# 



FINAL DEGREE PROJECT, FOOD SCIENCE AND TECHNOLOGY-JUNE 2021

ANA ARIAS CANO

### **OBJECTIVES**

The general objective: to investigate the food system of space missions.

#### **Specific objectives:**

- To determine the types of processing to which food is subjected to be consumed in space, preserving the quality, safety and stability of the product.
- To identify the nutritional needs of astronauts to preserve an adequate state of health.
- To analyze which are the most suitable packaging materials to ensure food safety and quality.
- To evaluate the evolution of space foods and future prospects.

### PROCESSING AND PACKAGING TECHNOLOGY

**Table 1.** Type of treatment, packaging and shelf life according to the food category

| Food category              | Processing                       | Packaging                                     | Shelf life         |
|----------------------------|----------------------------------|-----------------------------------------------|--------------------|
| Meat and fish              | Thermostabilized<br>Irradiated   | Flexible retort bag<br>or aluminium can       | 2-3 years          |
| Vegetables                 | Fresh                            | Edible film                                   | 1 week             |
|                            | Lyophilization or<br>dehydration | High barrier<br>vacuum                        | 1,5-2,5 years      |
| Fruits                     | Fresh                            | Edible film                                   | 1 week             |
|                            | Intermediate<br>moisture         | Vacuum sealed                                 | 1,5 years          |
|                            | Lyophilization                   | High barrier                                  | 1,5-2,5 years      |
| Beverages                  | Dehydration                      | High barrier with<br>valve for<br>rehydration | 1,5-2 years        |
| Cereal<br>derived<br>foods | Thermostabilized                 | Retort bag                                    | 2-3 years          |
|                            | Dehydration                      | High barrier with<br>valve for<br>rehydration | 1,5-2 years        |
|                            | Natural form                     | Vacuum sealed                                 | 6 months-1<br>year |
| Egg<br>products            | Lyophilization                   | High barrier                                  | 1,5-2,5 year       |

## NUTRITIONAL NEEDS AND PHYSIOLOGICAL CHANGES

**Table 2.** Recommended daily intake values in space and their importance during spaceflight.

| Macronutrient | Importance in spaceflight                                                             |  |
|---------------|---------------------------------------------------------------------------------------|--|
| Protein       | Essential amino acids. Deficiency: loss of muscle mass, weakness, tissue degradation. |  |
| Carbohydrates | Main energy source. Deficiency: ketosis, worse efficiency.                            |  |
| Lipids        | ooldisio vittariii io tara oolitarisationi oi                                         |  |
| Omega-6       |                                                                                       |  |
| Omega-3       |                                                                                       |  |
| Fiber         | Gastrointestinal function and decreases the incidence of constipation.                |  |
| Micronutrient | /licronutrient Importance in spaceflight                                              |  |
| Vitamin A     | Antioxidant effect, minimizes oxidative stress.                                       |  |
| Vitamin D     | Deficiency: brittle or brittle bones                                                  |  |
| Vitamin E     | Counteracts the damage of free radicals generated by radiation                        |  |
| Vitamin K     | Bone health                                                                           |  |
| Vitamin C     | Antioxidant function, minimizes oxidative stress.                                     |  |
| B6            | Immune and neurological function.                                                     |  |
| Folate        | Immune function                                                                       |  |
| Calcium       | Bone health                                                                           |  |
| Potassium     | Deficiency: muscle weakness, constipation and fatigue.                                |  |
| Magnesium     | Bone health, prevention of hypocalcemia.                                              |  |
| Sodium        | Calcium homeostasis                                                                   |  |
| Iron          | Deficiency: altered intellectual activity and fatigue.                                |  |
| Phosphorus    | Bone health                                                                           |  |
| Manganese     | Minimize oxidative stress.                                                            |  |

#### FOOD SAFETY

**Table 3.** Environmental and surface microbiological testing for space food production by the Johnson Space Center

| Analysis area       | Samples                 |  |
|---------------------|-------------------------|--|
| Surfaces            | 3 surface samples per   |  |
| Suriaces            | day                     |  |
| Packaging material  | Before use              |  |
| Machinery           | 2 samples per day       |  |
| Food                | Microorganism to be     |  |
| FOOU                | analysed                |  |
|                     | Total aerobic count     |  |
|                     | Coliforms, Coagulase    |  |
| No thermostabilized | positive Staphylococcus |  |
|                     | Salmonella              |  |
|                     | Fungi and yeasts        |  |
| Commercially        | No samples are          |  |
| -                   | analysed                |  |
| sterilized products | microbiologically       |  |

### CONCLUSIONS

- Most of the food is heat sterilized, irradiated or freeze-dried, as they provide a longer shelf life.
- Fresh and natural foods have a psychological and hedonic role.
- The most commonly used materials for packaging are high-barrier containers and retort bags, as they hinder the diffusion of gases.
- HACCP system, Good Manufacturing Practices and analysis of the production areas and the processing environment.
- Nutrition is essential to maintain the immune system, skeletal and muscular integrity, decreasing oxidative stress, and improving gastrointestinal motility.