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Improvement and expansion of a decoder 
module for an OCR system 

Arnau Vázquez Junyent 

Abstract— OCR systems, short for Optical Character Recognition, are becoming increasingly popular due to the increase in 
the digitalization of everything. Books, textbooks, magazines and several other paper-based documents are being transformed 
into an electronic version to be manipulated by a computer. As well, instant translation by image is becoming a reality with the 

booming technology of smartphones. Nonetheless, OCR systems are still not perfect. The real world contains a lot of extra 
information and noise that is very difficult for a current OCR system to clean completely, as well as the immensity of variables 
that take place in handwritten characters and paper-based documents. This project is meant to further improve a decoding 

module that uses a graph-based algorithm to predict optimal words, and attempts to increase its overall accuracy by using 
synthetic dataset generation for testing and applying improvements to the base algorithm.  

Index Terms— Probabilistic histogram, binary histogram, bigram, OCR, decoder, lexicon, PHOC, graph, synthetic generation. 

 

——————————   ◆   —————————— 

1 INTRODUCTION

HERE are several approaches for extracting words 
from images, but most of them have in common the 

following steps. 
     Firstly, there is pre-processing. For the images to be 
treated by the recognition system, images have to be pre-
processed, so the noise and impurities of the image are 
reduced.  
     Then there is text recognition. This module’s task is to 
extract the feature of the characters and determine with a 
probability that the input data is a certain character. Fea-
ture extraction can only output what it reads relying on 
the “knowledge” it has acquired in the training phases, so 
it cannot detect incoherences in the choices it makes. That 
is where the part in which this paper focuses on comes in. 
     So, the last step is post-processing. To increase accura-
cy, there are different strategies that can be followed. 
Some of them include limiting the words that can be de-
tected by a lexicon, for instance, only allowing English 
words to be decoded. This, however, makes it impossible 
for words that are not contemplated in the lexicon such as 
proper nouns. So, this project will be focusing on this part 
of an OCR system. 
     To be more specific, this project will follow the steps of 
a previous iteration [1] and will try to improve its overall 
decoding accuracy. In the following sections I will explain 
in more detail the base which this project has departed 
from, as well as the adaptations made for it to fit our cur-
rent requirements. For now, I will explain the objectives 
of this project, as well as the necessary changes that have 

been made. 
     The main objective of this project is to improve the 
results obtained by the previous iteration of this project, 
doing so by improving the existing algorithm and devel-
oping new approaches that hadn’t been considered. To be 
more specific, the main hypothesis proposed was that by 
using a 10-level histogram instead of a 5-level one, like in 
[1], we would obtain better results. This will be explained 
in more detail in the development section. Also, it was 
proposed that there were certain methods that could be 
applied to the algorithm to improve the results even fur-
ther. So, the earlier objectives of this project included: 
 

1. The adaptation of the previous iteration to test 
the proposed hypothesis (using 10-level histo-
grams). 

2. Analysis and understanding of the problem. 
3. Development of improvements to the algorithm. 

 
During the developlent of the project, the situation 
brought by the SARS-COV-2 pandemic made it impossi-
ble for me to access the dataset that was supposed to be 
used to test the algorithm. So, in order resolve this big 
issue, the objectives had to be reconsidered to the follow-
ing: 
 

1. Generation of a synthetic dataset to test the 
changes to the algorithm. 

2. Develop the improvements. 
3. Run tests and analyze the results obtained using 

the generated datasets, and applying the modifi-
cations developed. 

 
In the different sections of this project I will focus on ex-
plaining the different aspects that comprise the whole 
project. Firstly, and to put in situation, I will briefly ex-
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plain the previous iteration of the project, what it 
acomplished and expose the hypothesis proposed to im-
prove it. Then, I will explain the methodology of the de-
velopment and the development itself. Finally, I will 
show the results obtained, analyze them and summarize 
the overall outcome of the project in the conclusion sec-
tion. 

