BACHELOR’S THESIS IN COMPUTER SCIENCE, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Control software for robotic observatories
Francesc Domene

Resum- LlInstitut d'Estudis Espacials de Catalunya (IEEC), i I'Institut de Ciéncies del Espai (ICE-
CSIC) estan especialitzats entre altres coses, en la robotitzacié i automatitzacié de telescopis.
Ledifici de I'ICE al campus de la UAB, disposa d’un observatori com a laboratori de millores
d’aquests sistemes. Actualment el seu control és parcial i manual, tot i que existeix una base
en ROS v1.0, un framework de robdtica open source. Labast del projecte consistia a adaptar i
actualitzar el programari actual de ROS 1.0 a ROS 2.0 i desenvolupar una interficie de control que
permeti el control remot de I'observatori. En el projecte es realitzen totes les etapes propies de
I'enginyeria de software (analisis, disseny, desenvolupament i test) seguint una filosofia agil basada
en Kaban i iteracions. Com a resultat s’ha aconseguit un producte minim que permet la continuacioé
del desenvolupament i demostra el funcionament de tota I'arquitectura.

Paraules clau— Astronomia, Observatori, Desenvolupament de software, ROS, Pylons, Pyra-
mid, Polymer, SQL, Python, Docker, Linux, Raspberry Pi.

Abstract— The Institut d’'Estudis Espacials de Catalunya (IEEC) and the Institut de Ciéncies del
Espai (ICE-CSIC) specialize, among other things, in the robotization and automation of telescopes.
The ICE building on the UAB campus has an observatory as a laboratory for the improvement of
these systems. Currently, its control is partial and manual, although there is a basis in ROS v1.0,
a robotic open source framework. The scope of the project was to adapt and upgrade the current
software from ROS 1.0 to ROS 2.0 and develop a control interface that allows the remote control of
the observatory. In the project, all the stages of software engineering (analysis, design, development
and testing) are carried out following an agile philosophy based on Kaban and iterations. As a result,
a minimal product has been achieved that allows the development to continue and demonstrates the
operation of the entire architecture.

Keywords— Astronomy, Observatory, Software Development, ROS, Pylons, Pyramid, Polymer,
SQL, Python, Docker, Linux, Raspberry Pi.

<+

Telescope (Figure 1) to capture the shadow of a black hole
or the SKA (Figure 2) telescope being built in South Africa

1 INTRODUCTION and Australia.

for the investigation of the cosmos. These infras-
tructures can be more or less complex and consist
of observatories and telescopes. There are a variety of
observatories that could be classified in those that use radio
telescopes designed to capture radio waves and those that
use optical telescopes that capture images of the visible
light spectrum. The use of these observatories goes from
the use of a single optical telescope to the use of multiple
radio telescopes that can act as one or independently.
The most recent examples are the use of the Event Horizon Fig. 1: Pico Veleta ob- Fig. 2: Square Kilome-
e Contact e-mail: francisco.domene @e-campus.uab.cat servatory, .member of the Fer Arra_y telescop e artist’s
o Mention: Software Engineering Event Horizon Telescope. impression.

o Academic advisors: Lluis Gesa Bote, Xavier Otazu Porter
e External advisor: Francesc Vilardell Sallés (IEEC)
e Course 2019/2020

IN astronomy, specialized infrastructures are required p—

July, 2020, Escola d’Enginyeria (UAB)

2 EE/UAB BACHELOR’S THESIS: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

In order to control observatories efficiently, it is necessary
to develop robotic automation systems that provide remote
and planned control of those observatories, which is why
the astronomical community uses a variety of software for
the control of these systems. Hence, they must specialize in
order to have the support of those systems, which implies a
high cost and the dispersed use of this software.

1.1 Document structure

The following section of the article describes a compar-
ison of current control systems for observatories and a
brief description of the observatory used as a case study
with the proposed architecture. The next section describes
the project objectives. The following chapter explains the
methodology and planning, followed by the development
cycle. Then a discussion of the results and to finalize, the
conclusions and future lines of work of the project.

1.2 State of the art

Currently, in the astronomy field, there are more than 130
professional observatories around the world that can work
autonomously [1] and have different control systems.

Gradually, the open-source philosophy is spreading, which
has given more versatile and adaptable control systems
involving INDI Library and RTS2. These frameworks
provide control over different astronomical instruments, es-
pecially for telescopes. However, all these systems are not
well known outside the astronomy field, which means hav-
ing less support depending on which software is used due
to the need for more specialized staff in order to maintain it.

An example of a control system is the OpenROCS
(Robotic Observatory Control System) [2], an open-source
software developed by the Institute for Space Studies of
Catalonia (IEEC) [3] that controls, among others, the
observatory and the telescope in (Figure 3).

Fig. 3: The Joan Oré Telescope (TJO) situated at the
Montsec Astronomical Observatory (OAdM), Catalonia.

The use of these control systems is very dispersed and
varied, so building new systems and making all the devices
work takes a long time. For that purpose, the IEEC made
an approach and developed a control system based on the
ROS [4] standard.

ROS stands for Robotic Operating System [5]. ROS
is a flexible framework for writing robot software that
aims to simplify the task of creating complex and robust
robot behaviour across a wide variety of robotic platforms.
This framework has large flexibility and a large community.

The IEEC has a laboratory (The AstroEarth Labora-
tory) that is a facility devoted to the development and
testing of new equipment, either hardware or software for
ground-based telescopes. The laboratory consists of the
following components:

e 3.5m Baader Planetarium AllSky dome
e Meade 10 "LX200GPS Schmidt-Cassegrain telescope
e SBIG ST-7 CCD camera

Vaisala PTU200 term-hygrometer
APC AP7920 Rack PDU

CCTYV camera to supervise the observatory operations.

Fig. 4: IEEC AstroEarth lab observatory.

The system developed in ROS 1 controls all the devices in
the observatory.

This project proposes to upgrade the version of ROS 1
to the current and improved version ROS 2 [6] and the
creation of a web portal in order to control the IEEC
observatory devices trough the ROS system remotely. As
well as the functionalities that a web portal includes, such
as an authentication and authorization system to grant
control over the devices and the information displayed.

