido muy duro hasta llegar
al punto actual, ha valido la pena.

12.1. Problemas encontrados
A la hora de realizar el trabajo se han encontrado algunos

problemas. El primero de todos era la falta de experiencia
con las tecnologı́as tratadas; previamente al proyecto solo
se habı́a trabajado con Spring Boot y todas las demás tec-
nologı́as han requerido de investigación y aprendizaje pro-
fundo para poder desarrollar este proyecto.
Otro problema encontrado ha sido el no gestionar correcta-
mente el almacenamiento de las máquinas virtuales usadas,
pues por ello se tuvo que reiniciar la parte de Jenkins desde
0 ya que la máquina anterior quedó inhabilitada con todo el
trabajo hecho.

12.2. Futuras lı́neas de mejora
Una vez construido todo lo descrito en este informe, solo

falta dedicarle horas de trabajo a la aplicación web.
Como futuros objetivos, se añadirı́an más plantillas de dife-
rentes juegos rol, se podrı́an crear salas donde los jugadores
puedan unirse con sus fichas y usarlas para poder hacer ac-
ciones como hablar en un chat o lanzar dados.
Otra lı́nea de mejora futura serı́a la implantación de una IA
que, a partir de una foto a una ficha fı́sica, pueda crearla en
la aplicación web.
Y por último, se podrı́a crear una aplicación nativa para An-
droid o IOS que utilice la API REST de Spring Boot para
poder ser más accesible para usuarios móviles.

AGRADECIMIENTOS

Agradecer al tutor de mi proyecto, Fernando Vilariño, su
ayuda y consejos para la orientación de este trabajo a lo lar-
go de sus meses de elaboración. Agradecer a mi familia por
todo el soporte incondicional durante mi etapa universitaria.

REFERENCIAS

[1] Forbes, https://www.forbes.com/sites/bobevans1/2017/06
/05/meet-the-cloud-wars-top-10-the-worlds-most-
powerful-cloud-computing-vendors/1b86f0a34e1e
[En linea]

[2] Aws, https://aws.amazon.com/es/what-is-aws/ [En li-
nea]

[3] GitLab CI, https://about.gitlab.com/stages-devops-
lifecycle/continuous-integration/ [En linea]

[4] FDD, http://www.agilemodeling.com/essays/fdd.htm
[5] Turnbull, James (2014) The Docker Book.
[6] Redhat, https://www.redhat.com/es/topics/containers/what-

is-kubernetes [En linea]
[7] RedHat, https://www.redhat.com/es/topics/containers/what-

is-a-kubernetes-clúster [En linea]
[8] Paul M. Duvall (2007), Continuous Integration impro-

ving software Quality and reducing Risk.
[9] Jenkins, https://www.jenkins.io/doc/book/pipeline/jenkinsfile/

[En linea]
[10] Spring, https://spring.io/projects/spring-framework

[En linea]
[11] PostMan, https://learning.postman.com/docs/getting-

started/introduction/ [En linea]
[12] Angular, https://angular.io/docs [En linea]

https://www.maskdados.com


Ronny Romero Navarrete: MASKDADOS.COM 11

APÉNDICE

A.1. Diagrama de Gantt

Fig. 5: Diagrama de Gantt

A.2. Diagrama de Secuencia

Fig. 6: Creación de ficha por plantilla

A.3. Diagrama de casos de uso

Fig. 7: Diagrama casos de uso

A.4. MASKDADOS.COM

A.4.1. Lista Fichas

Fig. 8: Sección Mis fichas.

A.4.2. Registro

Fig. 9: Registro inválido.

A.4.3. Login

Fig. 10: Login



12 EE/UAB TFG INFORMÀTICA: MASKDADOS.COM

A.4.4. Crear ficha

Fig. 11: Crear ficha Dungeon Hack.

A.4.5. Editar Ficha

Fig. 12: Consultar y editar ficha.

A.5. Jenkinsfile Spring Boot

Fig. 13: Código de la pipeline de Spring Boot.

A.6. Manifiesto Kubernetes

Fig. 14: Archivo .yaml del manifiesto del back end.



Ronny Romero Navarrete: MASKDADOS.COM 13

A.7. Jason Web Token

Fig. 15: Diagrama JWT

A.8. Postman

Fig. 16: Prueba Login Postman


	Introducción
	Objetivos
	Estado del arte
	Cloud computing
	CICD
	Google Kubernetes Engine
	Web de rol

	Metodología
	Requerimientos del sistema
	Planificación del trabajo
	Arquitectura cloud
	Google Cloud Platform
	Componentes utilizados
	Costes asociados

	Kubernetes y GKE
	Containerización y Docker
	Kubernetes y Google Kubernetes Engine
	Recursos en GKE
	Estructura utilizada en GKE
	Escalabilidad en GKE

	CICD
	Integración Continua
	Entrega continua
	Despliegue continuo
	Jenkins
	Estructura CICD 

	MASKDADOS.com
	Aplicación web
	Spring Boot
	Angular
	Seguridad
	MongoDB


	Resultados
	Google Cloud Platform
	CICD
	Google Kubernetes Engine
	MASKDADOS.COM
	Requerimientos cumplidos
	Requerimientos no cumplidos


	Conclusiones
	Problemas encontrados
	Futuras líneas de mejora
	Diagrama de Gantt
	Diagrama de Secuencia
	Diagrama de casos de uso
	MASKDADOS.COM
	Lista Fichas
	Registro
	Login
	Crear ficha
	Editar Ficha

	Jenkinsfile Spring Boot
	Manifiesto Kubernetes
	Jason Web Token
	Postman