2 STATE OF THE ART 

This section is meant to give context to the more technical 
part of the project. I will be explaining from what base 
this project started from, and briefly mention some other 
techniques used in OCR post-processing. 
     The previous iteration of this project [1] focused on the 
development of a word decoder that was able to output a 
word using a graph structure and optimal track algo-
rithms.  
     The input of the system was a representation of words 
called “pyramidal histogram of characters” or PHOC [2]. 
This representation consists of a probabilistic histogram 
of 604 dimensions separated by levels and with an addi-
tion of bigrams (combination of 2 characters).  This histo-
gram contains 14 sub-histograms of 36 dimensions which 
represent the letters of the English alphabet and the num-
bers 0 to 9 ((26 + 10)*14 = 504 dimensions). 
     These representations can be obtained differently de-
pending on the format. Binary histograms are generated 
by using a digital word and arranging the values of the 
letters in the aforementioned structure. As this represen-
tation uses digital words it has no noise or representation 
errors. The only errors that can be caused come from the 
PHOC representation itself. Decimal histograms are gen-
erated by the output of the feature extraction part of the 
OCR and I have had no access to this generation method. 
Nontheless, I have been able to work with a previously 
generated dataset. Finally, I have developed 2 methods to 
generate synthetic probabilistic histograms, which I will 
explain in the development section. 
     In addition to the 504 dimensions, we add an extra 100 
dimensions with the most common bigrams found in the 
word dataset. The 14 sub-histograms are distributed in 4 
levels, where each one of them represents a way of parti-
tioning the word. The first level contains 2 sub-
histograms (word divided in 2 parts), where the first one 
represents the letters on the first half and the second one 
represents the other half. The same is done for the follow-
ing levels but with 3, 4 and 5 divisions of the word. 
     This representation is treated so as to have a graph 
structure with all the costs and possible arrangements of 
the letters in the word. After that, the optimal word is 
calculated with an optimal path algorithm. 
     Some key concepts to be considered of the methodolo-
gy are: 
 

1. Letters only appear once for each 36-dim histo-
gram. 

2. The letters are not ordered within the 36-dim his-
togram. Instead we use the bigrams to determine 
the most probable combination. 

3. We choose the level of the histogram according 
to the number of letters detected (this is an im-
portant concept that will be worked on in the 
improvement section). 

4. One of the optimizations performed in [1] was to 
add a “letter acceptance threshold”. This thresh-
old determines whether a letter will be consid-
ered for the graph or not. After several tests, it 
was determined that a threshold of 0.4 produced 
the best results [1]. This particular concept is very 
important to carry on, since I will use it in further 
sections.  

 
As for other methodologies used in the field of post-
processing, I have found that there is a great deal of varie-
ty. To name a few, [4] uses supervised classification algo-
rithms to detect errors in the read letters and then suggest 
optimal correction for each error, and [3] uses an algo-
rithm based on Google’s online spelling suggestion to 
correct errors. 

3 METHODOLOGY 

 
3.1 Software development methodology  
 
For this project, I have followed what I found to be the 
most similar to the way I work, which is PSP (Personal 
Software Process). 
PSP is intended to help software engineers grow and im-
prove their performance by tracing the development pro-
gress and comparing the predicted results with the actual 
results. This helps the developer acquire experience and 
improve in the following aspects: 
 

1. Being able to understand the necessities of the 
project and making a better initial approach. 

2. Knowing the development’s limitations and not 
committing to unreasonable results. 

3. Learning to manage the quality and making the 
result as good as possible within our limitations. 

4. Reducing the number of defects by making a 
more solid base and structuring the code in a 
more stable manner. 

 
All in all, it is a methodology that makes an engineer 
grow and improve their performance through experience. 
As far as software development paradigm goes, the one I 
have used is a mix between the spiral and cascade mod-
els. 
     For the project as a whole, I have followed the spiral 
model, I have planned, developed and tested each of the 
parts separately, but within each part I have followed 
what would be more similar to a cascade model, because 
for each part I needed to follow a sequence and each pro-
gress point relied on the previous ones. 
     To give some examples as to how I have applied this 
methodology, I have used the experience acquired in the 
first steps of the project to plan more realistically in terms 
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of deadlines, and to what degree of development I would 
be able to achive. As a more technical application, I have 
attempted to organize the code in a way that would allow 
me to modify it more clearly, to identify problems faster 
and to have several iterations of the same code to track 
my progress or revisit older parts of the code in case I 
needed them. This, as well as the weekly meetings with 
my tutor to plan and evaluate the progress, has allowed 
me to work organized and better prepared for changes 
and suggestions.  
 