&

. N ROS <
SERVICE / CLIENT

OBSERVATORY
HARDWARE

5/P

WebSocket
.} | WEB
PORTAL

Fig. 5: High level diagram showing the global architecture
communication.

FRANCESC DOMENE: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

1.3 Objectives

The objectives follow the pattern TFG-OBJ-X enumerating
and describing its priority over the project.

e TFG-OBJ-1: Analyze the project’s viability and plan
its development trough an agile philosophy.

o TFG-OBJ-2: Investigate and study the current technol-
ogy involved in the existing ROS 1.0 software. In order
to understand from firsthand how ROS is designed, its
applications and how it works. Then understand the
current ROS 1.0 base.

— TFG-OBIJ-2.1: Investigate ROS 1.0 framework.
— TFG-OBJ-2.2: Compare ROS 1.0 and ROS 2.0.

— TFG-OBIJ-2.3: Investigate methods for the cur-
rent ROS usage and improvement to ROS 2.0.

e TFG-OBJ-3: Design and develop an open-source so-
lution to control robotic observatories using ROS 2.0
once ROS and the previous base of ROS v1.0 are un-
derstood.

o TFG-OBJ-4: Design and develop a web portal in order
to control the ROS software remotely and enable users
to manage it. Once the ROS part is finished, the objec-
tive is to develop a web site that allows users to control
the observatory remotely.

e TFG-OBJ-5: Design and develop the connection mod-
ule that will enable the communication between the
ROS module and the web portal.

2 METHODOLOGY

The project development followed an agile philosophy [7]
basing the project planning on iterations.

Some methodologies, such as SCRUM, Lean, or Kanban
[8] are the best known and used in the world of software
development. All of them oriented to development teams,
with their similarities and differences. That is why a sin-
gle methodology cannot be appropriately chosen, especially
when this project is developed individually.

Seeing that, it was decided to use a little of each to define a
methodology that suits the project and the type of develop-
ment that was carried out.

2.1 Description

A mix of Kanban and Scrum has been used in this project. It
consists of the visual management section that Kanban pro-
vides, together with the Scrum iterations and the continuous
workflow of Kanban, something like Scrumban. Therefore,
tasks are going to be planned for an actual date. Still, at
the same time, it remains flexible when adding, prioritiz-
ing, or modifying tasks during the development. The latter
refers to the fact that in Scrum, it is not possible to alter the
work done in a sprint once planned, however with Kanban,
it is. For example, having to prioritize a new requirement in
the middle of an iteration, unexpected scenarios or change
the planning given a poorly organized calendar or initially
projected optimistically.

2.1.1 Workflow

The task flow goes from the Backlog, To Do, Doing, and
from there to either Done, Review, or Block if a problem
may occur. If the latter happens, the tasks should go back
to the beginning and go to the process again.

A short description of these phases:

e Backlog: The backlog column is full of the tasks that
need to be completed. Unlike SCRUM, this backlog is
not sprint focused. Instead, it contains all the tasks to
be done, and it can be modified at any time.

e To Do: As the name implies, the tasks that are planned
to be done in the current iteration are going to be there.

e Doing: Tasks that are currently in development.

e Revision: If some tasks need additional testing or re-
views (like the bachelor’s thesis goals).

e Blocked: If some problem happened during the de-
velopment or after and it is blocking the development
somehow.

e Done: When the task is fully finished, it reaches the
Done and last phase.

2.1.2 Iterations

Moreover, the methodology uses iterations or sprints. Each
iteration consists of the four typical stages of software de-
velopment; Analysis, Design, Develop, and Testing.

e Analysis (What we want): Define the requirements to
be done at the beginning and check them every sprint,
gather data from stakeholders and plan the develop-
ment.

e Design (How to get what we want): Investigate and
come up with solutions to the tasks planned.

e Develop (Create what we want): Developing the soft-
ware following the previous steps.

e Testing (Did we get what we want?): Test what has
been developed and see if it matches the requirements.

Fig. 6: Agile software development life cycle.

4 EE/UAB BACHELOR’S THESIS: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

2.2 Tools

The Trello [9] online software was used to keep precise and
visual control of the workflow, where both the stakeholders
and the Bachelor’s thesis tutor could view it at any time.
Furthermore, the GitLab repository was used to upload and
keep track of the work done along with the test environ-
ment.

An example of the project’s Trello board can be found in
appendix section A.1.

2.3 Planning

In preparation for the project development, the planning
was done following a milestone deadline and a sprint defi-
nition.

Sprint Date Milestone

3 19/04/2020 | ROS2 MVP

4 10/05/2020 | ROS-Web Connection Module MVP

ROS-Web Connection Module Completed
5 24/05/2020

WEB based architecture

Deliver final product (ROS, ROS+WEB Connection and WEB
MVP)

6 14/06/2020

Fig. 7: Initial milestone table regarding project’s module
milestones.

Once the milestones were decided and approved, a Gantt
chart for the plan was prepared. The structure followed was
a sprint focused one, where each sprint had one or multiple
milestones.

The Gantt chart can be found in the appendix section A.2.

3 SOFTWARE DEVELOPMENT CYCLE

3.1 Analysis

There were a set of meetings with the stakeholders to collect
and define the tasks and the work to be carried out, identify-
ing the proper project requirements. For this, the Software
Requirements Specification Document (SRS) [10] was cre-
ated, where all the requirements are written. Also, during
the development of the project, the document was iterated
in order to ensure that there are no ambiguities and that ev-
erything is clearly described.

In the document, each requirement is specified following
the structure of (Figure 8).

Requirement ID Uniquely identifies the requirement.

Group Defines the functional group of the requirement

Description The definition of the requirement.

Priority Defines the requirement’s implementation priority. Priorities
are (highest to lowest) 1, 2, 3... Requirement of priority 1
must be implemented in the first system release. From prior-
ity 2 and lower, the requirements are implemented in further
relea

Risk Specilies risk of not implementing the requirement. These are
the different risk’s levels listed:

e Critical (') - will break the funetionality of the system.
The system can not be used without this functionality

o High (H) - will impact the main functionality of the sys-
tem. Some function of the system could be inaccessible.

o Medimm (M) - will impact some system features. The
system ean be used with some limitation

® Low(L) - the system can be used without limitation, but

some workarounds,

References Related use cases or requirements,

Fig. 8: Requirement structure.

