Listeria monocytogenes biofilm adaptation and tolerance to stress conditions: sigma factor contribution.

Areview

Etna Monturiol Carrasco | Final Degree Project | June 2021

OBJECTIVES

- -To relate sigma factor with the expression of genetic determinants for resistance to QACs.
- -To establish if there's cross resistance between QAC based disinfectants and antibiotics.
- -To know how the exposure to sublethal concentrations of QAC-based disinfectant affects the microorganism.

BIOFILM DISINFECTION

- -Biofilm stages: Attachment, EPS development and cell maduration, detachment.
- -Cleaning + Disinfection.
- -MIC biofilm > MIC free cells

RESISTANCE TO QAC

- -MIC increases in isolated strains after disinfection.
- -BAC resistance Biofilm > Free cells

SIGMA FACTOR

- -Protein needed to start transcription.
- -Expression of virulence genes.
- -Expression of virulence associated genes.
- -Gene expression depends on environmental signals.
- -B-Sigma Factor

L. monocytogenes

- -Responsible for listeriosis outbreaks, commonly 4b.
- -Not particullary resistant but able to form biofilm.
- -In 2019 UE cases grown a 31% respect 2018.
- -RTE meat (29,6%), dairy (28,4%) and fish (6%).
- -Crossed contamination.

DISINFECTANTS UNDER STUDY

Compound	Product	Concentration (ppm)	Time (min)	Biofilm reduction (log UFC/cm²)	References
QAC	Dimethyl ethylbenzyl	200	15	5	(Aryal &
	ammonium chloride (5.1%);	1000	15	>7	Muriana,
	Alkyldimethylbenzylammonium				2019)
	chloride (5.1%); Ethanol (1.1%)				
	Octyl decyl dimethyl ammonium	100	1	2,4	(Hua et al.,
	chloride (2.3%)	200	1	3,2	2019)
	Dioctyl dimethyl ammonium	400	1	3,6	
	chloride (1.1%)				
	Didecyl dimethyl ammonium				
	chloride (1.1%)				
	Alkyl dimethyl benzyl				
	ammonium chloride (3%)				
Chlorine	Sodium hypochlorite (<20%);	200	60	<1	(Aryal &
Disinfectants	Sodium hydroxide (<5%).	1000	15	7	Muriana, 2019)
	Chlorine dioxide	100	1	2,4	(Hua et al.,
		200	1	3,8	2019)
PAA	Peracetic acid (5% –6%),	500	5	>7,5	(Aryal &
	Hydrogen peroxide (25% –58%),				Muriana,
	Acetic acid (5% –10%)				2019)
	Peracetic acid (15%)	80	1	3,6	(Hua et al.,
		160	1	4,8	2019)

GENETIC DETERMINANTS TO QAC RESISTANCE

emrE Gene

-emrE protein — efflux pump.
-Removal of *emrE* leads to

an increased susceptibility to QACs

bcrABC cassette

-Efflux pump. -bcrA + bcrBC.

-Transcription induced by QACs

Tn6188 transposon

-qacH efflux pump.
-Similarity to *bcrABC* (38-53%)

-Different genetic origin

CONCLUSION

- -More studies are needed to relate cross resistance between disinfectants and antibiotics as to relate sigma factor with *L. monocytogenes* genetic resistance determinants.
- -Exposing L. monocytogenes to subletahal concentrations of QAC increases the microorganism MIC.