3.2 Development tools 
 
The tools that I have used are: 
 

1. Matlab R2017b: Used for dataset generation. 
2. Python 3.7: Used to develop all the code. 
3. Python libraries used: 

a. Numpy 
b. Matplotlib 
c. Random 

4. Pycharm Community Edition 2019: Main editor. 
5. JabRef: Used to manage references. 

4 DEVELOPMENT 

 
In this section I will explain thoroughly the steps in the 
three main parts of this project’s development, as well as 
explaining the decisions I have made throughout it. 
     The development is separated in three main sections. 
Firstly, I will explain the adaptation of the original algo-
rithm. After that, I will dive into sample generation, and 
finally, I will describe the improvement made to the orig-
inal algorithm.  
 
4.1 Code adaptation 
 
The first step towards the improvement of the algorithm 
developed in [1], was to adapt its functionalities to the 
current requirements. The previous project consisted of 
three progressively more complex models where the lat-
ter was the one that achieved better results. In order to 
acquire a full understanding of the algorithm, I adapted 
the three models to my own way of programming, but at 
the same time keeping the base structure of the algorithm 
and adapted it to be able to operate with 10-level histo-
grams. The main changes that needed to be made were: 
 

1. Adapting the code to work with larger histo-
grams. From 5-level to 10-level. 

2. Adpting and correcting errors in the original rep-
resentation method (in Matlab). 

3. Adadpting the code to my way of programming 
by changing some functions to work in a way I 
was more comfortable with. 

 
As briefly mentioned in the introduction section, the main 
hypothesis was that 10-level histograms would obtain 

better results than 5-level ones. For that to be proven, I 
needed to adapt some parts of the algorithm for it to be 
able to work with lager histograms.  
     During the early testing of the adaptation, I discovered 
that the original method of generating binary histograms 
was outputting some words that contained duplicated 
letters. By migrating the code from Matlab to Python I 
was able to determine the reason of that issue and correct 
it. Even though it didn’t make that much of a difference in 
the results, it did correct some of the words and I thought 
it would be important further on, since I was going to be 
generating synthetic datasets based on those histograms, 
which explained in detail in the following section.  

 
4.2 Synthetic histogram generation 
 
One of the parts of the development that has taken a big-
ger part of the development time has been sample genera-
tion. This particular part of the development wasn’t con-
sidered in the first proposal of objectives, but due to ex-
ternal causes, the SARS-COV-2 pandemic quarantine, I 
have not been able to access the test data that I was sup-
posed to test the algorithm improvements with. This was 
a great issue that had to be solved in order to realistically 
test the decoder. At this point, we only had binary histo-
grams to test any improvements that involved working 
with 10 levels, and those results cannot determine the 
reliability of those improvements for datasets obtained 
from real images. The solution proposed was to generate 
histograms that resembled the real ones. Using the real-
image dataset from [1] (5-level histograms), I have been 
able to develop 2 methods of synthetic histogram genera-
tion. One that uses the previously generated binary histo-
grams and adds noise similar to the obtained from real 
images, and a second version that generates levels 6 
through 10 of the 5-level histograms obtained from real 
images. 
 
4.2.1 Binary-based histogram generation 
 
This generation method uses binary histograms, which 
are perfect representations of the word, and adds noise 
resembling the one that real-image histograms have. In 
order to obtain this, I have analysed the values of all 5-
level histograms and determined a series of noise param-
eters. The advantage that this method offers over the 
other one, is that we can generate datasets as large as we 
want, since the only resource we need are the histograms 
we generate ourselves. Also, binary-based generation is 
quite simple to implement, but it requires a more thor-
ough analysis in order to determine the values of the 
different parameters used in its generation. 
     The way this method works is the following. It takes a 
10-level binary histogram and goes over every value. 
Depending on whether the value is a “1” or a “0” we add 
or subtract a semi-random value. These semi-random 
values are generated by Python’s random library and they 
are composed by a range and a probability value that 
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determines within which range the value will be generat-
ed.  
     To calculate the parameters, I have portrayed all the 
values of all the real-image histograms into charts to be 
able to see what do the real values range between. The 
charts that I have used are: one containing all values be-
low the acceptance threshold, one containing all values 
above the acceptance threshold and a last one containing 
values around the acceptance threshold. 

 

 
Figure 1. Chart with all values under the acceptance threshold. The x 
axis represents the number of values and the y axis represents the value 
they have in the histograms. 

 

 
Figure 2. Chart with all values over the acceptance threshold. The x 
axis represents the number of values and the y axis represents the value 
they have in the histograms. 

These charts have helped me see visually how the real 
values are distributed in fairly defined ranges. As we can 
see in Figure 1, nearly all of the values under the 
trehshold are close to 0. This means that most values that 
are not being considered as letters have very low noise. 
Since it is difficult to get actual ranges from reading a 
chart, I have classified the data using a simple script in 
Python. I concluded that 90% of all data under the 
threshold range between 0 and 0.01, and the rest of the 
values are scattered between 0.01 and 0.4. This 10% has 
around 9.5% of the values close to 0.01 (we can see this in 
the slight curve of the chart). As for the remaining 0.5%, 
we will take them as possible errors, which I will explain 
with Figure 3. 
     The values in Figure 2, show a similar result as Figure 
1 but inverted.  This means that most values that are be-
ing considered letters are very near to 1, which again 
means there is few noise in the data. Nontheless, the data 

is not as well distributed as in Figure 1. There is a less 
pronounced curve, which means that values are not con-
centrated in a small range. When classifiying the values, 
we see that 80% of the data sits around 0.9 and 1. The 
remaining 20% has a similar situation to Figure 1, since 
most values are grouped near the 80%. Still, around 0.5% 
of these fall in the range that I have set as the “error area” 
or values around the threshold. 

 

 
Figure 3. Chart with all values around the acceptance threshold by 
±0.2 

Lastly, we can see in Figure 3 all the values around the 
threshold ±0.2, also named “error area”. The reason be-
hind choosing this range lies within the results in the [1] 
concerning acceptance thresholds. In those results, we 
could see how the accuracy didn’t vary much within the 
range 0.2 to 0.6, and 0.4 had the best results. So, by taking 
this into account, we can consider this range of values an 
area of error, where we can find misread values, residual 
values caused by the noise of the real world and partial 
readings. However, the actual presence of these values 
within the whole dataset represents solely a 0.5%.  
     So, for the first version of these parameters we have 
that for binary values that are 0 we add a random value 
between:  

1. 0 and 0.01 with a 90% chance. 
2. 0.01 and 0.2 with a 9.5% chance. 
3. 0.2 and 0.6 with a 0.5% chance. 

 
And for values that are 1 we subtract a random value 
between: 

1. 0 and 0.1 with an 80% chance. 
2. 0.1 and 0.6 with a 19.5% chance. 
3. 0.6 and 0.8 with a 0.5% chance. 

 
This analysis has been really useful to obtain a solid 
foundation for the parameters. Nonetheless, the results 
obtained by testing the generated histograms, using these 
first parameters, were slightly more optimistic than I 
needed them to be to replace real samples.  
 
So, to polish the values of the parameters I used the 5-
level real-image histograms to compare the similarity to 
the generated ones. By doing so, I realized that the 
amount of noise or error that was being used was too low. 
To fix the values, I ran several tests to determine the 
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amount of noise that would prove to be as similar to the 
real histograms as possible. As we will see in the results 
section in Table 4, that value has been proven to be 5% of 
error. 
     To sum up, this generation required a lot of testing and 
analysis, but it has allowed me to generate a very con-
vincing synthetic datasets that contain almost 90.000 
words. 

 
4.2.1 Real image-based histogram generation  
 
Unlike the first approach, this model generates histo-
grams based on the histograms used in the previous itera-
tion of this project [1], which were obtained from real 
images. The downside compared to the other method is 
that we are only able to generate a dataset as large as the 
size of the original 5-level dataset. On the other hand, this 
generation will surely be more faithful to the original one, 
so still it is really interesting to develop. 
     Although this model has more complexity in its devel-
opment, it requires no analysis since we are building a 
copy of a 5-level version, thus becoming a more straight-
forward way of generating the samples.  
     In order to generate these histograms, we have to add 
new levels to the existing ones by taking into considera-
tion its already existing values, so we are not going to be 
generating random histograms. One of the main issues 
has been that, depending on the length of each word, the 
level to be added must take into account possible mis-
takes made in the original histogram, as well as the order 
of the letters. 
     There are 3 word types that have been treated sepa-
rately: 

1. Words with 5 or less letters. 
2. Words with more than 5 letters. 
3. Words with more than 5 letters and consecutive 

double letters. 
 

The easiest word type to treat has obviously been the one 
with 5 or less letters. The generation of their histograms 
has only consisted on adding empty histograms (with no 
letter) to fill the remaining levels. This empty histogram 
has been obtained by getting one random histogram of 
the word, replacing all its values above the acceptance 
threshold by a random number between 0 and 0.01, and 
placing it between other fragments of the level. The posi-
tion of the empty histogram does not affect the result 
since only fragments containing a letter are taken into 
consideration by the algorithm. To have a more visual 
understanding of the process we can see it in the follow-
ing image for the word “DELL”. 

 
Then, for words greater than 5 the process is more com-
plicated. Now we have to take into account the order of 

the letters, which is not represented in the fragments of 
the histogram, and also the possibility that a word that 
has a double letter is not being represented correctly. To 
illustrate it the same way as in the earlier example, we 
will use the word “CAMPBELL”. 
 

  
In order to achieve the expected result, I followed 2 steps. 
Firstly, I had to determine whether the word contains 
consecutive double letters. To do so, I used the word itself 
and not its representation in histograms. If the word had 
a double letter I checked if it was being represented cor-
rectly, meaning that it would be appearing in two con-
secutive histogram fragments. As we can see in the ex-
ample above, this did not apply for the word “CAMP-
BELL”. So, in order not to lose letters in our representa-
tion I needed to generate a histogram containing the let-
ter, in this case “L”, and add it consecutive to the one 
containing that same letter. 
After this step we would have: 

 
Then, to simulate word partitions, I had to split the histo-
grams containing more than one letter so [CA] would 
become [C][A]. To do so, I had again to use the word to 
check the correct order of the letters. Once the order was 
determined, I generated a copy of the current fragment, 
moved the value of the second letter to the newly gener-
ated fragment, and finally placing the fragment next to 
the current one.  
     This last process is done until all histograms contain 
only one letter, or we have generated all 5 remaining 
levels. For words between 6 and 9 letters long (included) I 
added empty histograms to reach the 10-level representa-
tion the same way I did for shorter words. 
     To sum it all up, this method ensures a realistic level of 
noise, but it can only generate the same number of sam-
ples as 5-level samples we have, which in this case is 
around 550 words, much smaller than the binary-based 
set. 
 
4.3 Algorithm improvements 
 
Throughout the project, there have been many ideas to 
improve the results obtained by the decoder, but the only 
one that has been fully tested, and has contributed with 
very positive results, is the addition of different versions 
of the same word, or “word versioning”. 
     But before explaining it, I would like to mention some 
of the ideas that have been discarded. The latest idea has 
been to use trigrams instead of bigrams when assigning a 
cost to a possible word path in the graph. This would take 
into account groups of 3 letters the same way bigrams do. 
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However, after considering all the changes it required it 
was quickly discarded since there was no time left to 
develop it and there were other tasks that had to be done 
and added more value to the project. Some other ideas 
are derivated from word versioning, taking other ap-
proaches and trying different ways to generate different 
word versions, but none had proven useful enough, so I 
discarded their further development early on. 
     As for the actual improvement, it basically consists in 
generating 2 additional versions of the word and pro-
cessing them all at once. 
      Roughly explained, the original algorithm takes the 
histogram level closest to the size of the word, which is 
calculated by checking values over the acceptance thresh-
old. Then a graph is generated from that representation 
and an optimal word is calculated. By generating differ-
ent versions of the same word, we attempt to amend 
some of the inherent errors that histogram representation 
has. As we saw in the real image-based generation, a 
double letter may be represented incorrectly in the level 
that we are going to chose for our representation. But 
maybe in some other level of the histogram the represen-
tation is done correctly. 
     To explain this in a more visual manner, we can take 
the word “SUPERSTITION”, which is represented like 
this in its level 10 version: 

As we can see we are missing a letter “I”. However, it 
could happen that its level 9 representation was:  

 
And by using this representation of the word we would 
have better chances of guessing the word correctly.  
     So, these different versions are added to the graph the 
same way the original version is added, by adding its first 
vertices and generating their corresponding sub-graphs. 
In the following image, we can see how the graphs would 
be for the word “AND”. 

 
Figure 4. The diagram on the left is generated by levels 3 and 4. The 
diagram on the right is generated by level 2. Bigger boxes represent a 
letter and its probability value, and boxes in links represent the proba-
bility value of the bigram. The chosen representation for this case 
would be NAD (value = 340). I have used the word AND for it to be 
easier to represent. 

Unfortunately, this arose some unpredicted issues. As we 
can see in the previous image, the chosen result (highlited 
box) is completely incorrect. And if it weren’t for the ap-
plication of the word versioning the calculated word 
would have been correct. This happened for many words, 
but mainly for words of a smaller length.   
     To fix this problem I proposed a slight change to the 
weighing of the word path costs. Even though we want to 
take into consideration other levels of the histogram, I 
believe we still should think that the most optimal repre-
sentation should be the one that has the same, or closest, 
number of levels as number of letters. So, to give greater 
importance to the length-matching representation, I add-
ed an extra cost to that particular path in the graph. The 
value of the extra cost has been determined by testing 
with different values and the results have been the fol-
lowing. 
 

 
Table 1. Table with the accuracies obtained by running tests with 
different boost parameters. Dataset of 546 words generated by binary-
based generation. 

We will cover the results more in depth in the following 
section, but as we can see in this example, the values 
work differently depending on the length of the word. 
With shorter words we get the best results by adding a 
30% of the cost to the chosen histogram, and for longer 
words adding a 10% worked the best. At first, this was a 
surprising result, but after analyzing how this addition 
was changing the behavior of the algorithm, I could draw 
the following conclusion. Shorter words have lower costs, 
this means that any variation in the graph path represents 
a more significant increase or decrease of cost compared 
to the total. However, for longer words costs are much 
higher, and one error or variation in the whole path rep-
resents a slight change in its total value. Therefore, for 
shorter words I only took into account the additional 
versions if they were at least 30% better than the original, 
and for longer words I only took the words at least 10% 
better than the original. There is, although, one word 
length that stays between these 2 groups and that is 5-
letter words. After several test runs, the best results were 
obtained when adding a 20% value to the cost of the orig-

AN 25 AN 25 NA 30

ND 15 ND 15 AD 35

315

N

95

A

90

D

90

NAD

340

A

90

N

95

D

90

AND

N

95

D

90

AND

315

A

90

LENGTH NO BOOST 10%  BOOST 20%  BOOST 30%  BOOST

1 100,0% 100,0% 100,0% 100,0%

3 78,9% 93,0% 97,2% 97,2%

4 86,4% 96,4% 98,2% 100,0%

5 83,6% 90,4% 94,5% 94,5%

6 82,5% 92,8% 91,8% 90,7%

7 79,7% 87,8% 86,5% 83,8%

8 73,8% 78,6% 76,2% 71,4%

9 68,0% 88,0% 84,0% 84,0%

10 88,0% 88,0% 72,0% 64,0%

11 100,0% 100,0% 100,0% 100,0%

12 25,0% 25,0% 25,0% 25,0%

13 25,0% 25,0% 0,0% 0,0%

14 0,0% 0,0% 0,0% 0,0%

TOTAL 80,4% 89,4% 89,2% 88,3%



ARNAU VÁZQUEZ JUNYENT:  IMPROVEMENT AND EXPANSION OF A DECODER MODULE FOR AN OCR SYSTEM 7 

 

inal histogram. This was the case in several test runs us-
ing different data sets, as we will see in the following 
section.  
     To sum it all up, there have been several ideas to im-
prove this algorithm, but only the word versioning has 
given good and coherent results. As it can be seen in the 
following section, the results obtained have been com-
pletely positive. 

5 RESULTS AND ANALYSIS 

 
In this section I will go over the most representative re-
sults, as well as analyze them in order to draw coherent 
conclusions. 
 
5-level to 10-level adaptation 
 
This test is the one meant to prove our main hypothesis. 
We started off this project with the idea that by increasing 
the number of partitions of a word we would get better 
results. In Table 2, we can see the accuracy per word 
length. Taking into account that word from lengths 1 to 
10 comprise around 85% of the whole dataset, by getting 
a 100% accuracy in these smaller words we are greately 
increasing our overall accuracy. The reason behind ac-
complishing 100% accuracy is that perfectly represented 
words, such as the binary dataset, are being divided in 
such a way that words with length up to the maximum 
number of partitions, in this case 10, have a representa-
tion with histograms containing 1 letter. This means that 
we don’t have to calculate any optimal pathings since 
there are no other options. 

As we can see in Table 3, by increasing the number of 
partitions to 10, we have increased the overall accuracy 
by 14% compared to the best result obtained with 5-level 
binary histograms. 
 
 
 

 

Synthetic generation 
 
In this results section I will show the results obtained 
using the different methods used for generating synthetic 
histogram datasets. First, we will see the results for bina-
ry-based histograms. As we can see in Table 4, I have 
separated the results by word length ranges. The reason 
for that is that the datasets used are different. While the 
real-image dataset contains 546 words, the one I have 
used for generation has 88.171 words. I chose to use dif-
ferent datasets for 2 main reasons. First, the dataset that I 
am more interested in using in further tests is the larger 
one, since larger datasets give more weight to the results. 
And second, I didn’t want to overfit the tuning of the 
parameters to the smaller dataset, so I wanted to achieve 
similar accuarcies using different words. 
     We can see, as well, that I have marked the total accu-
racy as “pondered”. This means that the total accuracy 
has been calculated by taking into account only the accu-
racy values of the different word ranges instead of the 
number of correct and incorrect words. This is, again, 
because of the difference between the datasets, since the 
amount of words in the range 5 to 10, for example, does 
not represent the same proportion in all datasets. 
     As I mentioned in the corresponding development 
sub-section, I have chosen to use the generated dataset 
with 5% error because it resembled a bit more the original 
one. 
 

As for image-based generation, the comparison between 
the original 5-level and the generated dataset doesn’t give 
much information because of the difference in levels. 
However, we can compare the two synthetic generations 
by generating a 10-level binary based dataset.  
     As we can see in Table 5, the binary based version has 
more accuracy since it is being generated from perfect 
representations. But, despite being slightly less realistic 
than the image-based representation, we can generate 
larger datasets, which ultimately, I have considered to be 
of greater importance. 
 
 
 
 
 

LONGITUD ENCERTS ERRORS ACCURACY

1->10 71891 0 100%

11 5687 1230 82%

12 3316 1130 75%

13 1508 1041 59%

14 669 614 52%

15 244 388 39%

16 78 183 30%

17 32 92 26%

18 5 32 14%

19 3 16 16%

20 0 7 0%

21 0 2 0%

22 0 3 0%

TOTAL 83433 4738 95%

Table 2. Table with the accuarcies of different word lengths using the 
base algorithm adapted to 10-level histograms. The test is using a 
88.171 words binary histogram dataset. 

DATASET TYPE DATASET SIZE (WORDS) VERSION ACCURACY

BINARY 88171 5-LEVEL 81%

BINARY 88171 10-LEVEL 95%

Table 3. Table that compares the best result obtained in the original 
algorithm using binary histograms to the current best result using the 
same dataset. 

 

LENGTH REAL IMG GEN 0.5%  ERR GEN 5%  ERR

1 -> 5 88,0% 90,6% 86,4%

5 -> 10 40,3% 40,8% 38,5%

11 or more 0,0% 10,1% 7,5%

TOTAL (pondered) 42,8% 47,2% 44,1%

Table 4. Table comparing the accuracies of real images to 2 binary-
based datasets. All datasets consist of 5-level histograms. 



8 EE/UAB TFG INFORMÀTICA: IMPROVEMENT AND EXPANSION OF A DECODER MODULE FOR AN OCR SYSTEM 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm improvement: word versioning 
 
In this test I will expose the results of the only algorithm 
improvement that I have managed to develop.  
     As I explained in the development section, the hypoth-
esis behind this improvement was that by giving the al-
gorithm different versions of the same word and consid-
ering different histogram representations, we could cor-
rect some errors that may happen in the chosen histo-
gram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     The results in Table 6 have been obtained by using the 
same 88.171 word 10-level binary-based dataset for every 

case. It is shown that we can improve the accuracy 
around 6% by applying the word versioning technique 
and improve this by and additional 5% by using the 
boosting modification mentioned in the development 
section. The application of a boost, to the already improv-
ing word versioning, improves the overall accuarcy a 
considerable amount. We have to take into consideration 
that the dataset used contains almost 90.000 words, which 
means any slight change in the accuracy percentage 
equals a great number of words that are being predicted 
correctly. To put it in real numbers, by improving from 
71% to roughly 82% we are guessing correctly almost 
10.000 words more than before.  
 