3.1.1 Requirements

The list of requirements is somewhat extensive, so the most
relevant requirements are listed below and are ones re-
lated to the development of the TFG-OBJ-4/5 objectives
extracted from the SRS document. Some of them are sum-
marized.

Functional requirements

e R2.01.01: The system shall support the access of users
with the properties; Username, Password. Each user is
uniquely identified by its name within the system.

e R2.01.02: The system shall provide at least three users
with the following roles; Guest, Operator, Admin.

e R2.01.03: The system shall store the list of users, roles
and permissions in the database.

e R2.01.09: If successful login, the system shall asso-
ciate the user with the user roles/privileges and config-
ure the GUI according to the user’s profile.

e R2.03.01: The system shall provide the authorized
user with the ability to view the list of all the public
data available in the system.

e R2.05.01: The system shall provide the authorized
user with the ability to view the list of the status of
all the devices available in the system.

e R2.06.01: The system shall provide the authorized
user with the ability to list what devices are available
to the user’s access level.

e R2.0X.0X: The system shall provide the authorized
user with the ability to manage the devices with all the
options available to the user’s access level.

e R2.11.04: The system shall provide the admin user
with the ability to re-establish the connection between
the devices and the ROS module.

Non-functional requirements

e R1.01.01: The system shall support user interfaces for
standard computers and mobile phones.

e R1.04.02: The web system shall communicate with the
ROS module via websockets using the transport level
protocol TCP/IP.

e R3.01.01: The system shall support concurrent users
logged in the system.

e R3.03.01: The system shall implement a Role access
model.

e R3.03.02: The system shall provide a user authentica-
tion mechanism.

e R3.03.04: The system shall secure the data exchange
between the web server and the ROS module using SS-
L/TLS encryption protocol.

e R3.03.05: The system shall be able to secure the user
password using the bycrypt hashing.

FRANCESC DOMENE: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

e R3.03.06: The system shall secure the data sent from
the client to the server using POST request method.

e R3.03.07: The system shall secure the access to the
web portal data from XSS and SQL.i attacks.

e R4.01.01: The system shall be available for use at 24
hours a day, 7 days a week.

e R4.04.01: The system shall conform to the Polymer
and a template standard.

e R4.06.01: The system shall provide the possibility to
install it automatically.

Lastly, an investigation was also carried out on the hardware
and tools needed to the development of the project that later
were specified in the requirements document. Then, a pre-
liminary study was made to check how to integrate them, so
everything worked well. More details in the development
section 3.7 in the tools 3.7.1 subsection.

3.2 Unexpected scenario

During the analysis stage, Spain entered in a confinement
situation. Due to the COVID scenario, the access to the
IEEC laboratories was restricted, so it was not possible to
advance with the TFG-OBJ-3 objective.

Due to this situation, there was a meeting with the
stakeholders in order to analyze the objectives and
reschedule the project plan, prioritizing the web module
(TFG-OBJ-4) over the ROS module (TFG-OBIJ-3), thinking
that the laboratories could be accessed after a few weeks.
Seeing that this could not be possible, it was decided to use
a miniature observatory prototype.

3.2.1 Robotic prototype

This observatory would be controlled in the same way as the
one developed in ROS1 in C/ C ++. However, this would be
developed from scratch in ROS2 and Python. In this way,
it could be proved that the entire system would work in the
case of not being able to access the IEEC facilities due to
being in confinement, as has happened.

Therefore, this would give a solution for the TFG-OBJ-3
and consequently TFG-OBJ-2.X. However, in this docu-
ment, we will refer to the ROS1 system, as it is the one
used in production.

3.3 Design

The project can be divided into three large modules; the
ROS module, the web module and the connection module
between ROS and the web.

The system was designed to be portable and flexible,
so it was decided to use Docker[11] since containers enable
the application portability and faster software delivery in
addition to isolating containers from possible problems
caused by others.

The diagram in (Figure 9) shows the connection of the
two main modules, ROS and WEB. The web application
and the database are located in the environment of the web

portal. Then the web connects to the ROS module through
the internet using the ROS-Web module.

Fig. 9: Deployment diagram. The blue colored boxes are
docker containers.

During the design stage, several UML diagrams have been
made to define and illustrate the functionality of the sys-
tems. The Software Design Description (SDD) document
[12] was also created and contains all the diagrams and the
system design explanation.

The following sections go into detail about the design
of each module. To make the examples more understand-
able and to have traceability in the information described,
the same case is used in each module, the example of the
observatory dome device, since all the devices follow a
similar structure.

3.4 ROS Module

The current ROS1 system has a client-service architecture
[13]. The ROS services are the ones interacting with the
hardware. Meanwhile, the clients send petitions to the
services to perform several actions.

Each device has its own service - client packages so that
they can be controlled independently. However, there is
also a global service that controls all devices in one. This
is done for the sake of modularity and simplicity.

For example, a user can perform different actions re-
garding the dome control, as shown in the (Figure 10).

Open Dome

Close Dome

User

View Dome Status

Fig. 10: ROS dome use case diagram.

6 EE/UAB BACHELOR’S THESIS: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

In the following class diagram (Figure 11), the DomeServer
contains a Dome Object. This object interacts with the
driver’s interface that controls the hardware.

<<interface>> BaaderDome

BaaderDome # portFD: int

+ shutterStatus: ShutterStatus
+ BaaderDome()
+ shutterOperation: ShutterOperation

+ 0

+ dome_init_params(): void + baader action(&eq: Request, &res: Response): bool

+ dome_connect(*fd: int): bool # baader reconnect(&res: Response): bool

+ dome_ack(*fd: int): bool # baader input(&req: Request): void
+ dome_shutter_status(*fd: int): bool # baader output(&res: Response, out str: string, error: bool):

+ dome_control_shutter(*fd: int): bool # baader action_open(&res: Response): void

+ dome_get_shutter status_string(status: ShutterStatus): const char* # baader action_close(&res: Response): void

baader action_status(&res: Response): void

Lt

ShutterStatus

=5

ShutterOperation
SHUTTER OPEN

SHUTTER OPENED BaaderServer:main

+ n: NodeHandle

SHUTTER_CLOSED
SHUTTER MOVING
SHUTTER_ OPENING

SHUTTER CLOSE

+ baaderService: ServiceServer

+ baaderDome: BaaderDome

SHUTTER CLOSING

SHUTTER UNKNOWN BaaderClient:main

+ n: NodeHandle

+ client: ServiceClient

+ request baader action(action: String)

Fig. 11: ROS dome class diagram.

