BIOLOGICAL CONTROL OF THE BOXWOOD MOTH (CYDALIMA PERSPECTALIS)

BASED ON ENTOMOPATHOGENIC FUNGI AS ENDOPHYTES

María Fernanda Barreiro Álvarez · Biology Degree · Autonomous University of Barcelona

ANTECEDENTS

1. PROBLEM

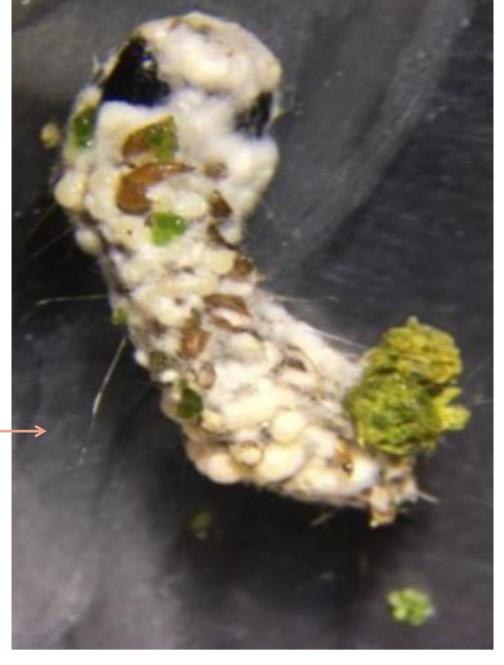
Cydalima perspectalis invasion

Cydalima perspectalis larvae can cause total defoliation of natural and planted Boxwood trees (Buxus)

Buxus spp are valuable ornamental plants to be preserved (Convention on Biological Biodiversity · art. 8) ¹

C. perspectalis populations has already developed resistance to **insecticides** ²

2. POTENTIAL SOLUTION


an alternative for replacing insecticides

Biological control involves the introduction of natural enemies of *C. perspectalis*

Fungal pathogens, the most frequent mortality factor of insects in nature ^{3,4}

Beauveria bassiana (Ascomycota) is a remarkable entomopathogen used for insect pests control ^{5,6}

Its **efficiency** depends on the level of host-specificity [strains]³

C. perspectalis infected by B. bassiana under natural conditions 9

3. MECHANISMS OF ACTION entomopathogenic endophyte

Beauveria bassiana is used for pest control after it is established as endophyte of plants ^{5,6}

As **endophyte**, it colonizes **host plants** without causing disease symptons ⁷

As **hemibiotrophic entomopathogen**, it infects and kills **host insects** to use bodies to maximize the reproductive output (infective conidia)⁸

INITIAL HYPOTHESIS

OBJECTIVE

Cydalima perspecatlis populations

Screening strains of B. bassiana to describe their efficiency as biocontrol agents of C. perspecatlis through their establishment in Buxus

MATERIAL AND METHODS

The artificial inoculation of efficient strains of *B. bassiana* in an attempt to establish them as endophytes of *Buxus* spp could result in the regulation of

Assess the ability of *B. bassiana* strains to colonize *Buxus* seedlings as endophytes

BIOASSAY I

INOCULATION foliar application in *Buxus* seedlings

DETECTION the presence of Bb as endophyte of Buxus

I. Culture-dependent methods

II. Culture-independent methods (q-PCR)

III. SEM observations

INDICATOR measurement of *Bb* colonization By the frequency of colonization

FACTORIAL ARRANGEMENT

ARRANGEMENT

FACTORIAL

Bb strains

Sampling times (post-inoculation weeks)

Sampling tissues (leaves, stem, root)

Conidial suspensions of different BB strains Buxus seedling C. perpectalis populations

7

Assess the pathogenicity of *B. bassiana* strains towards *C. perspectalis*

BIOASSAY II

INOCULATION physical exposure of *C. perspectalis*

DETECTION death of *C. perspectalis* caused by *Bb*

I. Progressive counting of dead bodies

II. Culture-dependent methods

III. Culture-independent methods (q-PCR)

IV. SEM observations

INDICATORS measurement of *Bb* pathogenicity
By the cumulative mortality rate, mean survival time, letal

MENT

Factors

Bb strains

Sampling populations (adults and larvae)

EXPECTED RESULTS

1. Bioassay I validates the presence of *B. bassiana* as endophyte of *Buxus* Frequency of colonization significantly differ between strains

2. Bioassay II validates the pathogenicity of *B. bassiana* towards *C. perspectalis* Indicators of pathogenicity significantly differ between strains

3. ANOVA allows to screen the most efficient strains

4. Positive correlations between both variables are expected for some strains

Biocontrol

5. *B. bassiana* is observed/confirmed by SEM and qPCR

FURTHER CONSIDERATIONS

- 1) The influence of artificial inoculation methods
- 2 The influence of biotic and abiotic conditions
- Molecular and genetic characterization ("omics"; NGS)
 Synergy between *B. bassiana* and other entomopathogenic endophyte fungi
 - 5 External validation to extend laboratory conclusions requires suitable methods to preserve virulent strains and for biomass production

INFECTIVE CONIDIA
CONIDIOGENOUS

CELL

CONIDIOPHORE OF B. BASSIANA

DISSEMINATION PLAN

Lectures at Scientific Congresses for Innovative Agriculture Solutions

Submission to calls for proposal of projects offered by Environmental Institutions, Companies or Public Administrations

Through Master/PhD thesis and further projects

REFERENCES

[1] ONU, "Convention On Biological Diversity," 1992.

[2] H. Wan et al., "Biology and natural enemies of Cydalima perspectalis in Asia: Is there biological control potential in Europe?," Journal of Applied Entomology, vol. 57², [7] R. J. Rodriguez, J. F. White, A. E. Arnold, and R. S. Redman, "Fungal endophytes: Diversity and functional roles: Tansley review," New Phytol., vol. 5²6, no. 6, pp. 314–330,

no. 10. Blackwell Publishing Ltd, pp. 715–722, 01-Dec-2014, doi: 10.1111/jen.12132

[3] S. S. Sandhu *et al.*, "Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation," *J. Pathog.*, vol. 6456, pp. 1–10, 2012, doi: 10.1155/2012/126819

[4] L. R. Jaber and B. H. Ownley, "Can we use entomopathogenic fungi as endophytes for dual biological control, vol. 95, no. 5, pp. 331–357, Jan. 2006, doi: 10.1016/ j.biocontrol.2017.01.018.

[9] S. M. Zamani, S. Farashiani, M. Salehi, and S. Samavat, "The first record of *Beauveria bassiana* on box tree moth, *Cydalima perspectalis* in Iran," *Irian J.*

[5] L. A. Bing and L. C. Lewis, "Occurrence of the entomopathogen *Beauveria bassiana* (Balsamo) Vuillemin in different tillage regimes and in *Zea mays* L. and virulence *For. Range Prot. Res.*, vol. 59, p. 646, 645, doi: 54.664³ 6/ijfrpr.645².559² 4¹.56³ towards *Ostrinia nubilalis* (Hübner)," *Agric. Ecosyst. Environ.*, vol. 89, no. 1–2, pp. 147–156, 1993, doi: 10.1016/0167-8809(93)90065-W

[6] F. Posada and F. E. Vega, "Establishment of the fungal entomopathogen *Beauveria bassiana* (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings