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Abstract

This document reviews the theory of factorial analysis, giving importance to the fundamental results

that validate the use of the technique. Some of the results shown in this work, although under-

stood as necessary in the construction of the statistical method, couldn’t be found proved in other

references, and their demonstrations are included. Once the theory has been explained, it is shown

trough an example, a procedure to obtain probability based indices built over latent factors fitting

a confirmatory factorial model. Indices are intended to evaluate the evolution of economic, as well

as social, ecological and urban aspects in metropolitan regions, and so they can be considered sus-

tainable progress indicators. The procedure was proposed by a research team of the IERMB1 and

the MCS2, in a study published in 2019. The example in this report is still in the discussion phase.

The aim is to initiate the updating of that methodology, to apply it in a future study with new and

extended data.

1 Introduction

Factorial analysis is a statistical theory that allows, under certain conditions, expressing approximately

the variables of a random vector of which we have observations, as a linear combination of a few new

variables called factors, through a stochastic model. The so called factor model is built in such a way

that allows to search for interpretable factors in the context of the investigation. The objective is ex-

plaining the individuals or observations of the initial random vector in terms of this new factors. One

use of factorial analysis is to try to quantitatively model as factors qualitative aspects of interest (such as

intelligence or social class, for example), considering as initial observable variables ones that is thought

could describe the aspect that is studied. This document explains the fundamental results of factorial

analysis as well as the necessary ones to apply the theory, giving importance to the elemental theorems

that validate the use of the technique. Once the theory is known, it is shown a procedure to evaluate

sustainable progress in metropolitan regions, using sustainable progress indicators based on confirmatory

factorial analysis, trough a concrete analysis, relying on socioeconomic data of Europe metropolitan re-

gions provided by IERMB (Barcelona Institute of Regional and Metropolitan Studies). The procedure

was proposed and used in Marull et al. (11 ) to evaluate sustainable progress in Europe metropolitan

regions and megaregions between 1995 and 2010.

The first part of this document, consisting on sections 2 and 3, explains the theoretical foundations

1Barcelona Institute of Regional and Metropolitan Studies in UAB campus.
2Mathematical Consulting Service, Math Department, UAB.
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of factorial analysis. The objective is adjusting adequately a factor model to a given set of variables,

which we shall call initial variables. There are two principal variants of factorial analysis: confirmatory

and exploratory. Exploratory factorial analysis is commonly used to find a factor model that fits the

initial variables, whereas confirmatory factorial analysis is often used after an exploratory analysis, with

the aim of fitting a specific factor model with the values of some of its parameters fixed in advance by

the researcher, much of them usually forced to be zero. Section 2 is devoted to exploratory factorial

analysis and section 3 is dedicated to confirmatory factorial analysis. In the second section we define the

orthogonal factor model and we present its basic properties. Sections 2.2 2.3 and 2.4 discuss the way to

find, in practice, an estimated solution to the orthogonal factor model for an initial random vector, using

a set of observations of it summarized in a data matrix, we finally present the principal factors method

of estimation. Section 2.5 shows how to obtain the values that may take the factors for a given obser-

vation of the initial random vector, once the model has been fitted, this values are called factor scores.

Section 2.6 discuss the interpretation of the factors, and overviews the varimax rotation method, that

aims to provide an interpretable factors, taking advantage of the non uniqueness of solution to the model.

Section 3 introduces confirmatory factorial analysis highlighting the theoretical and practical differences

with the exploratory version, the factor model is defined, the existence and uniqueness of solution to it

is discussed, and its basic properties are shown, the ways to find its parameters estimates are overviewed

and the factors interpretation is addressed.

In the second part of this document, consisting on section 4, we perform a confirmatory factorial analysis

to the data set provided by IERMB to show the procedure to obtain sustainable progress indicators.

Sustainable progress in city networks accounts an increasing level of economic competitiveness, urban

complexity and social and environmental well-being (Marull et al. (11 )), this concept arises to fulfil

the limitations of GDP and per capita income as measures of overall human well-being, among other

objectives. The object of study are the metropolitan regions (cities and their respective metropolitan

areas). To evaluate sustainable progress in metropolitan regions it is necessary to measure economic,

ecological, social and urban aspects, as well as the urban complexity, and confirmatory factorial analysis

can help in this task. The procedure proposed in Marull et al.(11 ) is based on fitting a factor model to

a vector of socioeconomic, ecological and urban variables, using observations of this vector for different

metropolitan regions, and having observations of different years for each region. The factor model is

fitted using confirmatory factorial analysis, in such a way that the initial variables are explained with a

few new factors and this are interpreted, if possible, as economic, social, ecological and urban aspects,

from this factors are derived simple indices measuring such aspects, and this simple indices are finally

integrated to a compound indicator to evaluate sustainable progress. The indicator is evaluated in the

initial region-year observations, and by observing the evolution on the values of it for a region, it is

possible to tell if the level of the aspects measured has seen or not an increase over the years, and this

way evaluate if the progress of a metropolitan region has been sustainable.

Early this year, IERMB started working in a project to update Marull et al.’s(11 ) study, with new

data from 2012 to 2019, and this work was proposed to initialize the new analysis. Unfortunately, due

the Covid-19 crisis, the necessary data was not prepared until later in June, and we could only dispose

from data of a single year; 2016, in consequence, the applied part in this document was reduced to an

analysis of the 2016 data set, and it is intended only to show the procedure to obtain sustainable progress

indicators trough confirmatory factorial analysis, but it can’t be taken as a meaningful analysis, in one

hand, because of the lack of data, on the other hand, because we hadn’t discussed the interpretation of

the factors with the experts on the matter of sustainable progress and it’s derived social, economic, urban

and ecological dimensions in IERMB; the interpretation was based on our intuition about this matters

and in the considerations in Marull et al.’s(11 ) study, hence, it is important to remark that the analysis

has to be seen only as an explanation of the statistical procedure to obtain the indicators, but never as

valid to draw conclusions about the (miss) evaluated aspects in the analyzed metropolitan regions using
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its results. This will be clear during the explanation of the performed analysis. We would have liked to

discuss the interpretation of the factors with the people of IERMB, but we haven’t had the time to do it

properly. The reader may realize that with data of a single year it is not possible to evaluate progress,

since the progress is seen comparing an indicator values trough different years, but the procedure to

obtain the indicator is the same given a data set of a single year or a data set of various years, thus, we

will see the procedure to obtain compound indicators to evaluate economic, social, ecological, and urban

aspects, but we will only be able to give the value of this indicators for the year 2016 of each metropolitan

region. Disposing of data of more years, it is possible to see the evolution in the values of a compound

indicator and evaluate the progress of metropolitan regions in different aspects. Whereas the applied

part was reduced, we went deeper in the theory of factorial analysis. We have not seen this as a problem,

on the contrary, it is though important to have a certain knowledge of the theory before applying it, in

fact, some of the results shown in the first part of this document couldn’t be found proved by the author,

although they were seen as fundamental and necessary, concretely, this results are the theorems 2.1.5 and

3.2.4.

Thus, the applied part consist on the analysis of a 2016 data set, section 4.1 explains the variables

used in the analysis, consisting on socioeconomic, environmental and urban ones, section 4.2 shows the 4

factor model adjusted to the data. We interpret the factors as socioeconomic, environmental and urban

aspects related with the initial variables, this labelling is done taking into account their mathematical

relationships with the initial variables, it can not be taken as valid and it must be taken as an example,

since it was not discussed with the experts in IERMB. In the section 4.3 various indicators are derived

from the factors, including simple indicators, measuring the aspect corresponding to each factor, and

compound indexes, which take into account all ecological, socioeconomic and urban factors, one of this

compound indexes is taken as a sustainable progress indicator, and all the regions observed are evaluated.

For the interest of the reader, Marull et al.(11 ) study is of public access and it can be found in the

IERMB’s website.

2 Exploratory factorial analysis

Exploratory factorial analysis is the main version of factorial analysis, it will allow us to understand the

procedure, and it will serve as a basis for confirmatory factorial analysis. The objective will be to find

an adequate solution (at least approximately) to the orthogonal factor model for a given set of observed

variables. Let’s define what does it mean.

2.1 The model and the fundamental results

Definition 2.1.1. Let Xt = (X1, . . . , Xp) be a p×1 random vector with E[X] = 0p×1. We say that the

orthogonal factor model holds for X if there exist two random vectors f t = (f1, . . . , fm) with m < p

and ut = (u1, . . . , up) and a matrix Q = (qij) ∈Mp×m(R) such that

X1 = q11f1 + q12f2 + · · ·+ q1mfm + u1

X2 = q21f1 + q22f2 + · · ·+ q2mfm + u2

...

Xp = qp1f1 + qp2f2 + · · ·+ qpmfm + up

In short: X = Qf + u, and satisfying:
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i) E[f ] = 0m×1, Cov(f) = Im, with Im the identity matrix on Rm.

ii) E[u] = 0p×1, Cov(u) = Ψ, with Ψ ∈Mp×p(R) and diagonal.

iii) Cov(f, u) = 0m×p, where Cov(f, u) denotes the cross-covariance matrix between f and u.

In this case we say that the triplet (Q, f, u) is a solution to the orthogonal factor model for X, (f1, . . . , fm)

are called common factors of the model, (u1, . . . , up) are called specific factors and the matrix Q is called

the loadings matrix. We consider the model with m < p because one of the objectives is explaining the

initial variables in a simplified way with a few factors.

In practice X will be the initial random vector of which we will have observations, the assumption

E[X] = 0p×1 is not restrictive since data can be centered to get the model and translated to the original

center at the end, if necessary. We will be interested in the common factors while the specific ones could

be understood as stochastic errors to hold the model. With respect to the conditions i), ii) and iii), the

condition i) asks the common factors to be uncorrelated and have unit variance, this condition is why

we call the model orthogonal, considering the covariance as a scalar product. The condition ii) ask the

specific factors to be uncorrelated and iii) ask the common factors to be uncorrelated with the specific

factors. We could consider more general assumptions as allowing the common factors to be correlated,

but is convenient for our current purpose of introducing factorial analysis to leave them for the confir-

matory version.

To clarify notation, in this document we will use ΣX to denote the covariance matrix of a random

vector X, as well as Cov(X) or Cov(X,X) using the cross-covariance matrix notation, depending on

the situation, that is ΣX = Cov(X) = Cov(X,X). Let’s see the basic properties of the model:

Proposition 2.1.2. Let X be a random vector with E[X] = 0p×1. If the orthogonal factor model holds

for X and (Q, f, u) is a solution, then Cov(X, f) = Q.

Proof. Using that (Q, f, u) is a solution to the model, that is: X = Qf + u satisfying i), ii) and iii), the

properties i)(Cov(f, f) = Im) and iii)(Cov(f, u) = 0m×p) and basic properties of the cross-covariance

matrix we have:

Cov(X, f) = Cov(Qf + u, f) = Cov(Qf, f) + Cov(u, f) = QCov(f, f) = QIm = Q. �

Thus, the variances between the initial variables and the common factors are given by the loadings;

Cov(Xi, fj) = qij . This result will help us to interpret the factors, that is, understand what the factors

represent in the context of the investigation, concretely if the initial data is standardized, is valid to

interpret a factor in terms of the variables more correlated with it, and so those that more contribute to

it, although the interpretation will not always be possible or clear. We will discuss this point further.

Proposition 2.1.3. Let X be a random vector with E[X] = 0p×1. If the orthogonal factor model holds

for X and (Q, f, u) is a solution, then ΣX = QQt + Ψ

Proof.

ΣX = Cov(X) = Cov(Qf + u) = Cov(Qf) + Cov(Qf, u) + Cov(u,Qf) + Cov(u)

= QCov(f)Qt +QCov(f, u) + Cov(u, f)Qt + Cov(u)

= QImQ
t + Ψ

= QQt + Ψ

Where we have used the properties i), ii) and iii) of the solution. �
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Observation 2.1.4. In particular, if the orthogonal factor model withm factors holds forX = (X1, . . . , Xp)
t,

denoting as ψi the ith element on the diagonal of Ψ, such that we can write Ψ as Ψ = diag(ψ1, . . . , ψp),

and defining h2
i :=

∑m
j=1 q

2
ij , for i ∈ {1, . . . , p}, we have

V ar(Xi) =

m∑
j=1

q2
ij + ψi = h2

i + ψi, for i ∈ {1, . . . , p} (1)

The value h2
i is called the ith communality, while ψi is called the ith specific variance.

Once we have seen the first two basic properties of the orthogonal factor model, assuming it holds, it’s

time to ask if it’s possible to find conditions for our initial variables, that ensure existence of solution to

the model, since we want to obtain the factors from a data set performed by observations of the initial

variables. We will state and prove that the necessary condition given in the last proposition is sufficient,

if we suppose Ψ to be positive definite, following the hint given in Mardia et al. (1979, p. 276) (10 ). We

observe that if the model holds, Ψ is necessarily positive semi definite, since it’s a covariance matrix, and

therefore the condition of positive definiteness does not seem very restrictive, we will discuss this point

further. Concretely the statement of the result is given in the next theorem:

Theorem 2.1.5. (Existence of solution to the orthogonal factor model)

Let Xt = (X1, . . . , Xp) be a p × 1 random vector with E[X] = 0p×1. If there exist two matri-

ces Q ∈ Mp×m(R), with m < p, and Ψ ∈ Mp×p(R), with Ψ diagonal and positive definite, such

that ΣX = QQt + Ψ, then there exist two random vectors f t = (f1, . . . , fm) and ut = (u1, . . . , up)

that satisfy the orthogonal factor model with loadings matrix Q and Cov(u) = Ψ, that is; satisfying

X = Qf + u,Cov(u) = Ψ and i), ii), iii).

Proof. Following the hint given in Mardia et al. (1979, p. 276) (10 ), we will show first that there

exist a multivariate normal random vector Y t = (Y1, . . . , Ym) with Y ∼ Nm(0m×1, Im + QtΨ−1Q), and

secondly we will show that the pair of random vectors defined by:(
u

f

)
:=

(
Ip Q

−QtΨ−1 Im

)−1

︸ ︷︷ ︸
A−1

(
X

Y

)
(2)

give a solution to the orthogonal factor model.

Denote W = Im +QtΨ−1Q, Ψ is invertible since it’s symmetric and positive definite by hypothesis, thus

we can take W . First of all, let’s see that W is symmetric and positive semi definite, and therefore we

can consider a multivariate normal vector Y with covariance matrix W :

(QtΨ−1Q)t = Qt(Ψ1)t(Qt)t = QtΨ−1Q

since Ψ is diagonal, and therefore QtΨ−1Q is symmetric, hence W = Im + QtΨ−1Q is also symmetric

since the sum only affects the diagonal of QtΨ−1Q. Let v ∈ Mm×1M(R) be any vector, let y := Qv, we

have vtQtΨ−1Qv = ytΨ−1y ≥ 0 since Ψ−1 is positive definite, hence, by definition, QtΨ−1Q is positive

semi definite, and since it is also symmetric we have det(QtΨ−1Q) ≥ 0. Now using that if B and C are

positive semidefinite matrices then det(B + C) ≥ det(B) + det(C) (Lin and Sra)(9 ), we have:

det(Im +QtΨ1Q) ≥ det(Im) + det(QtΨ−1Q) ≥ 1

Thus, det(W ) > 0, and since W is also symmetric, is positive definite (Cedó and Reventós)(3 ), as we

wanted to see. Since det(W ) > 0, W is invertible, which we will use later.

Now let’s see that the matrix A defining the vector of factors in (2), is invertible. The identity:

det

(
A B

C D

)
= det(D)det(A−BD−1C)
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holds when D is square and invertible (Schur, 1917)(15 ), using it for A we have

det(A) =

(
Ip Q

−QtΨ−1 Im

)
= det(Im)det(Ip +QImQ

tΨ−1) = det(Ip +QQtΨ−1)

Now,

det(Ip +QQtΨ−1) = det(ΨΨ−1 +QQtΨ−1) = det((Ψ +QQt)Ψ−1) = det(Ψ +QQt)det(Ψ−1)

QQt is symmetric and positive semidefinite, hence det(QQt) ≥ 0, Ψ−1 is positive definite thus det(Ψ−1) >

0, hence, det(Ψ + QQt) ≥ det(Ψ) + det(QQt) > 0 and therefore det(A) = det(Ψ + QQt)det(Ψ−1) > 0,

thus A is invertible, and ΣX = Ψ +QQt is also invertible.

After this technical details, we are ready to see that the factors in (2) give a solution to the model. First

let’s see that X = Qf + u holds. Since A is invertible, we have:(
u

f

)
=

(
Ip Q

−QtΨ−1 Im

)−1(
X

Y

)
⇐⇒

(
X

Y

)
=

(
Ip Q

−QtΨ−1 Im

)
︸ ︷︷ ︸

A

(
u

f

)

Hence, X = Ipu+Qf = Qf + u. We need to see that f and u satisfy i), ii) and iii). First, we will see

that ii) holds showing that Cov(u) = Ψ and E(u) = 0p×1. As(
u

f

)
= A−1

(
X

Y

)
then

E

(
u

f

)
= EA−1

(
X

Y

)
= A−1E

(
X

Y

)
= 0(p+m)×1

And therefore E[u] = 0p×1 and E[f ] = 0m×1. We will use the identity:(
A B

C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
that holds for any block matrix with D and (A−BD−1C) invertible (Banachiewicz, 1937)(1 ), to obtain

the inverse of A. In our case; A−BD−1C = Ip+QQtΨ−1, we will denote this matrix M , we have already

seen that det(M) = det(A) > 0, and thus M is invertible, also in our case D = Im, and so we can apply

the identity, we obtain:

A−1 =

(
Ip Q

−QtΨ−1 Im

)−1

=

(
M−1 −M−1Q

QtΨ−1M−1 Im −QtΨ−1M−1Q

)
Thus, (

u

f

)
= A−1

(
X

Y

)
=

(
M−1 −M−1Q

QtΨ−1M−1 Im −QtΨ−1M−1Q

)(
X

Y

)
and therefore:

u = M−1X −M−1QY = M−1(X −QY ) (3)
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Now, Cov(u) = Cov(M−1(X −QY )) = M−1Cov(X −QY )(M−1)t, and developing the covariance:

Cov(X −QY ) = Cov(X) + Cov(X,−QY ) + Cov(−QY,X) + Cov(−QY )

= ΣX − Cov(X,Y )Qt −QCov(Y,X)−QCov(Y )(−Q)t

= ΣX + 0 +QCov(Y )Qt

= (Ψ +QQt) +Q(Im +QtΨ−1Q)Qt

= (Ip +QQtΨ−1)Ψ +QQt +QQtΨ−1QQt

= (Ip +QQtΨ−1)Ψ + (Ip +QQtΨ−1)QQt

= (Ip +QQtΨ−1)(Ψ +QQt)

= (Ip +QQtΨ−1)Ψ(Ip + Ψ−1QQt)

= MΨM t

where we have used ΣX = QQt + Ψ by hypothesis, and Cov(X,Y ) = 0 since Y is taken independently of

X, therefore we obtain:

Cov(u) = M−1Cov(X −QY )(M−1)t = M−1Cov(X −QY )(M t)−1 = M−1MΨM t(M t)−1 = Ψ

as we wanted to see.

Using similar arguments we will prove that Cov(f) = Im, and so i) will be done since we have already

seen E[f ] = 0. Concretely, we will now use the identity:

(
A B

C D

)−1

=

(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
provided that A and (D − CA−1B) are invertible (Banachiewicz, 1937)(1 ). In our case: D − CA−1B =

Im − (−QtΨ−1)IpQ = Im + QtΨ−1Q = W and we know that W is invertible, and A = Ip invertible, so

we can apply the identity to obtain:

A−1 =

(
Ip Q

−QtΨ−1 Im

)−1

=

(
Ip −QW−1QtΨ−1 −QW−1

W−1QtΨ−1 W−1

)
Thus, (

u

f

)
= A−1

(
X

Y

)
=

(
Ip −QW−1QtΨ−1 −QW−1

W−1QtΨ−1 W−1

)(
X

Y

)
and we obtain

f = W−1QtΨ−1X +W−1Y = W−1(QtΨ−1X + Y ) (4)

Then, Cov(f) = Cov(W−1(QtΨ−1X + Y )) = W−1Cov(QtΨ−1X + Y )(W−1)t
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and developing the covariance:

Cov(QtΨ−1X + Y ) = Cov(QtΨ−1X) + Cov(QtΨ−1X,Y ) + Cov(Y,QtΨ−1X) + Cov(Y )

= QtΨ−1Cov(X)Ψ−1Q+QtΨ−1Cov(X,Y ) + Cov(Y,X)Ψ−1Q+ Cov(Y )

= QtΨ−1ΣXΨ−1Q+ ΣY

= QtΨ−1(QQt + Ψ)Ψ−1Q+W

= QtΨ−1(QQtΨ1Q+ ΨΨ−1Q) +W

= QtΨ−1QQtΨ−1Q+QtΨ−1Q+W

= (QtΨ−1Q+ Im)(QtΨ−1Q) +W

= W (QtΨ−1Q) +W

= W (QtΨ−1Q+ Im)

= WW

and using that W is symmetric we get the desired result:

Cov(f) = W−1Cov(QtΨ−1X + Y )(W−1)t

= W−1Cov(QtΨ−1X + Y )(W t)−1

= W−1WW (W t)−1 = W−1WWW−1

= Im

Finally, let’s see iii), that is, Cov(u, f) = 0p×m.

Using the expressions (3) and (4) we have:

Cov(u, f) = Cov(M−1(X −QY ),W−1(QtΨ−1X + Y ))

= M−1Cov(X −QY,QtΨ−1X + Y )(W−1)t

= M−1[Cov(X,QtΨ−1X + Y ) + Cov(−QY,QtΨ−1X + Y )](W−1)t

= M−1[Cov(X,Qtψ−1X) + Cov(X,Y ) + Cov(−QY,QtΨ−1X) + Cov(−QY, Y )]W−1

= M−1[Cov(X,Qtψ−1X) + Cov(X,Y )−QCov(Y,X)(QtΨ−1)t −QCov(Y, Y )]W−1

= M−1[Cov(X,X)Ψ−1Q−QCov(Y, Y )]W−1

= M−1[ΣXΨ−1Q−QΣY ]W−1

We observe

ΣXΨ−1Q−QΣY = (QQt+Ψ)Ψ−1Q−QW = QQtΨ−1Q+Q−QW = Q(QtΨ−1Q+Im)−QW = QW−QW = 0p×m

so, Cov(u, f) = 0p×m, and we are done. �

Theorem 2.1.5 says that the orthogonal factor model has at least one solution, but the solution is not

unique, in fact, every rotation of the factors will give another solution to the model:

Proposition 2.1.6. Let X be a random vector with E[X] = 0p×1, let m < p and let G ∈Mm(R) be an

orthogonal matrix, that is GGt = Im, if (Q, f, u) is a solution to the orthogonal factor model for X, with

m factors, then (QG,Gtf, u) is also a solution to the orthogonal factor model for X, with m factors.

Proof.

If (Q, f, u) is a solution to the orthogonal factor model for X with m factors and G ∈ Mm(R) is or-

thogonal, we have X = Qf + u = Q(GGt)f + u = QG(Gtf) + u, and it also holds

i) E[Gtf ] = GtE[f ] = 0m×1 , Cov(Gtf) = GtCov(f)G = GtImG = GtG = Im
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ii) E[u] = 0p×1 , Cov(u) = Ψ

iii) Cov(Gtf, u) = GtCov(f, u) = 0m×p

And therefore (QG,Gtf, u) is a solution to the orthogonal factor model for X, with m factors. �

In particular, the result holds when G ∈ Mm(R) is orthogonal and det(G) = 1, that is, when G is a

rotation matrix in Rm. This fact will allow us to find interpretable factors, if we find a solution (Q, f, u)

but the factors f are not interpretable in the context of investigation. There exists methods that try to

find an adequate rotation G such that the factors Gtf of the solution (QG,Gtf, u) might be interpretable.

The theorem 2.1.5 indicates us how to proceed to find a solution to the model for an initial vector

Xt = (X1, . . . , Xp). If we find Q ∈Mp×m(R) and Ψ ∈Mp×p(R) diagonal and positive definite such that

ΣX = QQt + Ψ, the factors given by the expressions (3) and (4) will give a solution to the orthogonal

factor model for X with matrix of loadings Q. In practice we have a data matrix X̃ ∈ Mn×p(R), where

each row of X̃ is an observation of the random vector Xt = (X1, . . . , Xp) for which we want to fit the

model, and we estimate ΣX using the sample covariance matrix S, then, our objective will be to find

matrices Q̂ ∈Mp×m(R) and Ψ̂ ∈Mp×p(R), with Ψ̂ diagonal and positive definite, such that the equality:

S = Q̂Q̂t + Ψ̂

holds, at least approximately. If we find such matrices Q̂ and Ψ̂, they can be taken as loadings and

specific variances estimates and so, they give rise to an estimate solution for the factor model. Finding

Q̂ and Ψ̂ is our next objective.

2.2 The equation S = QQt + Ψ

We now consider Q ∈ Mp×m(R) and Ψ ∈ Mp×p(R) as unknown matrices, being the second a diagonal

matrix with positive entries, whereas S is a positive definite known matrix, satisfying the equation

S = QQt + Ψ (5)

We will use the notation Q̂ and Ψ̂ to refer to a known, adequate solution to (5), with known meaning

that Q̂ and Ψ̂ only depend on the data in X̃. Q̂ and Ψ̂ will be found using numerical methods.

We first observe that if we find Q̂ ∈Mp×m(R) and Ψ̂ ∈Mp×p(R), with Ψ̂ diagonal and positive definite,

such that S = Q̂Q̂t + Ψ̂, then, given any orthogonal matrix G ∈Mm(R):

(Q̂G)(Q̂G)t + Ψ̂ = (Q̂G)(GtQ̂t) + Ψ̂ = Q̂Q̂t + Ψ̂ = S.

In practice, this is not a problem, since it allows to search for an interpretable factors (proposition 2.1.6),

but from a numerical point of view the non uniqueness of Q̂ is a drawback. An usual technique is to impose

additional restrictions on the matrices Q and Ψ to resolve this indetermination, then we will estimate Q

and Ψ under the restrictions, and we will do rotations later, if necessary. Two usual restrictions are

QtQ is diagonal (6)

QtΨ−1Q is diagonal (7)

We will discuss the restriction (6), (7) can be discussed similarly (Peña, 2002, p. 361)(13 ). Let m < p

and let Q̂ ∈ Mp×m(R) and Ψ̂ ∈ Mp×p(R) satisfying S = Q̂Q̂t + Ψ̂, let Q̂tQ̂ = V ΛV t be the spectral

decomposition of Q̂tQ̂, and let Qr = Q̂V , then

QtrQr = V tQ̂tQ̂V = V tV ΛV tV = Λ
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since V is orthogonal. Hence Qr satisfies the restriction (6), now let G be any orthogonal matrix and let

Q̃ = Q̂G, then:

Q̃tQ̃ = GtQ̂tQ̂G

Thus, Q̃tQ̃ will be diagonal if the columns of G form a basis of eigenvectors of Q̂tQ̂, therefore, the only

matrix Q̂G satisfying (6) will be Qr = Q̂V except for the chose of the eigenvectors V , in fact, it can be

shown that if another matrix Q̂∗ satisfies S = Q̂∗(Q̂∗)t + Ψ̂, then Q̂∗ = Q̂G, with G orthogonal, and

therefore the only matrix satisfying (6) will be Qr = Q̂V , except of V .

We want then to solve the equation (5) under one of the restrictions (6) or (7). The system may

have -in the best case- an unique solution, depending on the number of initial variables p and the number

of factors m. If the system has an infinite number of solutions, we will say that the factor model is

undetermined or not well defined.

Concretely, Q ∈ Mp×m(R), so it has pm unknown parameters, whereas Ψ ∈ Mp×p(R), and we restrict

the problem to Ψ diagonal, so Ψ has p unknown parameters an so we have pm+ p unknown parameters

to estimate in the factor model. On the other hand, the matrix equation (5) define 1
2p(p+ 1) equations

involving the unknown parameters, to see this, let qi = (qi1, . . . , qim) be the ith row of Q, for i = 1, . . . , p,

let ψi be the ith element on the diagonal of Ψ and let S = (sij)ij , then we can write the equation

QQt + Ψ = S as
〈q1, q1〉+ ψ1 〈q1, q2〉 . . . 〈q1, qp〉

〈q2, q2〉+ ψ2 〈q2, q3〉 . . . 〈q2, qp〉
. . .

. . .
...

〈qp−1, qp〉
〈qp, qp〉+ ψp

 =


s11 s12 . . . s1p

s22 s23 . . . s2p

. . .
. . .

...

sp−1p

spp


For example, the equation given by the elements in the position (1, 1) of the matrices is 〈q1, q1〉+ψ1 = s11,

where the parameters in 〈q1, q1〉 + ψ1 are unknown and s11 is known. Thus, the number of different

equations is the number of elements of S above the diagonal, plus the number of elements in the diagonal,

that gives a total of 1
2p(p+ 1) different equations. Similarly, It can be shown that conditions (6) and (7)

introduce 1
2m(m − 1) equations involving the parameters of Q and Ψ. Hence, the number of different

equations minus the number of parameters to estimate in the factor model is given by:

d =
1

2
p(p+ 1) +

1

2
m(m− 1)− (pm+ p). (8)

We can have three situations:

d < 0: In this case we have more (unknown) parameters than equations and therefore there is an infinite

number of solutions to the system, and the model is undetermined.

d = 0: In this case the number of equations is the same as the number of unknown parameters and

hence there exist an unique and exact solution to the system, this situation is not possible in general (i.e.

for any given p and m < p).

d > 0: In this case there is no exact solution to the system; there are more equations that unknown

parameters, and we will have approximate solutions to (5), we will search for Q̂ and Ψ̂ that minimize the

errors of estimation, for example, in the least squares sense.

Evaluating d (8) we can know the maximum number of factors we can identify for a given set of ini-

tial variables, without the model being undetermined.

10



After discussing the equation S = QQt + Ψ we are almost ready to see the method of Principal Factors,

which, among other methods, try to find adequate estimates Q̂ and Ψ̂ satisfying the above equation, at

least approximately. The method of Principal Factors will find solutions satisfying the restriction (6),

and we can use (8) to choose a number of factors such that d ≥ 0. Before seeing this method we must

explain why, in practice, is usual to standardize the initial variables.

2.3 Use of the correlation matrix

We recall that in practice we will have the data summarized in a matrix X̃ ∈Mn×p(R), where the rows

in X̃ will a sample of the random vector Xt = (X1, . . . , Xp).

In practice, it is habitual to standardize the data. Assuming the data is centred, by default, the stan-

dardization consist in applying the transformation:

X̃z = X̃D−1/2

where D = diag(s11, . . . , spp) and sii is the sample variance of the variable Xi, we suppose sii > 0, ∀i =

1, . . . , p3. X̃z is the standardized data matrix and their rows are a sample of the standardized initial

random vector Xt
z = (X1/σ1, . . . , Xp/σp), where σ2

i = V ar(Xi), being σi > 0, ∀i = 1, . . . , p.

Then, we search for a solution to the orthogonal factor model for Xz, using the data in X̃z. It holds

that ΣXz
= R, where R is the correlation matrix of X; R = (Corr(Xi, Xj))ij , and it also holds Sz = R̂,

where Sz is the sample covariance matrix of Xz and R̂ is the sample correlation matrix of X. Hence, to

estimate a solution to the orthogonal factor model for the standardized vector Xz, we will have to find

Q̂ and Ψ̂ such that

Sz = R̂ = Q̂Q̂t + Ψ̂ (9)

at least, approximately.

The reason why it is common to work with standardized data is illustrated in the remark 2.3.1.

Observation 2.3.1. If (Q, f, u) is a solution to the orthogonal factor model for Xz, then, using propo-

sition 2.1.2, and denoting C = diag(σ2
1 , . . . , σ

2
p) it holds:

Q = Cov(Xz, f) = Cov(C−1/2X, f) = C−1/2Cov(X, f) =

= (Cov(Xi, fj)/σi)ij = (Corr(Xi, fj))ij = Corr(X, f)

= RXf .

Where RXf denotes the matrix of correlations between X and the factors f .

Therefore, the matrix of loadings Q, that will be estimated by Q̂, is the matrix of correlations between the

initial variables and the factors, making the loadings easier to interpret. Concretely, correlations, unlike

covariances, don’t depend on the units with which the variables are measured, and their absolute value is

bounded by one, this make them comparable and a better indicator of relationship. Hence, if the loadings

are the correlations between the factors and the initial variables, we might be able to interpret a factor in

terms of the variables in which the factor have a loading near ±1, in other words, in terms of the variables

that the factor explains the most. We will discuss the interpretation of the factors more precisely later on.

The last observation is useful because the hiddent factors f do not change when variables are rescaled,

as it is stated in the next proposition

3Let A = diag(a11, . . . , app) be a diagonal matrix with aii > 0, ∀i = 1, . . . , p, A−1/2 denote the matrix (A−1)1/2 =

diag(( 1
a11

)1/2, . . . , ( 1
app

)1/2).
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Proposition 2.3.2. Let X be the random vector of initial variables, let Xz = C−1/2X be the standard-

ized vector, and let (Qz, f, uz) be a solution to the orthogonal factor model for the standardized variables

in Xz, with m factors and with Cov(uz) = Ψ. Then (C1/2Qz, f, C
1/2uz) is a solution to the orthogonal

factor model for X, with m factors and with Cov(C1/2uz) = CΨ

Proof. If (Qz, f, uz) is a solution to the orthogonal factor model for Xz then

X = C1/2Xz = C1/2(Qzf + uz) = C1/2Qzf + C1/2uz

and it also holds

i) E[f ] = 0m×1 , Cov(f) = Im
ii) E[C1/2uz] = C1/2E[uz] = 0p×1 , Cov(C1/2uz) = C1/2Cov(uz)C

1/2 = C1/2ΨC1/2 = CΨ, and CΨ is

also diagonal.

iii) Cov(f, C1/2uz) = Cov(f, uz)C
1/2 = 0m×p. �

Therefore, we might find interpretable factors searching a solution for the standardized variables, and

then, if desired, we can use this factors to explain the unstandardized data X. In this case, if Q̂z is the

estimated loadings matrix of Xz, C
1/2 will be estimated by D1/2, and the loadings matrix of X will be

estimated by D1/2Q̂z.

We remind that our objective is to find matrices Q̂ ∈ Mp×m(R), with m < p, and Ψ̂ ∈ Mp×p(R),

with Ψ̂ diagonal and positive definite, such that the equality S = Q̂Q̂t + Ψ̂ holds, at least approximately,

for some m such that d, given by (8), satisfy d ≥ 0. We’re now ready to look at the principal factors

method to find such matrices Q̂ and Ψ̂ for the standardized case S = R̂, which is justified by what we

have seen above.

2.4 The principal factors method

Let X̃ be the data matrix of observations of Xt = (X1, . . . , Xp) and Xz be the standardized vector. Let

m < p such that d ≥ 0, let R̂ be the sample correlation matrix. We want to find Q̂ ∈ Mp×m(R) and

Ψ̂ ∈Mp×p(R), with Ψ̂ diagonal and positive definite, such that R̂ = Q̂Q̂t + Ψ̂, at least approximately, to

fit the orthogonal factor model for Xz. Solutions with Ψ̂ positive semidefinite will also be permissible.

We recall (observation 2.1.4) that if the factor model holds for Xz = (X1z, . . . , Xpz), then

1 = V ar(Xiz) =

m∑
j=1

q2
ij + ψi = h2

i + ψi (10)

since the variables are standardized.

The principal factors method is an iterative method based on the spectral decomposition, that needs

initial estimates of the communalities h2
i , the method follows the next steps:

1. Compute the sample correlation matrix R̂ using X̃.

2. Compute initial estimates ĥ2
i of the communalities. Let R̂ = (r(xi, xj))ij , two common estimates

are:

(a) ĥ2
i = maxi 6=j |r(xi, xj)|

(b) ĥ2
i = R2

i.others , where R2
i.others is the multiple correlation coefficient of Xi with the other

variables in X.
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3. Compute the initial specific variances ψ̂i = 1− ĥ2
i , and set Ψ̂ = diag(ψ̂1, . . . , ψ̂p).

4. The matrix R̂− Ψ̂ is symmetric and therefore we can consider its spectral decomposition R̂− Ψ̂ =

V ΛV t, where Λ = diag(λ1, . . . , λp) with λ1 ≥ · · · ≥ λp. Suppose that the first m < p eigenvalues

λ1 ≥ · · · ≥ λm are positive4. Let Vm be the matrix whose columns are the first m columns of V , in

the same order, and let Λm = diag(λ1, . . . , λm), then set Q̂ = VmΛ
1/2
m , it holds:

Q̂Q̂t = VmΛ1/2
m Λ1/2

m V tm = VmΛmV
t
m ≈ R̂− Ψ̂ (11)

It is known that this is the best approximation of rank m of R̂− Ψ̂ according to the Frobenius norm

(in the least squares sense), in fact, if λi = 0, ∀i > m, Q̂Q̂t = R̂− Ψ̂. Moreover, it holds:

Q̂tQ̂ = (Λ1/2
m )tV tmVmΛ1/2

m = (Λ1/2
m )tImΛ1/2

m = Λm

because the columns of V are orthogonal. Hence, Q̂tQ̂ is diagonal and the restriction (6) is satisfied.

5. Redefine the specific variances in terms of Q̂: ψ̂i = 1 −
∑m
j=1 q

2
ij , and set Ψ̂ = diag(ψ̂1, . . . , ψ̂p),

here (qij)ij = Q̂. Then, the equations in (10) hold exactly: V ar(Xiz) = 1 =
∑m
j=1 q

2
ij − ψ̂i.

6. Repeat steps 4 and 5 until some convergence criterion is reached, for example until specific variances

ψ̂i have converged to a stable value. If ψ̂i ≥ 0,∀i = 1, . . . , p, the solution given by the estimates Q̂

and Ψ̂ is permissible. Values ψ̂i out of [0, 1] may appear during the iteration, in this case they are

forced to be 0 or 1, in step 4, some of the first m eigenvalues of R̂− Ψ̂ may be negative, this is not

a serious problem if they are small and we can suppose them to be zero (Peña, p. 363)(13 ).

Observation 2.4.1. The approximation in (11) will be good if the eigenvalues λm+1, . . . , λp are close to

zero, that is the desired situation, but it may not be the case in general. The quality of the approximation

can be evaluated directly comparing R̂ with the estimation Q̂Q̂t + Ψ̂ given by the method, if it’s not

a good approximation, one option is to consider a model with more factors, without the model being

undetermined. In fact a solution with m = p factors will always exist, this solution is given by the

principal components of Xz, concretely, let R̂ = V ΛV t be the spectral decomposition of R̂, all the

eigenvalues in Λ are non negative, since the sample correlation matrix is positive semidefinite, then, Xz ≈
(V Λ1/2)Λ−1/2Y , where Y is the vector of principal components of Xz, hence, ((V Λ1/2),Λ−1/2Y, 0p×1)

is an estimate solution of p factors to the orthogonal factor model for Xz, concretely V ar(Λ−1/2Y ) =

Λ−1/2V ar(Y )Λ−1/2 ≈ Λ−1/2ΛΛ−1/2 = Ip. This solution, however, is not desirable, the reason is that

we want to explain the initial variables with a few common factors, and if we not allow the small errors

given by the specific factors, we will need more common factors to hold the model.

2.5 Factor scores

Once the orthogonal factor model has been fitted, it may be of interest to have an estimation of the

values that may take the factors for a fixed observation of the initial vector, this values are called factor

scores. There is more than one option to choose for the factor scores, in our case, we will take as factor

scores the expected value of the factors, conditioned to a given observation of the initial vector.

Let Xt = (X1, . . . , Xp) be the initial variables, and suppose ΣX = QQt + Ψ with Q ∈ Mp×m(R)

with m < p and Ψ ∈Mp×p(R) diagonal an positive definite, then we have seen that the orthogonal factor

model with m factors holds for X, with matrix of loadings Q, and concertely, the factors satisfying the

model, given by the theorem 2.1.5 are ((3), (4)):

f = W−1(QtΨ−1X + Y ) (12)

4The matrix R̂− Ψ̂, unlike R̂, can have negative eigenvalues.
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u = M−1(X −QY ) (13)

where: W = Im + QtΨ−1Q, M = Ip + QQtΨ−1, and Y ∼ Nm(0m×1,W ). Our interest is focused only

on common factors. Let x0 ∈Mp×1(R) be an observation of the initial random vector X, It holds:

E[f |X = x0] = E[W−1(QtΨ−1x0 + Y )] = E[W−1QtΨ−1x0] + E[W−1Y ] = E[W−1QtΨ−1x0] + 0m×1

= W−1QtΨ−1x0

This will be taken as the factor scores corresponding to the observation x0, and the following notation

can be used:

fx0
:= E[f |X = x0] = W−1QtΨ−1x0 (14)

In general, we use fx for a general x.

In practice, the unknown matrices Q and Ψ are replaced by it’s respective estimates Q̂ and Ψ̂, also

when computing W−1. Let’s see an equivalent expression for the factor scores:

Proposition 2.5.1. If ΣX = QQt + Ψ with Q ∈ Mp×m(R), and Ψ ∈ Mp×p(R) diagonal an positive

definite, then W−1QtΨ−1 = QtΣ−1
X

Proof.

W−1QtΨ−1 = QtΣ−1
X ⇐⇒ (Im +QtΨ−1Q)−1QtΨ−1 = Qt(QQt + Ψ)−1

⇐⇒ (Im +QtΨ−1Q)−1QtΨ−1(QQt + Ψ) = Qt

⇐⇒ (Im +QtΨ−1Q)−1(QtΨ−1QQt +Qt) = Qt

⇐⇒ (Im +QtΨ−1Q)−1(QtΨ−1Q+ Im)Qt = Qt

⇐⇒ Qt = Qt

The equality Qt = Qt is true, therefore the equality W−1QtΨ−1 = QtΣ−1
X holds. �

Hence, an equivalent expression for the factor scores (14) is:

fx = QtΣ−1
X x (15)

for an observation x ∈Mp×1(R) of X.

The last expression (15) for the scores is known as Thompson’s factor scores (Thompson, 1935)(16 ).

An alternative approach to obtain this expression is by means of a regression argument and assuming

that the initial random vector X has multivariate normal distribution (see Hardle and Simar, p. 322)

(4 ). Using the conditional expectation argument, we haven’t needed this last assumption.

As in (14), in practice, Q is replaced by Q̂, and ΣX is replaced by Σ̂X = Q̂Q̂t + Ψ̂, although it can

also by replaced by the sample covariance matrix S (Hardle and Simar, p. 323) (4 ), then we have

estimates

f̂x = Q̂tΣ̂−1
X x (16)

We will also refer to the estimates as factor scores.

We can give an expression for the factor scores of the initial observations of X summarized in X̃.

Let xti be the ith row of X̃; the ith observation of X, let f̂i := f̂xi
be the factor scores of the ith

observation, then f̂i = Q̂tΣ̂−1
X xi, and therefore:

(f̂i)
t = (Q̂tΣ̂−1

X xi)
t = xti(Q̂

tΣ̂−1
X )t = xtiΣ̂

−1
X Q̂
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Therefore, denoting by F the matrix whose ith row are the factor scores of the ith observation: (f̂i)
t, we

have:

F = X̃Σ̂−1
X Q̂ (17)

This is an expression for the factor scores matrix for the whole set of the observations in X̃.

2.6 Factors interpretation, and rotations

Interpreting the factors is understanding what they represent in the context of investigation. A factor

is interpreted in terms of the variables with which it is more correlated (positively or negatively) and,

therefore, the variables that the factor explains the most. Interpretation will not always be clear, in this

case, there are methods to rotate the factors in a such way that the rotated ones may be easier to interpret.

Suppose that a m-factorial model was found to be reasonable for the standardized variables Xz, i.e.

we have found adequate matrices Q̂ and Ψ̂ such that Q̂Q̂t + Ψ̂ is a good approximation of R̂, in this case

Q̂ ≈ Corr(X, f), as we pointed in section 2.3, and we will use Q̂ to interpret the factors.

Let Xt = (X1, . . . , Xp) be the initial vector and let f t = (f1, . . . , fm) be the factors in that model.

Denote Q̂ = (qij)ij , and let qj = (q1j , . . . , qpj)
t be the jth column of Q̂. The column qj gives the correla-

tions between the factor fj and the initial variables. Suppose that a column qj have values either close

±1, or close to zero. A value qij close to 1 indicates positive relationship between the variable Xi and

the factor fj , i.e. Xi will be large when fj is large, a value qij close to −1 indicates negative relationship

between Xi and fj , i.e. Xi will be large for large negative values of fj , finally a value qij close to zero

indicates no linear relationship between Xj and fj . Thus, if a column qj has values either close to ±1 or

close to zero, the factor fj may be interpretable. On the other hand, if the columns have intermediate

values, the factor fj may be difficult to interpret.

We want then the columns of Q̂ to have values either close to ±1 or close to zero, it is also desir-

able that every pair of columns of Q̂ have the loadings close to ±1 on different rows, that is, each variable

should be loaded highly on at most one factor. If all the columns of Q̂ have a few values close to ±1 and

the remaining loadings are close to zero, and each variable is loaded highly on at most one factor, we

will say that the matrix of loadings Q̂ has a ”simple structure”. In this situation each variable is mainly

explained by one single factor, each factor can be interpreted in terms of the variables that it explains

the most, and all the factors might be interpretable. On the other hand, if the columns of Q̂ have too

many intermediate values, the factors may not be interpretable.

For example, suppose that the initial variables Xt = (X1, . . . , Xp) are the qualifications in p differ-

ent mental ability tests, and we have this qualifications for n individuals in a data matrix X̃, suppose

that we find a factor model fitting the data with only one factor f1 that is positively correlated with all

the test qualifications Xi, with correlations close to 1, that is, f1 explains the qualifications of all the tests,

and the larger is f1, the larger will be this qualifications, then, the factor f1 could be interpreted as the

”overall level of intelligence” of an individual, ratifying this interpretation with the criteria of the experts

in the matter. This last example was one of the first uses of factorial analysis. We refer to the ”overall

level of intelligence” as a qualitative aspect because in principle one would label the level of intelligence

of an individual using qualitative values such as ”high” or ”low”. If the factor f1 is interpreted as the

”overall level of intelligence”, we then can measure this aspect quantitatively, as the score of f1 for a

given qualifications on the tests in X, hence, under this interpretation, high values of f1 indicate a ”high

overall level of intelligence”, whereas low values indicate a ”low overall level of intelligence”, since the

correlation of f1 with the tests qualifications is positive.

We recall (proposition 2.1.6) that, if (Q, f, u) is a solution to the orthogonal factor model for Xz with m
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factors, and G ∈ Mm(R) is an orthogonal matrix, then (QG,Gtf, u) is also a solution to the orthogonal

factor model for Xz, with m factors. If we fit the model for Xz but Q̂ has not a simple structure, there

are methods that aim to provide a rotation matrix G such that Q̂G has values either close to ±1 or close

to zero, to make the rotated factors Gtf interpretable. We will overview the method of the Varimax

rotation, proposed by Kaiser (1958)(8 ), which is one of the most popular methods to get an adequate

matrix of loadings.

2.6.1 The Varimax rotation

Let Q̂ ∈Mp×m(R) be the unrotated matrix of loadings of the factor model, let ∆ = Q̂G, with G ∈Mm(R)

an unknown orthogonal matrix. The Varimax rotation is an iterative method that try to provide an

adequate rotation G such that ∆ has either values close to ±1 or close to zero, by maximizing a function

of the rotated loadings ∆. We denote ∆ = (δij)ij , then the simplest version of the varimax method would

consist on maximizing the function:

Φ =

m∑
j=1

p∑
i=1

(δ2
ij − δ̄j)2

where δ̄j = 1
p

∑p
i=1 δ

2
ij , we observe that

∑p
i=1(δ2

ij − δ̄j)2 is the sample variance of the jth column of ∆2

(except a constant). Thus, this optimization was proposed expecting that if the column variances were

maximized then the elements δ2
ij in the columns will be either close to 1 or close to 0 as desired. An

improvement of the method was found by weighting the rows of ∆, concretely, let

dij =
δij
hi

, d̄j =
1

p

p∑
i=1

d2
ij

where hi =
√
〈qi, qi〉 is the square root of the ith communality, and qi is the ith row of Q̂. The norm of

the rows of ∆ is equal to the norm of the rows of Q̂ since ∆ is a rotation of Q̂, so the transformation

makes the matrix ∆∗ = (dij)ij to have unitary rows. Then, the function to maximize is:

Φ =

m∑
j=1

p∑
i=1

(d2
ij − d̄j)2

The maximization of this function is done numerically, under the restriction ∆ = Q̂G, with G ∈Mm(R)

a rotation matrix.

3 Confirmatory factorial analysis

3.1 Introduction

In confirmatory factorial analysis we will search for a solution that generalizes the orthogonal factor

model 2.1.1, now allowing correlations between the common factors. In this version the values of some

parameters of the model are fixed in advance, and only the non fixed parameters are estimated.

Confirmatory factorial analysis, unlike the exploratory version, is used to test if the data fits a fac-

tor model with a prefixed structure. An use of confirmatory factorial analysis is to try to quantitatively

model as factors qualitative aspects or hidden features that can’t be directly measured, choosing as ini-

tial variables those indicators that are believed to be able to indirectly describe the aspects studied. In

this case, the researcher has a certain amount of knowledge of the initial variables, and is in position to

formulate hypothesis involving the factors of the model, for example fixing some loadings to be zero, and

therefore choosing the variables that each factor can explain. If the model under this hypothesis fits the

data, the factors might be interpreted as the aspects or hidden features of study. Is recommended to do
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an exploratory analysis before the confirmatory one, to choose a model that is not in contradiction with

the observed data. When some values of the parameters of the model are fixed, we say that we formulate

a hypothesis about the model, in the sense that we make a supposition of the structure of the model for

our variables, that can be rejected if the imposed model doesn’t fit the data. Usually, we will fix the value

of some parameters of the model in such a way that the factors can be interpreted as desired, therefore,

if the model holds, in the sense that it is well adjusted, rotations won’t be necessary.

3.2 The model and the fundamental results

In this case we will allow correlations between the common factors, this is a more realistic assumption if

we want to use them to model different aspects of interest, than ask them to be uncorrelated. We define:

Definition 3.2.1. Let Xt = (X1, . . . , Xp) be a p × 1 random vector with E[X] = 0p×1. We say that

the factor model holds for X if there exist two random vectors f t = (f1, . . . , fm) with m < p and

ut = (u1, . . . , up) and a matrix Q = (qij)ij ∈Mp×m(R) such that

X1 = q11f1 + q12f2 + · · ·+ q1mfm + u1

X2 = q21f1 + q22f2 + · · ·+ q2mfm + u2

...

Xp = qp1f1 + qp2f2 + · · ·+ qpmfm + up

In short: X = Qf + u, and satisfying:

i) E[f ] = 0m×1, Cov(f) = Θ, with Θ ∈Mm(R) symmetric and positive semidefinite.

ii) E[u] = 0p×1, Cov(u) = Ψ, with Ψ ∈Mp(R) and diagonal.

iii) Cov(f, u) = 0m×p.

In this case we say that the triplet (Q, f, u) is a solution to the factor model for X. It is also usual to

reefer to the factors as ”latent” or ”hidden” factors for X, in the sense that if the factor model holds for

X, the known variables in X are explained by the factors, which are unknown before adjusting the model.

We observe that in this case, we don’t restrict the common factors to be uncorrelated, concretely, we

now allow Cov(f) = Θ, with Θ any covariance matrix, unlike the orthogonal case, were we asked

Cov(f) = Im. The basic properties of the model are:

Proposition 3.2.2. Let X be a random vector with E[X] = 0p×1. If the factor model holds for X and

(Q, f, u) is a solution, then Cov(X, f) = QΘ.

Proof. Using that (Q, f, u) is a solution to the factor model 3.2.1, that is: X = Qf + u satisfying

i), ii) and iii), we have:

Cov(X, f) = Cov(Qf + u, f) = Cov(Qf, f) + Cov(u, f) = QCov(f, f) = QΘ. �

Proposition 3.2.3. Let X be a random vector with E[X] = 0p×1. If the factor model holds for X and

(Q, f, u) is a solution, then ΣX = QΘQt + Ψ

Proof.

ΣX = Cov(X) = Cov(Qf + u) = Cov(Qf) + Cov(Qf, u) + Cov(u,Qf) + Cov(u)

= QCov(f)Qt +QCov(f, u) + Cov(u, f)Qt + Cov(u)

= QΘQt + Ψ

Where we have used the properties i), ii) and iii) of the solution. �
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Therefore, the necessary condition for the model to have solution is now ΣX = QΘQt + Ψ, with Θ and

Ψ covariance matrices, with the second being diagonal. This condition will also be sufficient analogously

to the orthogonal case, if we suppose Ψ positive definite. The result is given by the next theorem, which

is a corollary of the theorem 2.1.5 of existence of solution to the orthogonal factor model.

Theorem 3.2.4. (Existence of solution to the factor model)

Let Xt = (X1, . . . , Xp) be a p × 1 random vector with E[X] = 0p×1. If there exist three matrices

Q ∈ Mp×m(R), with m < p, Ψ ∈ Mp(R), with Ψ diagonal and positive definite, and Θ ∈ Mm(R),

with Θ symmetric and positive semidefinite, such that ΣX = QΘQt + Ψ, then there exist two random

vectors f t = (f1, . . . , fm) and ut = (u1, . . . , up) that satisfy the factor model 3.2.1 with loadings matrix

Q,Cov(f) = Θ and Cov(u) = Ψ, that is; satisfying X = Qf +u,Cov(f) = Θ,Cov(u) = Ψ and i), ii), iii).

Proof. Suppose ΣX = QΘQt + Ψ, with Q ∈ Mp×m(R), Ψ ∈ Mp(R), with Ψ diagonal and positive

definite, and Θ ∈ Mm(R), with Θ symmetric and positive semidefinite. Since Θ is symmetric, we can

consider it’s spectral decomposition Θ = V ΛV t, Λ = diag(λ1, . . . , λm), and since Θ is positive semidefi-

nite λ1 ≥ · · · ≥ λm ≥ 0, therefore we can take Λ1/2 = diag(
√
λ1, . . . ,

√
λm) and write Θ = V Λ1/2Λ1/2V t.

Now denote Q0 = QV Λ1/2, then:

ΣX = QΘQt + Ψ = QV ΛV tQt + Ψ = QV Λ1/2Λ1/2V tQt + Ψ

= (QV Λ1/2)(QV Λ1/2)t + Ψ

= Q0Q
t
0 + Ψ

Therefore ΣX = Q0Q
t
0+Ψ, with Q0 ∈Mp×m(R) and Ψ ∈Mp(R), with Ψ diagonal and positive definite, so

we are on the hypothesis of the theorem 2.1.5, hence, there exists two random vectors f0 = (f01, . . . , f0m)t

and u0 = (u01, . . . , u0p)
t that satisfy the orthogonal factor model for X with matrix of loadings Q0 and

Cov(u0) = Ψ, that is, satisfying X = Q0f0 + u0, Cov(u0) = Ψ, E[u0] = 0p×1, Cov(f0) = Im, E[f0] =

0m×1 and Cov(f0, u0) = 0m×p, now define the random vectors f := V Λ1/2f0 and u := u0, let’s see that

this vectors give a solution to the factor model 3.2.1 for X with matrix of loadings Q, Cov(u) = Ψ, and

Cov(f) = Θ. It holds:

X = Q0f0 + u0 = QV Λ1/2f0 + u0 = Qf + u

and it also holds:

Cov(u) = Cov(u0) = Ψ , E[u] = E[u0] = 0p×1

Cov(f) = Cov(V Λ1/2f0) = V Λ1/2Cov(f0)(V Λ1/2)t = V Λ1/2Cov(f0)Λ1/2V t

= V Λ1/2ImΛ1/2V t = V Λ1/2Λ1/2V t = V ΛV t

= Θ

E[f ] = E[V Λ1/2f0] = V Λ1/2E[f0] = 0m×1

Cov(f, u) = Cov(V Λ1/2f0, u0) = V Λ1/2Cov(f0, u0) = 0m×p

Therefore, X = Qf + u with f and u satisfying i), ii) and iii) with Cov(f) = Θ and Cov(u) = Ψ, so we

are done. �

3.3 Determination of the model

In view of the last theorem 3.2.4, to fit the model to the data in X̃, we will estimate ΣX using the

sample covariance matrix S, and we will now have to find three matrices Q̂ ∈ Mp×m(R), with m < p,

Θ̂ ∈Mm(R), with Θ̂ symmetric and positive semidefinite, and Ψ̂ ∈Mp(R), with Ψ̂ diagonal and positive

definite such that the equality

S = Q̂Θ̂Q̂t + Ψ̂ (18)
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holds, at least approximately, if we find such matrices Q̂, Θ̂, and Ψ̂, they will give raise to an estimate

solution to the factor model. Hence, we will now try to satisfy, at least approximately, the equation:

S = QΘQt + Ψ (19)

where we think of Q ∈Mp×m(R), with m < p, Θ ∈Mm(R), with Θ symmetric and positive semidefinite,

and Ψ ∈Mp(R), with Ψ diagonal and with positive entries, as unknown matrices, whereas S is a known

symmetric positive semidefinte matrix.

As we mentioned in the introduction, now the objective is not finding an appropriate initial solution

to the model and then do rotations if necessary, but try to fit from the beginning the model with the

desired structure. We will impose the structure we want the model to have by fixing some values of

the parameters of Q, Θ, and Ψ, and then we will search a solution to (19) under this restrictions, no

further restrictions will we added if it’s not necessary. It will only be necessary to estimate the non fixed

parameters. We denote by t the number of free, non fixed parameters of Q, Θ, and Ψ, then, the degrees

of freedom of the model are in this case given by:

d =
1

2
p(p+ 1)− t (20)

this is, the number of different equations defined by (19) minus the number of free, unknown parameters

to estimate. As in the orthogonal case, the factor model will be determined if d ≥ 0 (Peña, p. 387)(13 ).

3.4 The maximum likelihood method

The Maximum Likelihood Estimation (MLE) method is a wellknown technique to find adequate estimates

Q̂, Θ̂ and Ψ̂ satisfying (19), at least approximately, and with the desired fixed values. The application

of the method here is based on the assumption that the initial random vector Xt = (X1, . . . , Xp) is

multinormally distributed and hence, if the data deviates from this hypothesis, the found estimates may

be spurious. On the other hand, if the data can be supposed multinormal, we may obtain good estimates

and we will be able to properly test if the imposed model fits the data.

The MLE in the factor model case was successfully developed by Jöreskog (1967)(5 ) and (1969)(6 ). The

idea is to suppose that the true covariance matrix of X, ΣX , can be decomposed as ΣX = QΘQt + Ψ,

with Q, Θ and Ψ with the desired fixed values, the estimates Q̂, Θ̂ and Ψ̂ given by the method will be

the maximum likelihood estimates under this hypothesis.

To simplfy notation, here we denote Σ = ΣX . Suppose X ∼ Np(0p×1,Σ) and suppose Σ = QΘQt + Ψ,

with Q ∈ Mp×m(R), Θ ∈ Mm(R), with Θ symmetric and positive semidefinite, and Ψ ∈ Mp(R), with Ψ

diagonal and with positive entries, for a fixed m < p and with some fixed values in Q, Θ and Ψ such that

d in (20) satisfies d ≥ 0. Σ is invertible as Ψ is positive definite. Let X̃ be the data matrix of observations

of X, where we denote by xti the ith row of X̃, that is, the ith observation of X. The likelihood function

for the observations (x1, . . . , xn) in X̃ is given by:

L(X̃;µ,Σ) =
1

|2πΣ|n/2
exp
{
− 1

2

n∑
i=1

(xi − µ)tΣ−1(xi − µ)
}

where | · | denotes the determinant, and the log-likelihood function for X̃ is given by:

l(X̃;µ,Σ) = log(L(X̃;µ,Σ)) = −n
2

log(|2πΣ|)− n

2
tr(Σ−1S)− n

2
(x̄− µ)tΣ−1(x̄− µ)

where

x̄ =
1

n

n∑
i=1

xi and S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)t (21)
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(see for example Mardia et al., 1979, pp. 96-97)(10 ). We suppose the data is centered, so x̄ = 0p×1, and

we suppose E[X] = µ = 0p×1, then the log-likelihood function becomes:

l(X̃; 0,Σ) = −n
2

(log(|2πΣ|) + tr(Σ−1S))

we will denote l(Σ) := l(X̃; 0,Σ), so we have

l(Σ) = −n
2

(log(|2πΣ|) + tr(Σ−1S)) (22)

Maximizing l(Σ) is equivalent to maximizing L(X̃, 0,Σ), since the logarithm is a strictly increasing

function. For convenience, Joreskog (1967, p. 5)(5 ), propose to minimize the function:

F (Σ) = − 2

n
l(Σ)− log(2πS)− p

instead of maximizing l(Σ), which is equivalent, since the maximization is done over Σ and the term

log(2πS)− p is fixed by the observations and the number of initial variables. Developing F (Σ) we have:

F (Σ) = − 2

n
l(Σ)− log(2πS)− p = log(|2πΣ|) + tr(Σ−1S)− log(2πS)− p

= tr(Σ−1S)− p+ log(|2πΣ|)− log(|2πΣΣ−1S|)

= tr(Σ−1S)− p+ log(
|2πΣ|

|2πΣΣ−1S|
)

= tr(Σ−1S)− p+ log(
|2πΣ|

|2πΣ||Σ−1S|
)

= tr(Σ−1S)− p+ log(
1

|Σ−1S|
)

= tr(Σ−1S)− log(|Σ−1S|)− p

Thus,

F (Σ) = tr(Σ−1S)− log(|Σ−1S|)− p (23)

We observe that this is a discrepancy function between S and Σ; as closer F (Σ) is to zero, we can expect

S be a better estimation of Σ, we will use this function in the next section to give a statistic to test the

goodness of fit of the model to the data. Finally, replacing Σ in (22) by it’s supposed decomposition

Σ = QΘQt + Ψ, we obtain:

F (Q,Θ,Ψ) = tr((QΘQt + Ψ)−1S)− log(|(QΘQt + Ψ)−1S|)− p (24)

This is the function to minimize, concretely, let Ω0 be the set of all matrices M ∈ Mp(R), such that

M = QΘQt + Ψ with Q ∈Mp×m(R), Θ ∈Mm(R) symmetric and positive semidefinite, and Ψ ∈Mp(R)

diagonal and with positive entries, and with the desired fixed values on Q, Θ and Ψ. We will denote by

Q̂, Θ̂ and Ψ̂ the values of Q, Θ and Ψ minimizing F (Q,Θ,Ψ) (24) in the region given by Ω0, that is,

Q̂Θ̂Q̂t + Ψ̂ ∈ Ω0 and gives the minimum of F (Q,Θ,Ψ) over all matrices M ∈ Ω0. The objective of the

method is finding Q̂, Θ̂ and Ψ̂. These matrices are the maximum likelihood estimates of Q, Θ and Ψ

under the hypothesis Σ ∈ Ω0. The maximum likelihood estimate of Σ under this hypothesis is

Σ̂ = Q̂Θ̂Q̂t + Ψ̂ (25)

Jöreskog (1967)(5 ) and (1969)(6 ) developed a numerical algorithm to find Q̂, Θ̂ and Ψ̂. We won’t see

the algorithm here, but as a point, to avoid non positive definite solutions of Ψ, Jöresekog restricts the

minimization of Ψ to a region Rε such that ψi ≥ ε, for all i = 1, . . . , p, for a prefixed small ε > 0,

sometimes the minimizing value of Ψ may be found on the boundary of Rε, in this case further decrease
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of F (Q,Θ,Ψ) might be done over Ψ being positive definite, and the solution given by the estimates is

said to be improper.

In confirmatory factorial analysis is also usual to standardize the initial variables, in this case we search

a solution to the factor model for the standardized initial vector Xz, in the discussion above, for the

standardized case, the maximum likelihood method will use ΣXz
= R, and Sz = n−1

n R̂, where ΣXz
is the

true covariance matrix of Xz, and Sz is the sample covariance matrix of Xz given in (21), and R and R̂

are the true and sample correlation matrices of X, respectively, the common factors of a solution for Xz

are also valid for X analogously to the orthogonal case (proposition 2.3.2).

3.5 The goodness of fit test

The goodness of fit test is an advantage if we can assume the data to be multinormal and use the max-

imum likelihood method to fit the factor model, it allows to test if the fit of the imposed model to the

data in X̃ is good, or if by cons the model is in contradiction with the observed data.

Let Ω0 be the set defined in the above section, of all the matrices with the desired structure for Σ,

and let Ω1 = {M ∈ Mp(R); M is symmetric and positive definite}, we have Ω0 ⊆ Ω1. The goodness of

fit test is a hypothesis test to test H0 : Σ ∈ Ω0 against the alternative hypothesis H1 : Σ ∈ Ω1. The test

uses the likelihood-ratio technique. Let:

l0 = max
Σ∈Ω0

l(Σ) and l1 = max
Σ∈Ω1

l(Σ)

where l(Σ) is the log-likelihood function (22), l0 = l(Σ̂), where Σ̂ is the maximum likelihood estimate of

Σ under H0, that is, Σ̂ = Q̂Θ̂Q̂t+ Ψ̂ (25), in the other hand, supposing that S in (21) is positive definite,

we have l1 = l(S), developing:

l1 = l(S) = −n
2

(log(|2πS|) + tr(S−1S)) = −n
2

(log(|2πS|) + p) = −n
2

(log((2π)p|S|) + p)

= −n
2

[log(|S|) + p+ log((2π)p)]

l0 = l(Σ̂) = −n
2

(log(|2πΣ̂|) + tr(Σ̂−1S)) = −n
2

(log((2π)p|Σ̂|) + tr(Σ̂−1S))

= −n
2

[log(|Σ̂|) + tr(Σ̂−1S) + log((2π)p)]

Let λ be the likelihood ratio to test H0 against H1 then:

−2log(λ) = 2(l1 − l0) = 2(−n
2

[log(|S|) + p+ log((2π)p)] +
n

2
[log(|Σ̂|) + tr(Σ̂−1S) + log((2π)p)])

= −nlog(|S|)− np− nlog((2π)p) + nlog(|Σ̂|) + ntr(Σ̂−1S) + nlog((2π)p)

= −nlog(|S|) + nlog(|Σ̂|) + ntr(Σ̂−1S)− np

= n(log(|Σ̂|)− log(|S|) + tr(Σ̂−1S)− p)

= n(−log(|S|/|Σ̂|) + tr(Σ̂−1S)− p)

= n(tr(Σ̂−1S)− log(|Σ̂|−1|S|)− p)

We observe that −2log(λ) = nF (Σ), this is the statistic we will use to test H0 : Σ ∈ Ω0 against

H1 : Σ ∈ Ω1. Let

U := −2log(λ) = n(tr(Σ̂−1S)− log(|Σ̂|−1|S|)− p) (26)

It is known that, in the Gaussian case, U has an asymptotic χ2
d distribution as n→∞, where d are the

degrees of freedom of the model under H0 (see for example Mardia et al. pp. 123-124)(10 ), we have seen
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d = 1
2p(p + 1) − t (20), where t is the number of free (non fixed) parameters of the model. As usual, if

Uo is the observation of the statistic for the data in X̃, we reject H0 with a confidence level of 1 − α if

Uo > χ2
d(1−α), where χ2

d(1−α) is the (1 − α)th percentile of χ2
d, that is, P{U ≤ χ2

d(1−α)} = 1 − α. The

imposed model will not contradict our data in X̃ if H0 is not rejected, in this case values of Uo close to

zero will indicate a good fit of the model to the data.

3.6 Other methods of estimation

The assumption that the vector of initial variables is multinormal is restrictive. There exist other methods

to fit the factor model to the data that doesn’t need an assumption on the distribution of the initial

random vector, one popular example is the method of the generalized least squares (Jöreskog, 1971)(7 ),

which it’s simplest version would consist on minimizing the discrepancy function:

F (Σ) = tr((S − Σ)(S − Σ)t)

Under the restriction Σ = QΘQt + Ψ, with Q, Θ and Ψ with some fixed values. Denoting by ei =

(ei1, . . . , eip) the ith row of S − Σ, we have:

F (Σ) = tr((S − Σ)(S − Σ)t) =

p∑
i=1

〈ei, ei〉 =

p∑
i=1

p∑
j=1

e2
ij

Thus, the method search for the estimates Q̂, Θ̂, and Ψ̂, minimizing the sum of the squared residuals

between S and Σ̂ = Q̂Θ̂Q̂+ Ψ̂.

3.7 Factor scores

Once the factor model has been fitted, we could be interested on the factor scores for a given observation

of the initial variables. As in the orthogonal case, we will take as factor scores the expected value of the

factors, conditioned to a given observation of the initial vector.

Let Xt = (X1, . . . , Xp) be the random vector of initial variables, and suppose ΣX = QΘQt + Ψ with

Q ∈Mp×m(R), with m < p, with Θ ∈Mm(R) symmetric and positive semidefinite and with Ψ ∈Mp(R)

diagonal and positive definite, then, we have seen that the factor model with m factors holds for X, with

matrix of loadings Q, concretely, recalling theorem 3.2.4, let Θ = V ΛV t be the spectral decomposition

of Θ, the factors satisfying the factor model given by theorem 3.2.4 are:

f = V Λ1/2f0 and u = u0

Where f0 and u0 are the factors satisfying the orthogonal factor model for the decomposition ΣX =

Q0Q
t
0 + Ψ, with Q0 = QV Λ1/2, given by the theorem 2.1.5. Hence, recalling (12) and (13), we have

f = V Λ1/2f0 = V Λ1/2W−1(Qt0Ψ−1X + Y ) (27)

u = u0 = M−1(X −Q0Y ) (28)

where: W = Im + Qt0Ψ−1Q0, M = Ip + Q0Q
t
0Ψ−1, and Y ∼ Nm(0m×1,W ). Let x ∈ Mp×1(R) be an

observation of the initial random vector X, it holds:

E[f |X = x] = E[V Λ1/2W−1(Qt0Ψ−1x+ Y )]

= E[V Λ1/2W−1Qt0Ψ−1x] + E[V Λ1/2W−1Y ]

= V Λ1/2W−1Qt0Ψ−1x+ V Λ1/2W−1E[Y ]

= V Λ1/2W−1Qt0Ψ−1x+ 0m×1

= V Λ1/2W−1Qt0Ψ−1x
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we show (proposition 2.5.1) W−1Qt0Ψ−1 = Qt0Σ−1
X , therefore, we have:

E[f |X = x] = V Λ1/2W−1Qt0Ψ−1x = V Λ1/2Qt0Σ−1
X x

= V Λ1/2(QV Λ1/2)tΣ−1
X x = V Λ1/2Λ1/2V tQtΣ−1

X x

= ΘQtΣ−1
X x

thus, denoting fx := E[f |X = x], we have:

fx = ΘQtΣ−1
X x (29)

This will be taken as the factor scores corresponding to the observation x. In practice Θ, Q and ΣX are

replaced by it’s respective estimates Θ̂, Q̂ and Σ̂X = Q̂Θ̂Q̂t + Ψ̂, ΣX can also be replaced by the sample

covariance matrix, we will denote

f̂x = Θ̂Q̂tΣ̂−1
X x (30)

Let xti be the ith row of the data matrix X̃, let f̂i := f̂xi
be the factor scores of the ith observation, then

f̂i = Θ̂Q̂tΣ̂−1
X xi, we have:

(f̂i)
t = (Θ̂Q̂tΣ̂−1

X xi)
t = xti(Θ̂Q̂

tΣ̂−1
X )t = xtiΣ̂

−1
X Q̂Θ̂

Therefore, denoting by F the matrix whose ith row are the factor scores of the ith observation: (f̂i)
t, we

have:

F = X̃Σ̂−1
X Q̂Θ̂ (31)

This is an expression for the factor scores matrix for the whole set of observations in X̃.

3.8 Factors interpretation

In confirmatory factorial analysis, in order to obtain interpretable hidden or latent factors, the initial

variables are also usually standardized, we will search for a solution to the factor model for the standard-

ized initial vector Xz, and this factors will also be valid for the initial vector X, as in the orthogonal case.

We will also ask another general condition to make the factors interpretable: we will ask the common

factors to have unit variance, we remind that Θ is the covariance matrix of the common factors, hence,

this last condition will be achieved by fixing the values on the diagonal of Θ to be 1, before fitting the

model. Under these assumptions the factors can also be interpreted using the matrix of loadings Q,

although in this case it don’t give the covariances (or correlations in the standardized case), between the

initial variables and the common factors. In practice we will use the estimate Q̂ of Q.

Concretely, suppose that (Q, f, u) is a solution to the factor model for Xt
z = (Xz1, . . . , Xzp), with m

factors, then:

Xz1 = q11f1 + q12f2 + · · ·+ q1mfm + u1

Xz2 = q21f1 + q22f2 + · · ·+ q2mfm + u2

...

Xzp = qp1f1 + qp2f2 + · · ·+ qpmfm + up

if all the common factors have unit variance, then a loading qij measure the part of the variability of

Xiz uniquely explained by fj , and the loadings are comparable, in the sense that if |qij | = |qrk|, then fj
explains the same part of variability of Xiz that fk explains of Xrz. Since standardization only changes

the scale of the initial variables, the loadings also measure the part of variability of the initial variables
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explained by the factors. If the factors have different variances, the loadings aren’t comparable, for ex-

ample if q11 > q12 > 0 and q13 = · · · = q1p = 0, but V ar(f2) is large and V ar(f1) is close to zero, large

values of Xz1 may correspond to the large values of f2, whereas f1 will take small values and they will

not affect the values of Xz1, thus a large loading will not necessarily mean a large part of variability

explained, standardization of the initial variables is also necessary to use the loadings as a comparable

measure between different variables of the variability explained by the factors, for example suppose now

that (Q, f, u) is a solution for the initial vector X, Q = (qij)ij , suppose q11 = q21 = 1 and V ar(f1) = 1, if

V ar(X1) = 1 but V ar(X2) = 100, then X2 can’t be uniquely explained by f1, whereas is possible to have

X1 = f1. It is also desirable that the specific factors u have small variances, so that the initial variables

are mainly explained by the common factors.

Therefore we will search for a solution to the factor model for the standardized variables, asking the

common factors to have unit variance, in this situation, the interpretation of the factors may be straight-

forward if each column of the loadings matrix Q̂ have a few large (positive or negative) loadings whereas

the remaining loadings of the column are close to zero, and if every pair of columns of Q̂ have the large

loadings on different rows, that is, if each variable is loaded highly on at most one factor, in this case

we will say that the matrix of loadings Q̂ has a ”simple structure”, as in the orthogonal case. In this

situation each variable is mainly explained by one single factor, and a factor can be interpreted in terms

of the variables that it explains the most, the simple structure can be achieved, for example, by fixing

in advance some loadings to zero. Setting certain weights to be zero, the factors might be interpreted as

some hidden features of interest related with the initial variables, and therefore they could be used to

model them.

Observation 3.8.1. We note that a factor fj can be correlated with a variable Xi although qij = 0.

In this case the factor fj may contribute indirectly to explain Xi, trough the factors fk correlated with

fj , and with a large loading qik. In fact, if (Q, f, u) is a solution to the factor model for Xz, and the

factors in f have unit variance, then, using proposition 3.2.2, and denoting C = diag(σ2
1 , . . . , σ

2
p), where

σ2
i = V ar(Xi), it holds:

QΘ = Cov(Xz, f) = Cov(C−1/2X, f) = C−1/2Cov(X, f) =

= (Cov(Xi, fj)/σi)ij =
(Cov(Xi, fj)

σi · 1
)
ij

=
( Cov(Xi, fj)√

V ar(Xi)
√
V ar(fj)

)
ij

= (Corr(Xi, fj))ij = Corr(X, f)

= RXf .

Thus, the correlations between the initial variables in X and the factors in f are given by QΘ, in practice

QΘ is estimated by Q̂Θ̂, where Q̂ and Θ̂ are the estimates of Q and Θ, respectively.