The (Figure 12), shows how a user asks for the status of the
dome and then opens the dome. The interaction with the
system is done using the following commands:
Once the server has started.
$ rosrun ice dome_server
Then perform actions through the client.

ice dome_client status
ice dome_client open

:Dome Server :Dome

request_ dome action(status)

$ rosrun
$ rosrun

:Dome_Client

status

X

User

:Dome Driver

dome_action(action, response)

dome_input(res)

|dome action status(res)

dome _outpulres,
dome shutter status(fd))

return

open

request_dome action(status) _ |

dome_action(action, response) |

dome input(res)

dome_action_openres)

dome_output(res,
dome_control_shutter(fd)

return

Fig. 12: ROS dome sequence diagram.

The ROS2 prototype [14], used in the development of the
project, provides the same functionality as the current ROS 1
software but has fewer devices and functionalities. How-
ever, it is enough to prove the system because the service-
client architecture is the same and works with similar com-
mands.

The (Figure 13) shows the 3D printed miniature prototype.

Fig. 13: ROS2 prototype.

3.5 Web portal Module

The web portal is the most specified module in the require-
ments. The web is designed as a portal for the interactions
of different types of users. Users can access the system with
the username and password and can access a different kind
of views and actions according to their permissions.

There are three archetypes of users:

e Guest: This user can see the public information that
is provided about the devices, but in any case, interact
with them.

e Operator: User who can manage the different devices.

e Admin: User who can do everything that other users
do besides manage the connections with ROS and

manage users.
i ﬁ

User
Operator

Admin

Fig. 14: Web portal user hierarchy.

The complete use case diagram can be found in appendix
section A.6.

3.5.1 Backend

The web portal requires authentication and authorization in
order to provide an access system with the accordingly se-
curity measures based on roles and permissions.

For this reason, a Role-Based Access Control model
(RBAC)[15] has been designed to structure the user -
role - permission design. Consequently, a relational SQL
database has been used to apply this design and build it with
high modularity, as shown in (Figure 15).

FRANCESC DOMENE: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

User User_Role Role
PK |Id PK | User Id h PK |ld

Username PK |Role_Id Name

Password Description
Permission Role_Permission

PK |(Id — PK | Role_Id

Name PK | Permission Id
Description

Fig. 15: Database relational model.

The database is used as persistent storage for user infor-
mation and privileges. In order to access and manage the
information, it was decided to use the Object-relational
mapping (ORM) technique [16] to take advantage of an
object definition data structure, keeping things tidy and
well defined.

To manage the web portal views and actions, an Ac-
cess Control List (ACL) [17] is used to map the user with
its role and permission associated to each view or resource,
as shown in (Table 1) and (Table 2).

TABLE 1: BAsiCc ACL TABLE

Action Principal Permission
Allow | Everyone View
Allow | group: Operator | Use

Allow | group: Admin Admin

TABLE 2: URL, ACTION AND PERMISSION ASSOCIA-
TION

URL Action View Permission
/ Redirect to /login
/home home view
Display login form.
/login If auth succeeeds login
redirect to /home
/logout Redirect to / logout
/devices Display all devices status devices view
/dome Display dome status and actions dome use dome
/telescope | Display telescope status and actions | telescope | use telescope
/weather Display weather status and actions weather use weather

3.5.2 Frontend

In order to design the front end, there were a couple of
meetings with the stakeholders talking about the layout and
page design. During these meetings, a paper prototype [18]
was discussed and iterated in order to fit the requirements
and the stakeholder’s view of the product. That gives a
highly consistent design ready to be implemented.

The (Figure 16) shows an example prototype of one
of the web pages.

Fig. 16: Paper prototype for the dome device.

The frontend aims to be highly modular using web com-
ponents and templates. These components encapsulate the
client code (HTML, CSS, JavaScript) so it can be reused
and scale depending on which functionalities are going to
be added. An example of a component could be a login
module, a toolbar, a list, etc.

3.6 ROS-WEB Connection Module

In order to receive live data and interact with the ROS sys-
tem, a communication module was implemented based on
WebSockets [19].

The system consists of a server in the ROS system and
clients in the web system that communicates with each
other using JSON [20] standard messaging, through a web-
socket connection using SSL/TLS protocol [21].

The (Figure 17) shows the message communication be-
tween clients and the server.

ROS ENVIRONMENT

>
ROS . wessocker | {JSON
SERVER

WEB ENVIRONMENT

STATUS.
CLIENT

JSON

INTERNET

SSL/TLS

ACTION
CLIENT

Fig. 17: WebSocket connection diagram.

3.6.1 Server

The server is responsible for handling the commands that
need to be used in order to perform an action and gather
data. These commands are the ones used in the ROS
module (3.4) that interact with the system. Different com-
mands can be used depending on which ROS distribution /
framework is in use. That’s why the commands are defined
in a JSON file, giving more flexibility when switching
systems.

This file is responsible for mapping the device with the
commands available, as shown in appendix section A.3.

The server creates a list of devices from the JSON
file. Then, assigns the commands and answers to each
device. These devices are controlled by the Observatory-
Handler class, that manages the interaction between the
ROS module and the requests given by the clients from the
Web module. The (Figure 18) shows the class diagram of
the server module.

8 EE/UAB BACHELOR’S THESIS: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

Device ObservatoryHandler

ame: String

iands: Dict(String)

String) 5 1
9)

update(self, t stop)

path); async

Fig. 18: Websocket server class diagram.

3.6.2 Status client

The status client asks for information every second to up-
date the system variables regarding the data received from
the devices.

The (Figure 19) shows the structure of the status message
sent by the client every second and getting back the status
data of all devices. This messaging is pictured in (Figure
20).

{"msg’: ’status ’}

Fig. 19: Websocket status message.