Final results: overall accuracy improvement 
 
As we have seen in previous results, the overall accuracy 
has been improved by applying several modifications to 
the original algorithm. In Table 7, we can see the compar-
ison of the 3 results I consider to be most meaningful. 
Firstly, we have the result obtained from the original 
algorithm using a dataset of 546 words and 5-level deci-
mal histograms. Secondly, we have the result of the first 
modification, the improvement from 5-level histograms to 
10-level ones. This test has been ran using the larger 
88.171 word binary-based 10-level dataset. I considered 
that despite the fact that the dataset is different to the 
original one, the results were much more meaningful by 
using a larger dataset. And finally, the results of all the 
improvements combined, level representation increase 
and word versioning with its optimization by applying 
cost boosts. As we can see, the overall improvement has 
been of 21% accuracy, ending up in a total 82% accuracy 
for an almost 90.000 word dataset. I believe these results 
to be very positive since they prove the initially proposed 
hypothesis. 

6 CONCLUSIONS 

This project proposes a series of improvements to an al-
ready existing OCR decoder module. Throughout the 
different stages of the development, we have seen that by 
tweaking several parameters of the algorithm we can 
improve the overall accuracy. More precisely, by apply-
ing the modifications proposed in the main hypothesis I 
have proven that the results improve by having larger 
representations.  
     Added to the earlier proposed objectives, I have had to 
tackle the issues that were brought by not having access 
to the datasets I initially thought I would have. This has 
added an extra aspect to the project, which has been syn-
thetic generation. This part has been a major part of the 

LENGTH 5L IMAGE 10L IMG BASED 10L BIN BASED

1 0% 0% 100%

3 94% 99% 92%

4 87% 90% 93%

5 89% 90% 92%

6 53% 73% 84%

7 35% 80% 84%

8 33% 79% 69%

9 28% 55% 84%

10 32% 68% 64%

11 0% 11% 100%

12 0% 0% 25%

13 0% 0% 25%

14 0% 0% 0%

TOTAL 61% 79% 85%

LENGTH NO WV WV NO BOOST WV OPTIMAL BOOST

1 100,0% 100,0% 100,0%

2 95,4% 99,5% 99,5%

3 93,0% 77,6% 97,1%

4 90,3% 81,9% 96,2%

5 87,3% 84,1% 94,7%

6 79,5% 85,3% 92,0%

7 73,6% 83,2% 89,1%

8 72,9% 83,2% 87,1%

9 71,8% 81,2% 84,7%

10 69,1% 79,6% 81,6%

11 59,5% 65,6% 66,4%

12 51,5% 54,0% 53,7%

13 38,1% 38,8% 39,1%

14 31,7% 31,8% 32,3%

15 22,9% 22,9% 23,6%

16 18,0% 18,0% 18,0%

17 13,7% 13,7% 13,7%

18 10,8% 10,8% 10,8%

19 10,5% 10,5% 10,5%

20 0,0% 0,0% 0,0%

21 0,0% 0,0% 0,0%

22 0,0% 0,0% 0,0%

TOTAL 71,0% 77,1% 81,9%

DATASET VERSION ACCURACY

546 ORIGINAL IMAGES 5 LEVEL 61%

88,171 BINARY-BASED GEN 10 LEVEL 71%

88,171 OPTIMIZED WORD VERSIONING 82%

Table 5. Table comparing results between the original image histo-
grams and different generation methods. Dataset: 546 words. 

Table 6. Table comparing the results with and without Word Version-
ing, as well as the usage of boosting parameters. Dataset: 88.171 
words. 

Table 7. Table comparing the most significat results. The first test uses 
the 546 word 5-level real-image dataset and the other tests use the 
88.171 word 10-level binary-based generated dataset. 
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work even though it was never posed in the first stages. 
Nonetheless, it has been a really interesting diversion to 
work on and I consider it to have been a success. 
     As for the overall results, I consider them to be very 
positive since they prove that the main objectives of this 
project have been completely fulfilled. The improvement 
in the results by using only a 10-level representation 
proves by itself that a more accurate representation of the 
words improves the accuracy by a great deal, which was 
the main hypothesis of this project. However, we have 
seen that we can improve these results even further by 
tackling the issues brought by the type of representation. 
With analysis and understanding the behavior of the 
different parts of the decoder, I have been able to improve 
the overall results by over 20%.  
     For future improvements, I belive that there are still 
modifications to the algorithm or entirely different ap-
proaches, that could be applied to the current methodolo-
gy, that might improve even further the results. Also, a 
slight improvement to the current methodology could be 
achieved by tweaking and testing in depth the various 
parameters that take place into the whole algorithm. 
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