

EVALUATION OF FREEZING AS A METHOD OF PRESERVING STRAWBERRY JUICE

Júlia Patón Baeza June 2021

Objectives

Main: Evaluate freezing as a method of preserving strawberry juice.

Specific: Evaluate the effect of two freezing temperatures (-17°C and -23°C).

Material and Methods

-<u>Parameters analyzed in the laboratory:</u> viscosity (rheometer), stability (turbiscan), Brix degrees (refractometer), pH (pH-meter), color (HunterLab colorimeter) and vitamin C (lodine titration method.

-<u>Parameters analyzed with tasting panel:</u> color, aroma, appearance, viscosity in the mouth and taste.

Results

Table 1. Viscosity, pH, degrees Brix, vitamin C and color results.

		$(M \pm SD)$		(M± SD)		
		Viscosity (cP) N= 20			pH N= 6	
Fresh		264,01±2,99ª		3,	3,71±0,03ª	
Frozen -17°C		276,75±26,04 ^b		3,	3,67±0,08 ^b	
Frozen -23 °C		268,18±21,54 ^c		3,66±0,09 ^c		
		°Brix N=2		Vitamin C (mg/ 100 ml) N=4		
Fresh		9,75±0,75		89,29±29,59ª		
Frozen -17°C		10,50±0,50		$74,23\pm13,66^a$		
Frozen -23 °C		10,25±0,25		72,18±13,59 ^a		
	N	(M± SD)	N (M± S	D) :	N(M± SD)	
Color N=6						
		L	а		b	
Fresh	36	,55±4,80ª	14,59±3,3	7ª	2,81±0,80ª	
Frozen -17 °C	32	,67±0,55 ^b	15,06±0,2	.8ª	1,04±0,24 ^b	
Frozen -23 °C	32	,57±1,20 ^b	15,70±0,4	1ª	1,23±0,57 ^b	

Different letters in the same analysis means that the results are significantly different (p valor<0.05).

Figure 1. Freezing curve in strawberry juice frozen at -17°C and -23°C.

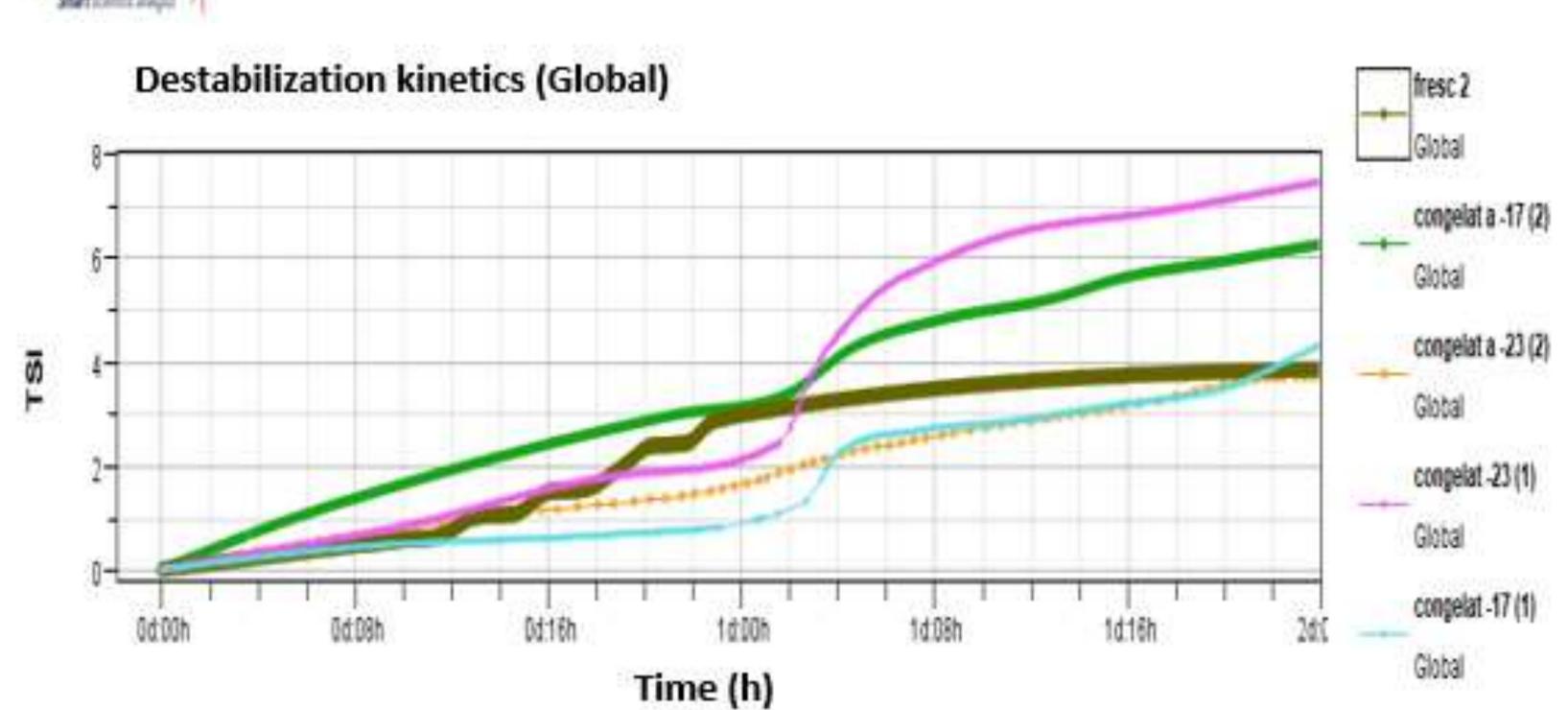


Figure 2. Stability comparison with TSI between fresh and frozen strawberry juice at -17°C and -23°C.

- An increase of viscosity, Brix degrees and a value are observed between fresh and frozen juices. However, pH, vitamin C and L and b values have experimented a decrease.
- In the tasting, frozen juices were found to be more viscous and with more particles than fresh juice. Instead, a decrease in redness, aroma, appearance homogeneity and sweetness were found in frozen juice in relation to the fresh one. Even though, these results were not statistically significant.

Conclusions

- Freezing can be used as a method of preserving strawberry juice for two and a half months, due to the fact that freezing doesn't affect in a relevant way the physicochemical properties. In addition, tasters were not able to find significant differences between fresh and frozen juice.
- To improve the study more samples should be analyzed.