The status data that travels from the server to the status
client (data.json) can be found in appendix section A.4.

INTERNET

[Web backend 1\

[update status()

JSON
data json

return dump(data, file)

JSON

data json

Runs every|
second

Fig. 20: Sequence diagram of the status message.

3.6.3 Action client

The action client is activated when a user makes an action,
like opening the dome. The client sends this action to the
server. The server receives the action, performs it and an-
swers with the appropriate response, updating then the sta-
tus of the system.

The (Figure 21) shows the structure of an action message.
It uses a pattern where the device is specified, and then the
main action followed by optional parameters which trigger
the sequence shown in (Figure 22).

>action T: {
’dome’: {’action
}
}

}

% .

B

{"open ’:

Fig. 21: Websocket action message for opening the dome.

INTERNET

[Web backend 1\

Fig. 22: Sequence diagram of an action message.

Finally, a complete sequence diagram can be found in ap-
pendix section A.7 showing the whole sequence of the data
updates and an operator user performing an action.

3.7 Implementation

As an agile philosophy has been followed during the overall
development, multiple design and development stages have
occurred throughout the project development. That means
having at least three stages of development.

Firstly, there is the ROS2 system developed to match
the current ROS1 system in production. This system was
developed in parallel to the analysis and design of the web
portal and the ROS-Web connection module.

Secondly, once the design was finished, the ROS-Web
connection module development started and was developed
in parallel to the web portal.

Finally, the web portal development started once the mini-
mal functionality of the connection module was achieved.

There was a continuous study and investigation of the
technologies that were going to be used during the devel-
opment due to the lack of knowledge of these and having in
mind the requirements specification. This lasted from the
analysis stage to the beginning of each implementation.
The next section 3.7.1 explains which tools were used
during the development.

3.7.1 Tools and technologies

All three main modules were required to be developed in
Python due to the great flexibility. That means setting up an
infrastructure capable of working with Python. This brings

FRANCESC DOMENE: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES 9

the following tools and technologies used to develop each
module.

e Docker: To automatize and deploy modules enabling
faster software delivery and portability.

e MariaDB [22]: Relational Database used to store the
users and RBAC information.

e Pyramid [23]: The Python web framework, member of
Pylons Project [24], used for the development of the
web portal backend.

e Jinja2 [25]: The template language for Python used for
the frontend development.

e Polymer[26]: A JavaScript framework for frontend de-
velopment.

e Visual Studio Code [27] was used as the main IDE,
with the addition of some plugins such as the Docker
plugin, SQLTools and Remote Explorer.

e The repository working structure has been defined to
have the master branch for the stable project updates /
releases and a branch for each functionality in devel-
opment.

3.8 Test

During the development, tests have been made to verify that
the project was free from errors and to ensure that the build
was solid.

Consequently, different unit tests have been designed,
which check the following things:

e Functional tests to check the functionalities of each
page. For example, successful or unsuccessful login
or user permissions when accessing different pages.

e Tests that verify the connection and use of the data
models, for example, the connection to the database,
check that information can be queried from the
database, check that the hash of the passwords works.

e Tests the page views, check the initialization of the
pages, their content and the routes they can take.

e Tests that checks the ROS command system modular-
ity.

Additionally, a coverage of the code was made using the
previous tests to know what has been tested and what is
missing to be tested.

Fig. 23: Test coverage.

A continuous integration (CI) and continuous delivery (CD)
pipeline have also been integrated into the project in order
to automate the execution of tests. This pipeline is executed
in the GitLab repository and consists of the following steps:

e Docker-build: Checks that the image of the pyramid
application is built correctly.

e Docker-compose: Checks that the image of the
database is built and starts together with the pyramid
application to provide service.

e Test: Run the application’s tests and show the code’s
coverage.

e Deploy: Check that the application can produce a pro-
duction build.

The pipeline configuration can be found in appendix
section A.5.

The pipeline was configured to run every time a push
is made to the remote repository. It is also executed when
a merge of a branch is done. If the merge does not pass
the test, it is cancelled. Moreover, it is designed to run all
tests when merging to the master branch, which is where
everything should work fine. When changes are made in
other branches, the deploy phase is not executed, so it does
not take too long to run unnecessary tests.

Pipeline Triggerer Commit

#1935

Pmaster o 6e853e81 —~
£ Merge branch 'developinto'm...

#1934

] ®

Pdevelop < 9be3fea2
& Testmerge CI1

Fig. 24: GitLab CI project pipelines in a merge situation
and a branch update.

Pipeline Jobs 5

Docker-build Docker-compose Test

© buildimage < @) dockercompose © testcoverage-...

© testpyamd
Fig. 25: CI/ CD pipeline stages successfully executed.

Finally, the Software Test Description (STD) document [28]
has been written describing different tests to be taken into
account so that the product achieves the level described in
the requirements defined in the SRS document.

4 RESULTS

The project has lived a reschedule and a reorganization
of the objectives at the middle of the development, which
affected the objectives and therefore, the results.

The (Table 3) exposes the level of completeness of
each objective showing its current status regarding the
requirements associated to them.

10 EE/UAB BACHELOR’S THESIS: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

TABLE 3: OBJECTIVES STATUS

Objectives Status
TFG-OBIJ-1 100%
TFG-OBJ-2 and 2.X | 100%
TFG-OBJ-3 *%
TFG-OBJ-4 30%
TFG-OBJ-5 90%

The original plan was to have an improved version of the
software that currently exists at IEEC, upgrade it from
ROS1 to ROS2 and be able to communicate with it through
a minimum web interface. Then the objectives changed to
prioritize this website, making it a more extensive system
along with its connection module.

However, the prototype in ROS2 has partially gener-
ated a result for the TFG-OBIJ-3 objective, since it uses the
new version of ROS and is based on the system that is in
production.

As for the web portal, the TFG-OBJ-4 objective could not
be completed due to the delay that occurred. However, the
portal does the basic login functionality, discerns between
users and authorizes or prohibits access according to
functionalities depending on users permissions.

Finally, the connection module between ROS and the
website (TFG-OBJ-5) it is almost finished. It lacks more
testing to check that if the whole system works properly.
The module is capable of working regardless of the ROS
version or the commands used. It is able to establish a
connection between the ROS system to interact with the
observatory through the web portal.

