Threatened vs non-threatened mosses: taxonomical, biological and ecological patterns in Spain (Iberian Peninsula and Balearic Islands)

Gemma Domènech Carbó -Bachelor's Thesis, Environmental Biology (2020), Universitat Autònoma de Barcelona

INTRODUCTION & AIMS

Mosses play a key role in ecosystem functioning, yet encompass a great number of threatened species. In recent decades, several bryophytes red lists have been published. However, we lack synthetic analyses and we also ignore whether threatened mosses, compared to non-threatened, share biological and ecological syndromes that might explain their vulnerability. This information would be crucial to address successful conservation measures.

- 1. Identify and quantify the percentage of families, genera and species threatened in Spain.
- 2. Summarize the main **UICN criteria** used to include mosses species in the Spanish Red List.
- 3. Test whether threatened and non-threatened mosses differ in their syndromes.

Biological syndromes

Type of reproduction Sexual system

Ecological syndromes -

Habitat specialization Habitat humidity Substrate preferences Altitude range

METHODS

- All mosses growing in Iberian and Balearic Spain¹. (N= 44 families, 101 genera, 823 species).
- Species were classified in three groups: Low-threatened: RE+EX+CR+EN+VU
- Compilation of bibliographic information $\begin{cases} -\text{Reproduction and ecological syndromes}^{2,3,4} \\ -\text{Threatened status (Red List)}^{5} \end{cases}$
- Synthesis & Statistical analyses:
- 1. and 2. Summary of information available.
- 3. Biological and ecological syndromes analyses:
- Categorical variables: Pearson's chi-squared and a post-hoc test with holm-bonferroni correction
- Numerical variables: ANOVA and Tukey post-hoc test.

RESULTS AND DISCUSSION

High % of threatened taxa

Family level: 74,6% ≥ 1 species as 1

15,3% ≥ 75% species as **1**

Genus level: 46,8% ≥ 1 species as !

18,1% ≥ 75% species as

Species level:

EX \rightarrow 0,1% RE \rightarrow 1,6% CR \rightarrow 3,5% FN \rightarrow 2.7%

Highlythreatened $EN \rightarrow 3,7\%$ $VU \rightarrow 13,0\%$ NT \rightarrow 3,4% LC \rightarrow 8,4% Low- DD \rightarrow 5,9% threatened

→ 8,4% → 5,9% - 17,7%

7% \rightarrow 60,4

Non-threatened

Highly-threatened→ 21,8%

DD → 4,8%

2 IUCN criteria are unequally used

Commonly used

nonly D2 Area of occupancy

B2 Low population number → 43,5%

51,8% Barely

 $\begin{cases} \textbf{B1} & \text{Extent of occurrence} & \rightarrow 5,4\% \\ \textbf{D1} & \text{N}^{\circ} \text{ of mature individuals} & \rightarrow 3,6\% \end{cases}$

Population size + decline → 0,6%

Un-used $\begin{cases} A & \text{Population decline } \rightarrow 0\% \\ E & \text{Risk of extinction } \rightarrow 0\% \end{cases}$

0% 0%

Non-threatened: excluded from the red list \$

-Lack of basic data
-Limitations on applying
IUCN criteria to mosses

Syndromes of highly-threatened mosses differ significantly from non-threatened Low-threatened mosses lack a clear pattern

CONSEQUENCE of human disturbances

Natural rarity CAUSES their threatened status

Highly-threatened mosses tend to

GRAPHS LEGEND: X² residuals:

positive correlation
negative correlation
The bigger the circle, the
stronger the correlation

Post-hoc significance:

t = p<0,1 *= p < 0,05

** = p < 0,03 *** = p < 0,01 *** = p < 0,001

Genetic erosion provoked by human disturbances limits sexual reproduction

Natural asexual reproduction limits genetic variability which hamper their adaptation ability.

The bigger size of asexual propagules limits long-distance dispersal.

.... be monoecious

.... be habitat specialists

Specialists are more vulnerable to habitat destruction since they fail to

... grow on wet habitats

Wet habitats undergo a higher human pressure

High discontinuity of wet habitats and droughtvulnerable spores of its species limit their dispersal success.

.... grow on acid substrates

Acidic substrates have greater water retention, sustaining species far from their ecological optimum

Low pH limits spore germination when moisture is low

.... present a narrow altitude range

Habitat destruction and the smaller ecological niche of rare bryophytes

CONCLUDING REMARKS

- 1. 1/5 of Spain mosses are highly-threatened, as happens in Europe. There are numerous families and genera with all, or almost all, of their species threatened.
- 2. The use of IUCN criteria is biased and limited by the lack of accurate data on populations sizes and on their changes over time.
- **3.** Highly-threatened mosses possess a common biological and ecological pattern that differs significantly from non-threatened species. Further research on:
- Whether the biological and ecological pattern observed in threatened mosses arises as consequence of human disturbances or as a trigger of their natural rarity.
- Application of the knowledge on their vulnerability syndromes to conservation management.

REFERENCES