4 Sustainable progress indicators based on confirmatory facto-

rial analysis

IERMB provided us from a data set of observations of a random vector of social, economic, ecological and

urban variables, corresponding to metropolitan regions of Europe in the year 2016, the first step in the

process to obtain sustainable progress indicators for this regions, is to adjust an adequate factor model

model to this variables, using confirmatory factorial analysis, in such a way that the few new factors can,

hopefully, be interpreted as some environmental, urban and socioeconomic aspects explaining the initial

variables.
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4.1 The 2016 data set

After an exploratory analysis of the data, we found reasonable a factor model with 4 factors for 10 of

the initial 14 variables provided by IERMB, the 4 missing variables where discarded for various reasons;

one variable was discarded because it was equal to a rescaled variable in the 10 chosen for the analysis,

and hence, it won’t give extra information, the others were discarded because of a poor explanation of

them unless more factors were taken, this variables could be taken into account in a future analysis; as

we said in the introduction, we built this example only to illustrate the process of obtaining sustainable

progress indicators, and to show an example of confirmatory factorial analysis. Concretely, the 10 chosen

variables are given in the following list.

• PIC Gross domestic product per capita.

• NPT Number of registered patents per capita.

• TAR Unemployment rate (% of unemployed workers over active worker population).

• CEP Primary energy consumption per capita (kilotonnes of oil equivalent).

• GEH Greenhouse gases per capita (thousands of tonnes of CO2 equivalent).

• GUR Urbanization rate (% of urban surface over total surface).

• DPB Population density (population over urban surface).

• PAI Weight of industrial sector activity (% over total activity).

• PAS Weight of services sector activity (% over total activity).

• DPR Productive diversity (adimensional value).

The given observations of the variable NPT do not correspond to 2016 but to 2012, we have used NPT

anyway in lack of its 2016 values, we can think its values correspond to 2016, for the only purpose of

showing the procedure of obtaining sustainable progress indicators, however, for this reasons and the ones

mentioned in the introduction, the results of the analysis can’t be taken as meaningful or valid to draw

conclusions concerning the metropolitan regions. The rest of the variables given observations correspond

to 2016. The data set used consists of an observation of the vector of the above variables for each of a

set of 95 Europe metropolitan regions, concretely, let

Xt = (PIC,NPT,TAR,CEP,GEH,GUR,DPB,PAI,PAS,DPR). (32)

be the vector of initial variables. We used a data matrix X̃ ∈M95×10(R) where each row is an observation

xti = (xi1, . . . , xi10) of Xt corresponding to one of the 95 regions and on the year 2016 (except the

observation of NPT), and we had one observation for each region.

4.2 The model

The model was fitted for the standardized variables for the reasons explained in section 3.8 and hence

using the correlation matrix R̂ of the initial vector X, computed using X̃. We adjusted a factor model

with 4 factors to the (standardized) data, using confirmatory factorial analysis. We fixed some parameters

of the model as usual, concretely, we fixed some of the factor loadings to zero, and we fixed to unit the

common factors variances, to allow interpretations. This restrictions were in concordance with the initial

exploratory factorial analysis, that is, we only fixed to zero values that were small in the exploratory

25



analysis, to obtain a model with a simple structure without contradicting the observed data. The fixed

structure in Q, Θ, and Ψ is given by:

Q =



q11 0 0 q14

q21 0 0 0

q31 q32 0 0

0 q42 0 0

0 q52 0 0

0 0 q63 0

0 0 q73 0

0 0 0 q84

0 0 0 q94

0 0 0 q104


Θ =


1 θ12 θ13 θ14

θ21 1 θ23 θ24

θ31 θ32 1 θ34

θ41 θ42 θ43 1

 (33)

and Ψ is diagonal with no fixed values. The model was fitted under this restrictions using the function

cfa() in lavaan R-package (Rosseel, 2012)(14 ), the method of the unweighted least squares was used

(recall section 3.6). We obtained the estimates given in Figure 1.

Factor1 Factor2 Factor3 Factor4

PIC 1.03 0.00 0.00 -0.44

NPT 0.69 0.00 0.00 0.00

TAR -0.42 -0.37 0.00 0.00

CEP 0.00 0.82 0.00 0.00

GEH 0.00 0.90 0.00 0.00

GUR 0.00 0.00 0.85 0.00

DPB 0.00 0.00 1.09 0.00

PAI 0.00 0.00 0.00 0.87

PAS 0.00 0.00 0.00 -1.04

DPR 0.00 0.00 0.00 0.83

(a) Estimated loadings matrix

Factor1 Factor2 Factor3 Factor4

Factor1 1.00 0.27 0.05 0.08

Factor2 0.27 1.00 -0.07 0.16

Factor3 0.05 -0.07 1.00 -0.24

Factor4 0.08 0.16 -0.24 1.00

(b) Estimated factors correlation matrix

PIC NPT TAR CEP GEH GUR DPB PAI PAS DPR

-0.18 0.53 0.61 0.32 0.19 0.28 -0.18 0.24 -0.08 0.31

(c) Estimated specific variances

Figure 1: Estimated parameters of the model

We observe that some specific variances are negative, this is not a serious problem since the value of zero

was found in their confidence interval. The estimated correlation matrix Q̂Θ̂Q̂t+Ψ̂ using the estimates Q̂,

Θ̂ and Ψ̂ in figure 1 reproduced properly the sample correlation matrix R̂, thus, the model fits adequately

the observed data, and we can use its properties.

4.2.1 Interpretation of the factors

Once the model is fitted, the next step is to try to label the factors. To help us with the interpretation,

in addition to the loadings, we will use the estimated matrix of correlations between the initial variables

and the factors R̂xf = Q̂Θ̂ given in table 1.

Denote by f1, f2, f3 and f4 the four factors of the model, starting with f1, we observe that it ex-

plains a large part of the variability of PIC (gross domestic product per capita), since q11 = 1.03. The
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Factor1 Factor2 Factor3 Factor4

PIC 0.99 0.20 0.16 -0.36

NPT 0.69 0.18 0.04 0.05

TAR -0.51 -0.48 0.00 -0.09

CEP 0.22 0.82 -0.06 0.13

GEH 0.24 0.90 -0.06 0.15

GUR 0.05 -0.06 0.85 -0.21

DPB 0.06 -0.07 1.09 -0.27

PAI 0.07 0.14 -0.21 0.87

PAS -0.08 -0.17 0.25 -1.04

DPR 0.07 0.14 -0.20 0.83

Table 1: Estimated correlations between initial variables and factors

only remaining common factor explaining PIC is f4, in a smaller scale. The specific variance for PIC, that

is, the part of the variability of PIC not explained by the common factors, is small, we also observe that

q11 = 1.03 is positive, as the correlation between f1 and PIC, and hence, large values of f1 will correspond

to large values on PIC, similarly, f1 explains NPT (number of registered patents per capita), except for

the specific variance, and it is positively correlated with NPT. Finally, the factor f1 is negatively loaded

in TAR (unemployment rate), and thus, large values of f1 will imply a decrease in TAR. Taking into

account this considerations, we will label the factor f1 as socioeconomic development. This label must

be taken as an example, with the only purpose of showing the statistical procedure to derive sustainable

progress indicators, since although it is done taking into account the mathematical relationships between

f1 and the initial variables, the author have no knowledge about economics or sociology, and the label

was not contrasted with the experts of this matters in IERMB. The same apply to the rest of the labels.

The interpretation of the factor f2 is easier, the variables CEP (primary energy consumption per capita)

and GEH (greenhouse gases per capita) are mainly explained with this factor, with no other factors load-

ing in this variables, in other words, no other factors explain directly this variables, and f2 is positively

correlated with CEP and GEH and therefore the large values in this variables correspond to large values

in f2, thus, we will label this factor as environmental impact.

Similarly, factor f3 explains GUR (urbanization rate) and DPB (population density) with positive load-

ings in each of this two variables, and is labelled as urban complexity, with large values on f3 implying

large values on GUR and DPB.

Finally, for f4, we observe that is loaded positively on PAI (weight of industrial activity) but nega-

tively on PAS (weight of services activity) and positively loaded on DPR (productive diversity) but

negatively on PIC (gross domestic product per capita), this alternated relations of f4 with the initial

variables makes it a factor difficult to interpret, maybe an interpretation would been possible with the

feedback of IERMB, but we can’t see a label of example clearly, and in consequence, we won’t use this

factor on the further analysis. Not using f4, the indicators that we may find will not take into account

the variables PAI, PAS and DPR, because this variables are only explained by f4, except of small indirect

explanation by the other factors trough the correlations between them and f4.

For convenience in the building process of the sustainable progress indicators, we would prefer the oppo-

site of the factor f2, that is, a factor whose large values correspond to low values in CEP (primary energy

consumption) and GEH (greenhouse gases), since we want that large values on the factors coincide to

good levels in the aspects involving sustainable progress. This is not a problem, because if (f1, f2, f3, f4)
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give a solution to the model, the factors (f1,−f2, f3, f4) also give a solution to it, concretely we observe:

Observation 4.2.1. Let (Q, f, u) be a solution to the factor model for a random vector X, with m

factors, and let Iim ∈Mm(R), Iim = diag(1, . . . , 1,−1, 1, . . . , 1) with the value −1 in the ith position, that

is, the m square matrix with ones on the diagonal, except the value −1 in the ith position. We observe

that Iim is an orthogonal matrix, and so, it holds (analogously to proposition 2.1.6) that (QIim, I
i
mf, u) is

a solution to the factor model for X with m factors, concretely Iimf = (f1, . . . ,−fi, . . . , fm)t as desired,

and QIim is the matrix Q but with the loadings in the second column with the signs changed. Also,

supposing Cov(f) = Θ, we have Cov(Iimf) = IimΘIim, that is, Θ, but with the ith row and column with

the signs changed, the specific variances do not change.

Hence, we can consider the factors f1,−f2, f3 and f4, since they explain as well the initial variables. De-

noting f̃2 := −f2, now the factor f̂2 is interpreted with the exact same loadings as f2 but with changed

sign in them, and thus, f̃2 explains CEP and GEH, but with the opposite relationship as f2 with this

variables, that is, large values of f̃2 will coincide with low values in CEP and GEH, as desired, and we

will label f̃2 as environmental protection. The other factors remain the same.

Thus, we consider the factors f1(socioeconomic development), f̃2 (environmental protection) and f3

(urban complexity). Supposing that their labels were valid, this factors could measure their respective

labelled aspects for the metropolitan regions of study, trough the factor scores, with large values on the

factor scores meaning a high level in their labels. We will use this factors to build indicators.

4.3 Sustainable progress indicators

The next step to obtain a sustainable progress indicator is deriving simple indices from the factors f1,

f̃2 and f3, the indices will measure the same aspects as the factors, but they will have more adequate

properties, this simple indices are integrated into compound indicators, which take into account all the

three aspects measured by the factors and, therefore, may be able to measure sustainable progress (in the

case that factors trully represent its labels). We will denote f̃2 by f2, abusing of notation, and reminding

that f2 will now refer to the factor environmental protection

We will use the term ”probability-based index” to refer to any statistic that is a function of several

variables and satisfies: i) it takes values on a bounded interval; ii) it can be used to rank a set of obser-

vations; iii) it depends on a parametric family of distributions adjusted to the data sample (Marull et

al., 2019) (11 ). We will first build three probability-based indices from the empirical distributions of the

factors f1, f2 and f3.

Let X̃z be the standardized data matrix summarizing the observations of the metropolitan regions,

and consider the factor scores of this observations F = X̃zR̂
−1Q̂Θ̂ for the factors f1, f2, f3. Denote F1,

F2 and F3 the first, second and third column vector of F respectively, that is, the factor scores of the

factors f1, f2 and f3. The simple indices are obtained using F1, F2 and F3. The first step is applying a

transformation to the scores, concretely, we apply a Box-Cox monotone power type transformation (Box

and Cox, 1964)(2 ) to F1, F2, and F3 independently. Let Fij = (F1j , . . . , F95j)
t be the scores of the

factor fj , for j ∈ {1, 2, 3}, for all the 95 metropolitan regions. Let Fλij be the transformed scores of the

factor fj , the Box-Cox transformation is given by

Fλij =
(Fij +m)λ − 1

λ

for λ 6= 0, and for some m such that Fij + m ≥ 0, ∀i = 1, . . . , 95. This transformation is monotone

increasing and therefore it does not change the classification that factor fj does of the regions, that is,

if Fij ≤ Fkj , then Fλij ≤ Fλkj , moreover, the transformed factors are more symmetric, and we use this
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property to adjust the transformed factor scores to a Laplace distribution. The Laplace’s density and

cumulative distribution functions are given by:

f(x;m, b) =
1

2b
exp
(
− |x−m|

b

)
and Φ(x;m, b) =

1

2
+

1

2
sgn(x−m)− exp

(
− |x−m|

b

)
(34)

respectively, where sgn denotes the function sign. This is the parametric family of distributions that

the three indices will depend on. We observe that the Laplace’s density is symmetric, and therefore

it will likely fit to the transformed scores empirical distribution, choosing the adequate parameters m

and b. m is called location parameter and it indicates the axe of symmetry of the density function,

its maximum likelihood estimate is the empirical median m̂ (Norton, 1984) (12 ), whereas a maximum

likelihood estimator for b is b̂ = 1
n

∑n
i=1 |xi − m̂|. Hence, denoting tFj ; j ∈ {1, 2, 3} the vectors of

transformed scores, we adjust the transformed scores tFj to the Lapalce distribution with the parameters

of maximum likelihood m̂j and b̂j computed using tFj . The procedure is visualized in the next two

graphics, for F3:

Figure 2: Factor scores adjusted to Laplace distribution

In the two histograms, left for F3 and right for transformed scores, we can see the symmetry achieved

with the Box-Cox transformation, the red lines represent the density function of Laplace with parameters

m̂3 and b̂3, the fit for F3 is good, although it may not be the case in general. Let Φj(x) be the cumulative

distribution function of parameters m̂j and b̂j , for j ∈ {1, 2, 3}, that is, the cumulative distribution

function adjusted to each transformed scores, in the figure 3 is shown the adjust of Φj(x) to the empirical

cumulative distribution function of tFj .