Moreover, during the development, all the tasks that
have been carried out are the typical ones that a software
engineer does, due to the proper software development
cycle. This tasks involve the creation of the documentation
of the project, going from the software requirements
specification, which involves an in-depth analysis of the
project and stakeholders meetings, to the software design
description specifying the software’s architecture design
with its diagrams and dependencies and finally, to the
software test description where the test cases check the
requirements of the project.

5 CONCLUSIONS

To conclude, it should be mentioned that the development
process has been slow and time expensive because almost
all technologies were unknown and had to be learned to
use. Also, the creation of all the documentation and the test
pipeline took a long time.

Despite not having been able to develop a front end
for the web, or having completed certain functionalities
of the web portal (TFG-OBJ-4), the project reached an
MVP status (Minimum Viable Product) regarding the
functionalities, and it is fair to say that this brings an easy
continue for the development of the complete prototype.

Since the MVP shows how to be done, and the design
is consistent, the completion of the first product version
should be as easy as reproducing the functionalities of each
device.

5.1 Frontier and future development

About the project itself, the future work relays on the
completion of all the device functionalities from the web
portal side, and the development of a proper front end.

From a higher perspective, the ROS system could be
further developed to the point of having all the function-
alities that a robotic observatory should have, not only
the control of the different devices but also an automatic
planner to observe the sky through requests in an au-
tonomous way and security and meteorological prevention
systems. This could lead to a restructuring of the current
ROS system and the upgrade to the newest version ROS
2. Furthermore, the current ROS-Web connection module
could be replaced by a ROS node that interacts with the
web backend or event better have the web backend in a
ROS node, that way the middleman is removed and the
system is a bit more compact. In that case, the web portal
is more of a versatile system, so in the end, it would only
be a matter of adding more functionalities.

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere thanks to my
advisor Lluis Gesa for continuous support and advice. His
guidance was very useful both in the management of the
thesis and in the development of the project.

I would also like to thank Xavier Otazu for helping in the
last phase of the thesis and special thanks to Francesc Vi-
lardell for all the support given during the development.

REFERENCES

[1] A. J. Castro-Tirado, “Robotic Autonomous Observa-
tories: A Historical Perspective,” in, vol. 2010 of Ad-
vances in Astronomy, p. 8, Apr. 2010.

[2] J. Colomé, J. Sanz, F. Vilardell, 1. Ribas, and P. Gil,
“OpenROCS: a software tool to control robotic obser-
vatories,” in , vol. 8451 of Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series,
p. 845127, Sept. 2012.

[3] “Institut d’Estudis Espacials de Catalunya.”
http://www.ieec.cat/en/content/
18/the-ieec.

[4] F. Vilardell, G. Artigues, J. Sanz, A. Garcia-Piquer,
J. Colomé, and I. Ribas, “Using Robotic Operating
System (ROS) to control autonomous observatories,”
in, vol. 9913 of Society of Photo-Optical Instrumenta-
tion Engineers (SPIE) Conference Series, p. 99132V,
July 2016.

[5] O. Robotics, “About ROS and documentation.”
https://www.ros.org/about-ros/.

http://www.ieec.cat/en/content/18/the-ieec
http://www.ieec.cat/en/content/18/the-ieec
https://www.ros.org/about-ros/

FRANCESC DOMENE: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

O. Robotics, “ROS2 documentation.”
index.ros.org/doc/ros2/.

https://

J. Highsmith, A. Cockburn, M. C. Paulk, and
P. E. McMahon, “Agile software development,’
Oct. 2002. http://agilesweden.com/doc/
oct02.pdf.

CbtNuggets, “How do Kanban, Scrum and Lean re-
late?,” Oct. 2017. https://www.cbtnuggets.
com/blog/career/management /

how-do-kanban-scrum—and-lean-relate.

“Trello list-making application.”
trello.com/en.

https://

J.-P. Eisenbarth, “A latex template for a
software requirements specification that re-
spects the IEEE standards,” May 2020.
https://github.com/jpeisenbarth/

SRS-Tex/blob/master/srs.tex.

“Docker, why docker?.” https://www.docker.
com/why—-docker.

A. Sankarana, A. Samsonyuka, and M. Attarm,
“Software design document, example,” Dec. 2010.
https://arxiv.org/pdf/1005.0595.pdf.

O. Robotics, “ROS service-client communication.”
http://wiki.ros.org/ROS/Tutorials/
UnderstandingServicesParams.

F. Domene, “ROS2 observatory,” June 2020. https:
//github.com/fdomf/ROS-observatory.

“Role-based access control model.” https:
//en.wikipedia.org/wiki/Role-based_
access_control.

“Object-relational mapping technique.”
https://en.wikipedia.org/wiki/
Object-relational_mapping

“Access control list.” https://docs.
pylonsproject.org/projects/pyramid/
en/latest/glossary.htmlfterm—-acl.

“Paper prototyping technique.” https:
//en.wikipedia.org/wiki/Paper_
prototyping.

I. Fette and A. Melnikov, “Websocket protocol.”
https://tools.ietf.org/html/rfc6455.

D. Crockford, “Introducing JSON.” https://www.
json.org/json—en.html.

T. Dierks and E. Rescorla, “Transport layer secu-
rity (tls) protocol,” Aug 2008. https://tools.
ietf.org/html/rfc5246.

bl

“MariaDB: The open source relational database.’
https://github.com/MariaDB/server.

“The pyramid web framework.” https:
//docs.pylonsproject.org/projects/
pyramid/en/1.10-branch/.

[24]

[25]

[26]

(27]

(28]

11

“Pylons project” https://pylonsproject.
org/about-pylons—-project.html.

“Jinja temmplating language.” https://Jjinja.
palletsprojects.com/en/2.11.x/.

“Polymer project.”
polymer—-project.org/.

https://www.

“Visual studio code.”
visualstudio.com/docs.

https://code.

L. Ericson and S. Shine, “Minutia deviation
tool: Software test description (STD), exam-
ple,” Dec. 2015. https://www.ncjrs.gov/
pdffilesl/nij/grants/249555.pdf.

https://index.ros.org/doc/ros2/
https://index.ros.org/doc/ros2/
http://agilesweden.com/doc/oct02.pdf
http://agilesweden.com/doc/oct02.pdf
https://www.cbtnuggets.com/blog/career/management/how-do-kanban-scrum-and-lean-relate
https://www.cbtnuggets.com/blog/career/management/how-do-kanban-scrum-and-lean-relate
https://www.cbtnuggets.com/blog/career/management/how-do-kanban-scrum-and-lean-relate
https://trello.com/en
https://trello.com/en
https://github.com/jpeisenbarth/SRS-Tex/blob/master/srs.tex
https://github.com/jpeisenbarth/SRS-Tex/blob/master/srs.tex
https://www.docker.com/why-docker
https://www.docker.com/why-docker
https://arxiv.org/pdf/1005.0595.pdf
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
https://github.com/fdomf/ROS-observatory
https://github.com/fdomf/ROS-observatory
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-acl
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-acl
https://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-acl
https://en.wikipedia.org/wiki/Paper_prototyping
https://en.wikipedia.org/wiki/Paper_prototyping
https://en.wikipedia.org/wiki/Paper_prototyping
https://tools.ietf.org/html/rfc6455
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://github.com/MariaDB/server
https://docs.pylonsproject.org/projects/pyramid/en/1.10-branch/
https://docs.pylonsproject.org/projects/pyramid/en/1.10-branch/
https://docs.pylonsproject.org/projects/pyramid/en/1.10-branch/
https://pylonsproject.org/about-pylons-project.html
https://pylonsproject.org/about-pylons-project.html
https://jinja.palletsprojects.com/en/2.11.x/
https://jinja.palletsprojects.com/en/2.11.x/
https://www.polymer-project.org/
https://www.polymer-project.org/
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs
https://www.ncjrs.gov/pdffiles1/nij/grants/249555.pdf
https://www.ncjrs.gov/pdffiles1/nij/grants/249555.pdf

12 EE/UAB BACHELOR’S THESIS: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

APPENDIX

A.1 Trello Board

BACKLOG To DO DOING REVISION BLOCKED DONE

-
Web backend: device
communciation (status)

— s am—
Write TFG article

— e e
Presentation

-—— aams e
user testing session

-— e
Login:Authorization

Anada una tarjeta

— e e—
Finish off SRS, STD and SDD

. s
DB docs: queries

-— ams
Login: Authentication system

Write Ul/UX doc section in SDD

Make poster

-— e
Login: Front-end

+ Anada otra tarjeta

+ Anada otra tarjeta o e

Complete SDD and STD documetns

e
Make dossier

— — a—
Web Front end device pages

e
Make Diagrams for overall
development architecture &
modules

— e
write doc about ROS 1 v ROS 2, 1os 1
bridge

-—
Web backend: device communication
(action)

— e
Create diagrams for web portal
modules

+ Afiada otra tarjeta =]

+ Anada otra tarjeta

- =
web backend device pages

-
Code client side (web) socket client

Fada carvar cids wahenrbat caruar

Fig. 26: Trello board status during development.

A.2 Gantt chart

4 sprint1 1adias 1un09/03/20 dom 22/03/20
Study and investigate technologies 14dias lun dom 22/03/20
09/03/20
Requierement meeting 1adias Iun09/03/20 dom 22/03/20
< sprint2 1adias 1n23/03/20 domos/oa/z0 2
Set up work environment & wdias lun dom 05/04/20
technologles 23/03/20
StartROS development 1adias lun 23/03/20 dom 05/04/20
 sprint3 1adiss 1un05/04/20 dom 19/04/20 5
Continue ROS development 14dias lun06/04/20 dom 19/04/20
Write Progress Report 1 v1.0 3dias vie10/04/20 dom 12/04/20
MVPROS2 Odias dom dom 19/04/20
19/04/20
Deliver Reviewed ProgressReport| Odias dom dom 19/04/20
19/04/20
< sprinta odias vie2e/04/20 dom10/05/20 8)
TestROS v1/ROS v2 bridge 3dias vie24/04/20 dom 26/04/20
application
stakeholders Mesting 1dia 10n 27/04/20 lun 27/04/20 .
4 WEB development wdias lun mié 06/05/20 —
21/0af20
Designweb 2dias lun 27/04/20 mar 28/04/20 =
+ Frontend 8dias lun27/04/20 lun 04/05/20 —
Concept paper prototype 1dia 1un 27/04/20 lun 27/04/20 s
UI/UX Documentation 2dias mar28/0a/2 mié 29/04/20 =
Software-like paper prototype 2dias jue 30/04/20 vie 01/05/20 =
User testing 2diss dom03/05/z lun 04/05/20 -
4 Backend mar 05/05/21 mié 06/05/20 n
Design DB architecture 1dia mar 05/05/21 mar 05/05/20 "
Design tests 2dias mar05/05/2 mié 06/05/20 -
ROS-WEB Connection Development 3dias mié 06/05/21 vie 08/05/20 =
MVP ROS-WES Connection Odas dom 10/05/z dom 10/05/20 of 1005

Fig. 27: Gantt chart sprints 1 to 4.

4 sprints. 13dias lun11/05/20 dom2a/05/20 13
4+ Web development 5dias lun 11/05/20 vie 15/05/20
4 Frontend s dias lun 11/05/20 vie 15/05/20
User testing 2dias lun 11/05/20 mar 12/05/20
Develop frontend 3dias mié 13/05/21 vie 15/05/20
4 Backend 5 dias lun 11/05/20 vie 15/05/20 —
Develop web architecture 5 dias lun 11/05/20 vie 15/05/20
4 ROS development adias lun 18/05/20 jue 21/05/20 i
ROS bridge 3dias lun 18/05/20 mié 20/05/20
ToROS v2 study plan adias lun 18/05/20 jue 21/05/20
Wite Progress Report Il V1.0 3dias vie 15/05/20 dom 17/05/20 -
WEB base architecture and 0dias dom dom 24/05/20 * 24/05
Connection 28/05/20
Deliver Reviewed Progress Report Il 0 dias. dom dom 24/05/20 + 24/5
2/05/20
4 sprints 16dias vie20/05/20 dom14/06/20 28
4+ Web development 15 dias 29/05/20 vie 12/06/20 1
4 Backend 9 dias vie 20/05/20 sab 06/06/20 [
Auth + (Login/logout) module 3 dias vie 29/05/20 dom 31/05/20
Communication CORE 6dias Iun 01/06/20 sab 06/06/20
4 Frontend 12dias lun01/06/20 vie 12/06/20 —
Login page 2dias 1un 01/06/20 mar 02/06/20
Main page 3dias dom 07/06/2 mar 09/06/20
Device's page adias mar 09/06/21 vie 12/06/20
Deliver Project MVP 0dias d dom 14/06/20 14/06
14/06/20
Deliver Final Report (Article) 0dias dom 14/06/2 dom 14/06/20 14/06