The probability based index for Fj , is given by Ij := Φj(x), thus, it depends on the Laplace distribution

adjusted to the the scores tFj , and it takes values in [0, 1] and ranks the observations of the metropolitan

regions in the same order as given by tFj , and hence in the same order as Fj , since Φj(x) is a cumulative

distribution function. Therefore Ij := Φj(x) will classify and measure the observations of the regions as

the scores Fj , but it have adequate properties, as we want. The value of Ij for a metropolitan region i is

given by

Iij := Φj(tFij)

and the larger the value Iij is, the better positioned will be the region i in terms of the aspect explained

by the factor fj . In fact, Iij can be interpreted as the probability to obtain a value less or equal than

the observed tFij within all the scores in tFj , since tFij is supposed to be an observation of a Laplace

variable with cumulative distribution function Φj .

Once the simple indices I1(economic development), I2(environmental protection) and I3(urban complex-

ity) are obtained, we can search for a compound index. We will consider as a compound index any linear

combination of the three simple indices of the form:

S = w1I1 + w2I2 + w3I3; w1 + w2 + w3 = 1 (35)
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Figure 3: Black: adjusted distribution vs Grey: empirical distribution of transformed scores

This way, S will also take values in [0, 1] and it will take into account all the three aspects explained by

the simple indices. If we had been able to interpret f4, we also included a simple index for it in the above

expression, and the compound indicators would take into account more features, maybe related with the

economic activity of the metropolitan regions, due the variables explained by f4.

We propose 3 compound indicators:

S1 =
1

3
I1 +

1

3
I2 +

1

3
I3 (36)

S2 =
2

4
I1 +

1

4
I2 +

1

4
I3 (37)

S3 =
1

4
I1 +

2

4
I2 +

1

4
I3 (38)

S1 is an indicator that rewards balanced values in the economic, social, ecological and urban aspects,

hence, we will denote it as inclusive development. S2 rewards high values on I1(socioeconomic develop-

ment), we will label it socioeconomic sustainability. Finally, S3 rewards high values on I2(environmental

protection), and we will label it as an environmental sustainability indicator. Figure 4 shows the values

taken by I1, I2, I3, S1, S2 and S3 for all the 95 metropolitan regions, in the year 2016.

4.4 Discussion

The values of the indicators in figure 4 measure the level of their respective labels on each metropolitan

region in the year 2016, supposing the labels were accurate. values close to 1 indicate a good position in

the aspect evaluated, whereas values close to 0 indicate a poor performance. The effects of the weightings

are clear, for example, Madrid and Barcelona having low values on I1(socioeconomic development) and

large values on I2(environmental protection) are clearly rewarded by the index S3(environmental sus-

tainability) and penalized by the index S2(socioeconomic sustainability), whereas London is rewarded by
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S2(socioeconomic sustainability). An extensive discussion of the values in figure 4 could we performed.

Disposing of data of more years, the evolution in the values of the indicators could be observed, in that

case, it is possible to evaluate the progress or involution of each aspect measured by the indicators in the

metropolitan regions over the years. Supposing the labels of the indicators were really valid, the indicator

S1(inclusive development) is a balanced indicator over all socioeconomic, ecological and urban aspects,

taking into account the dimensions characterizing sustainable progress, thus, it might be a candidate to

sustainable progress indicator if evaluated over different years. Its important to remind that, as we said

in the introduction, the values in 4 can not be used to draw conclusions about the aspects with which

we, with the purpose of showing this procedure, have labelled the indicators as an example, since this

labels have not been discussed with experts on the matter.

5 Conclusion

Factorial analysis has proved to be one useful tool to analyse quantitatively, aspects with qualitative

dimensions, reducing the inherent subjectivity involving qualitative valuations, to an interpretation of

the effects of a factor over known and observed variables, where the consensus could be greater. Recall the

case of the ”overall level of intelligence”, it could have a greater consensus understanding a factor as the

”overall level of intelligence” if their large values imply large values on a series of exams qualifications, than

tell, based directly on the exams qualifications and with no other tool, the ”overall level of intelligence”

of a student.
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(4 ) Härdle, W. K., and Simar, L., Applied Multivariate Statistical Analysis; Springer Berlin Heidelberg:

2012.

31
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I1 I2 I3 S1 S2 S3

London 0.97 0.28 0.95 0.73 0.79 0.62

Paris 0.91 0.64 0.92 0.82 0.84 0.78

Madrid 0.15 0.91 0.74 0.60 0.49 0.68

Barcelona 0.09 0.95 0.71 0.58 0.46 0.68

Berlin 0.28 0.22 0.16 0.22 0.24 0.22

Ruhrgebiet 0.33 0.13 0.91 0.46 0.43 0.38

Roma 0.54 0.83 0.57 0.65 0.62 0.69

Milano 0.78 0.94 0.89 0.87 0.85 0.89

Manchester 0.29 0.65 0.78 0.57 0.50 0.59

Athina 0.06 0.87 0.92 0.62 0.48 0.68

Hamburg 0.77 0.17 0.60 0.51 0.58 0.43

Amsterdam 0.84 0.25 0.30 0.46 0.56 0.41

Napoli 0.40 0.79 0.98 0.72 0.64 0.74

Marseille 0.23 0.20 0.60 0.34 0.32 0.31

Budapest 0.02 0.84 0.25 0.37 0.28 0.49

Warszawa 0.17 0.34 0.05 0.19 0.18 0.23

Munchen 0.94 0.23 0.67 0.61 0.70 0.52

Lisboa 0.05 0.95 0.53 0.51 0.40 0.62

Wien 0.79 0.21 0.70 0.57 0.62 0.48

Stuttgart 0.92 0.19 0.89 0.67 0.73 0.55

Katowice 0.95 0.04 0.80 0.60 0.68 0.46

Frankfurt 0.87 0.16 0.81 0.61 0.68 0.50

LDV 0.07 0.50 0.50 0.36 0.29 0.39

Praha 0.26 0.19 0.33 0.26 0.26 0.24

Valencia 0.14 0.86 0.19 0.40 0.33 0.51

Bruxelles 0.78 0.66 0.71 0.72 0.73 0.70

WMUA 0.30 0.55 0.98 0.61 0.53 0.60

Bucuresti 0.70 0.21 0.94 0.62 0.64 0.51

Torino 0.21 0.91 0.09 0.40 0.36 0.53

Stockholm 0.97 0.40 0.86 0.74 0.80 0.66

Dublin 0.98 0.14 0.09 0.40 0.55 0.34

Kbenhavn 0.94 0.35 0.62 0.64 0.71 0.56

Köln 0.78 0.12 0.92 0.61 0.65 0.48

Sevilla 0.31 0.82 0.29 0.47 0.43 0.56

AlElche 0.17 0.61 0.20 0.33 0.29 0.40

Glasgow 0.30 0.16 0.25 0.24 0.25 0.22

Lyon 0.74 0.59 0.76 0.70 0.71 0.67

Rotterdam 0.69 0.03 0.76 0.49 0.54 0.38

Liverpool 0.11 0.50 0.87 0.49 0.40 0.50

Porto 0.17 0.95 0.42 0.51 0.43 0.62

Leeds 0.54 0.36 0.23 0.38 0.42 0.37

Sofia 0.12 0.38 0.06 0.19 0.17 0.24

Göteborg 0.89 0.76 0.39 0.68 0.73 0.70

MaMarbella 0.20 0.79 0.19 0.39 0.34 0.49

Helsinki 0.92 0.32 0.52 0.59 0.67 0.52

Bordeaux 0.82 0.19 0.76 0.59 0.65 0.49

Düsseldorf 0.89 0.10 0.93 0.64 0.70 0.50

MuCartagena 0.91 0.18 0.77 0.62 0.69 0.51

Kraków 0.89 0.18 0.79 0.62 0.69 0.51

I1 I2 I3 S1 S2 S3

Leicester 0.26 0.86 0.61 0.58 0.50 0.65

Nantes 0.50 0.80 0.41 0.57 0.55 0.63

Toulouse 0.43 0.37 0.46 0.42 0.42 0.41

Dresden 0.53 0.33 0.40 0.42 0.45 0.40

Nürnberg 0.66 0.16 0.52 0.45 0.50 0.38

Malmö 0.90 0.67 0.13 0.57 0.65 0.59

Gdansk 0.45 0.11 0.23 0.26 0.31 0.22

Hannover 0.48 0.18 0.39 0.35 0.38 0.31

Utrecht 0.86 0.78 0.77 0.80 0.82 0.80

Palermo 0.39 0.88 0.26 0.51 0.48 0.60

Brescia 0.81 0.68 0.20 0.56 0.63 0.59

Bari 0.71 0.73 0.72 0.72 0.72 0.72

Bremen 0.63 0.24 0.30 0.39 0.45 0.35

Rouen 0.39 0.23 0.74 0.45 0.44 0.40

Grenoble 0.36 0.23 0.19 0.26 0.28 0.25

Cádiz 0.08 0.81 0.14 0.34 0.28 0.46

Zagreb 0.19 0.75 0.05 0.33 0.30 0.44

Ostrava 0.65 0.07 0.73 0.48 0.52 0.38

Brno 0.43 0.20 0.56 0.40 0.40 0.35

MannheimL 0.89 0.05 0.88 0.61 0.68 0.47

Poznan 0.51 0.10 0.12 0.24 0.31 0.21

NUponTyne 0.06 0.62 0.01 0.23 0.19 0.33

Bilbao 0.25 0.90 0.59 0.58 0.50 0.66

Montpellier 0.27 0.11 0.64 0.34 0.32 0.28

Bristol 0.80 0.66 0.85 0.77 0.78 0.74

ACoruña 0.54 0.78 0.32 0.55 0.55 0.60

Strasbourg 0.25 0.71 0.36 0.44 0.39 0.51

StokeOnTrent 0.15 0.59 0.34 0.36 0.31 0.42

Catania 0.57 0.78 0.41 0.59 0.58 0.64

Thessaloniki 0.03 0.91 0.03 0.32 0.25 0.47

Bergamo 0.82 0.66 0.23 0.57 0.63 0.59

Nice 0.26 0.37 0.32 0.32 0.30 0.33

Lódz 0.08 0.35 0.16 0.20 0.17 0.24

sGravenhage 0.82 0.01 0.96 0.60 0.65 0.45

Rennes 0.71 0.80 0.19 0.57 0.60 0.62

OviedoGijon 0.28 0.80 0.16 0.41 0.38 0.51

Antwerpen 0.53 0.23 0.47 0.41 0.44 0.36

Leipzig 0.40 0.09 0.54 0.34 0.36 0.28

Firenze 0.39 0.92 0.11 0.47 0.45 0.58

Riga 0.17 0.71 0.08 0.32 0.28 0.42

Bologna 0.58 0.88 0.05 0.50 0.52 0.60

BSW 0.91 0.14 0.60 0.55 0.64 0.45

Zaragoza 0.44 0.64 0.23 0.44 0.44 0.49

Vigo 0.60 0.80 0.56 0.65 0.64 0.69

Padova 0.38 0.84 0.03 0.42 0.41 0.52

Verona 0.75 0.56 0.07 0.46 0.53 0.49

Figure 4: Values of the simple indicators I1(socioeconomic development), I2(environmental protection)

and I3(urban complexity), and the compound indicators S1(inclusive development), S2(socioeconomic sus-

tainability), and S3(environmental sustainability). LDV: LilleDunkerqueValenciennes, WMUA: WestMid-

lansUrbanArea, AlElche: AlicanteElche, MaMarbella: MálagaMarbella, MuCartagena: MurciaCartagena,

MannheimL: MannheimLudwigshafen, NUponTyne: NewcastleUponTyne, BSW: BraunschweigSalzgitter-

Wolfsburg.
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