Fig. 28: Gantt chart sprints 5 and 6.
4 Sprint 7 ' 14 dias dom 14/06/2 dom 28/06/20 41 ?—\

Sum up & Finalize documentation & 14 dias dom sib 27/06/20
Presentation 14/06/20
Organize Dossier v1.0 1dia dom 21/06/7 dom 21/06/20
Deliver Reviewed Dossier, Poster 0 dias dom dom 28/06/20 o 28/06
V1.0 & Presentation proposal 28/06/20

. Sprint 8 8dias dom 28/06/2 dom 05/07/20 52 [
Design & Develop Poster 8 dias dom 28/06/2 dom 05/07/20

Fig. 29: Gantt chart sprints 7 and 8.

FRANCESC DOMENE: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

A.3 JSON command file A.5 CI/CD pipeline

e.yml config
yml build

i-dev openssl-dev gcc libc-dev make
P

: 1

et e
test": "t = =k - pytest -q --disable-pytest-warnings

yramid:

er-compose”]

- apk add py v openssl-dev gce libe-dev make

- pip3

nts-ci.txt

p/tests.py -q --disable-pytest-warnings

install:
tage: deploy

: ["test-pyramid"]

v libffi-dev openssl-dev gcc libe-dev make

- python3 setup.py sdist
- pip3 install dist/*.tar.gz

Fig. 30: JSON file where the commands are specified for
each device.

A.4 JSON data file

Fig. 31: JSON data message (data.json) that travels from
the server to the status client.

ffi-dev openssl-dev gcc libec-dev

13

i make

--cov-report=term-missing

Fig. 32: GitLab CI/ CD pipeline structure.

14 EE/UAB BACHELOR’S THESIS: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

A.6 Use case diagram

B — <}

I
Uger Guest Operator Admin

View the

- telescope
! status
i |
i »View coordinates i
i of the object = =
iew status of devices : | Add User \
- At View the .
= |-»(telescope curent -
4 . =1 coordinates B B
|— Change profile data | — :"5
K /" Change View the
exfend>", username Q, lewg::fugume 1»| telescope date
“ - e ! and time
o =] '
[Change View the
U password ' telescope =L
o power status ' latitude and -
View data i |/ Revoke user
1 \ privileges
i capture status temperature .
! . status :
| <include> _/View weather i----1 Reset devices
B station data !
| Reset ROS <extend>,
1 1
- |
| _<include> " View device 3
datn I----{ Reset profiles
@ “{ Manage Devices

HE

=

=

‘2

Manage CCD ~)#-----------------oe E-y -- Manage PDU devices

| i
Capture image J&----4 » :
) |
L2 :
= |
Vm i
Y !

Set
temperature

the CCD

ctivate / Deactivate the
weather
Station

<include>

et

Manage the dome H

i<include>,

Open / Close
the dome

| <include>

GEESe SRS ERAESE RS mrmm ey R st § o m e T |

ynchronize the
telescope
coordinates

Orientate the telescope’
(Goto / Messier / Star /
Deepsky / Move)

et the telescopa
latitude and
longitude

Initialize the
telescope

et the telescope’
date and time

Update the
system's gps

Fig. 33: Complete use case diagram. The blue colored use cases are not considered in the current SRS document.

FRANCESC DOMENE: CONTROL SOFTWARE FOR ROBOTIC OBSERVATORIES

A.7 Dome example sequence diagram

i [:Web browser] [

User
(Operator)

open dome.

INTERNET

[Web backend 1\,

Websocket :Websocket
client (Action) | | client (Status)

Jaction(open dome)

[Example for the Dome device only. [\

[ObservatoryH andler}

[Device] [Dumerchem]

15

refirn

[Runs ever
[second

loop) T reaueststatus
e o MY

request: action{open dome)

Fig. 34: Sequence diagram showing the whole process of updating data and performing an action.

return

return

!

[Dome_Server]

[oome]

[Dome Driver }

e patn) T
: i 7 1
i3 = (Gome status action ;
Toop) L upiate status) b) H
request_dome_action(status)
Jsol dome_action(action, response
data.js dome.input(res)
Jdome_action_status(res)
dome output(res,
dome shutter status(fd))
return
retum
— return
(dome device)
Set device status(cma,response)
rotum
return L
_y H
I update data() get. device status() g
return
retum dumpiata, fie)
J ; JSON
T | data json
s evert |
15 seconds :
action action, params)
o | request dome action(status)
- - dome_action(action, response
subprocess
dome input(res)
dome_action_open(res)
dome output(res,
dome_control_shitter(fd)).
retumn
return
bt return :
updte detce(tevice, actiontams) ! | |
et mcice, i respomss) : : 3
rotum : ; ;
e ; ; ;
update device data(device, acton) | | |
dump(data, file) ' : '
JSON
return =5
< - data.json

mssl

	Introduction
	Document structure
	State of the art
	Objectives

	Methodology
	Description
	Workflow
	Iterations

	Tools
	Planning

	Software development cycle
	Analysis
	Requirements

	Unexpected scenario
	Robotic prototype

	Design
	ROS Module
	Web portal Module
	Backend
	Frontend

	ROS-WEB Connection Module
	Server
	Status client
	Action client

	Implementation
	Tools and technologies

	Test

	Results
	Conclusions
	Frontier and future development
	Trello Board
	Gantt chart
	JSON command file
	JSON data file
	CI / CD pipeline
	Use case diagram
	Dome example sequence diagram

