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Abstract 

 

In the last years, recurrent neural networks with continuous dynamics have been applied 

to model many neurobiological phenomena. However, the literature on the physiological 

foundations of these connectionist networks is practically non-existent, as they are closer 

to artificial neural networks than neuroscientific computational models. In this article, we 

explicitly derive the equations of these recurrent connectionist systems from 

neuroscientific models, such as leaky integrate-and-fire (LIF) neurons and synaptic 

chemical kinetics. We specify under what conditions this modelling is supposed to hold, 

and we run simulations of networks wired like some simple neural circuits, such as those 

that possess species like Tritonia Diomedea, Aplysia Californica or lampreys, in order to 

show their similar behaviour. Finally, in the first annex we introduce some of the 

emerging properties of these networks, such as being universal approximators of 

dynamical systems, and we remark that this approach is congruent with the spontaneous 

synchronic activity that is known to take place in the cortex 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Connectionism, computational neuroscience, integrate-and-fire models, 

synaptic chemical kinetics, realistic modelling, approximation theorems, emerging 

properties, neural manifolds, neural synchronies. 
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1. Introduction 

 

The connectionist perspective is a computational approach to the brain-mind binomial 

which states that the mental activity is an emerging property of neural systems, and 

therefore the study of that must refer to these. This perspective understands that the brain 

is not composed of symbolic processing units, enabled to manipulate explicit 

representations following a set of formal rules (Smolensky, 1988) but that instead these 

representations are found distributed in parallel, in a sub-symbolic level, spread over a 

whole set of interconnected elements, where each unit is not related to a single concept, 

as representations are understood to be a collective, emerging property of the whole net 

(Rumelhart et al., 1986). This is called Parallel Distributed Processing, or PDP. In 

practice, this is usually synonymous to neural network models that have some common 

features, such as being nets of units (neurons) that have an activation given by a nonlinear 

transformation of a propagation rule (how is each element connected to the neighbouring 

neurons) that is established by a weight matrix (the strength of the connexions) as well as 

some biases, determined by certain learning rules in interaction with an  environment, 

where we assume certain stable distributions of probabilities in the presence of stimuli 

(Rumelhart et al., 1986; Thomas & McClelland, 2012). 

 

Although one of the main objectives of the PDP perspective is to knit a biologically 

plausible modelling, enabled to provide an understanding about the nature of these 

emerging properties, the fact is that until now these models have followed a top-down 

approach, this is, the designed neural networks have been planned specifically to adjust 

to an expected functioning, by learning different abstract representations of certain given 

data (Lecun et al., 2015), that can go from pattern classification to speech recognition 

(Graves & Jaitly, 2014) or even the imitation of social skills (Weizenbaum, 1983). This 

opens the question of whether these devices are able to mimic some cognitive processes 

because they share a similar neural basis with real brains, or just because they have been 

configured to do the same tasks, in which case the PDP perspective would be interesting 

in machine learning and artificial intelligence, but not for the understanding of real 

biological information processing systems (van Gerven & Bohte, 2017).  

 

In this article we focus on continuous time connectionist models, expressed in the 

language of non-linear differential equations, which have common features with discrete 

neural networks, both in their formalism as well as in their emerging computational 

properties (Hopfield, 1984; Hopfield & Tank, 1986). In the last years, their dynamics 

(Beer, 1995) and the stability of their behaviour (Hirsch, 1989) have been studied, and 

they have been proved to hold very interesting dynamical properties, as to be able to 

predict both autonomous and non-autonomous dynamical systems with arbitrary 

precision (Chow & Li, 2000; Funahashi & Nakamura, 1993), being therefore capable of 

approximating any trajectory on the activation space of the output units of the network 

(Trischler & D’Eleuterio, 2016).  

 

In addition to these mathematical properties (which we will discuss later, given the 

relevant interpretations we think they can open in psychology) time continuous networks 

have been shown to model a very wide range of neurobiological phenomena, such as to 

mimic human ballistic movements (Cheron et al., 2007), reproducing locomotive patterns 
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(Hoellinger et al., 2013), interpreting the functioning of cells in the layer IVB of the 

primary visual cortex (Mineiro & Zipser, 1998), replicating the visual recognition of 

biological movements (Giese & Poggio, 2003), the EMG recordings of the reaching 

movements of monkeys (Susillo et al., 2015) or the locomotive patterns of salamanders 

(Ijspeert, 2001), among others. 

 

However, despite the wide research and implementation, these models seem to merge out 

of the clear blue sky, as if they were, again, a product of the intentions of the developers, 

instead of an innocent reflex of the reality that they pretend to represent. We think, 

therefore, that there’s a need to undo the path and seek for the neurobiological origins, to 

raise the walls on which the roof is already built. 

 

 In the following sections, we will derive different continuous time connectionist systems 

in a bottom-up fashion, reaching them explicitly from previous neuroscientific  models, 

such as “integrate-and-fire” neurons or synaptic models (Gerstner et al., 2014). We will 

show that continuous time connectionist systems are valid approximations to the 

dynamics of given populations of neurons, whenever they follow certain conditions, and 

that they are something more than a useful invention, in the sense that, apart from being 

endowed with practical mathematical properties, they are also grounded on 

neuroscientific computational research. 

 

That’s why we will defend their relevance both on neuroscience and cognitive 

psychology. In regard to the first, we will perform different simulations using the derived 

models, which show that they can replicate the behaviour of some biological neural 

networks; with respect to the second, we will briefly discuss their emerging 

computational properties, showing that this approach is congruent with the synchronous 

spontaneous activity that it is known to occur in the cortex (Okun et al., 2015). 

 
 
1.1 The ideal neuron 

 

Models give schematic and simplified versions of reality, as on the physical side require 

idealizations and on the mathematical, approximations. Without idealizing the object of 

scientific interest, the study of nature would be impossible, given its great complexity. 

These idealizations are usually given by selecting the relevant elements of the study, 

simplifying them and approximating the basic laws that govern their dynamics 

(Fernández Rañada, 2005). 

 

Some of the premises of our modelling are borrowed from “leaky integrate-and-fire” 

(LIF) neurons, since our units will have the same properties, as taking a single membrane 

potential value, a unique threshold over which action potentials are triggered, and 

considering the membrane as a passive capacitor which fires every time the threshold is 

reached. We will also neglect time delays, presuming they are much shorter than neurons 

time constants, as well as electrical phenomena associated with the shape of dendrites and 

axons (Hopfield & Tank, 1986). 

 

With respect to synapses, we will presume them to have some grade of similarity, so that 

we can group them into different groups with shared properties, like volume, diffusivity, 

receptor kinetic parameters and density. We will consider different cases, where the 
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simplest one (this is, the case of a neuron with only one synaptic structure) will give birth 

to the well-known time continuous recurrent neural networks (Hopfield & Tank, 1986). 

 

In addition, we will consider them capable to optimize the neurotransmitter release, 

meaning that the maximum output is capable to saturate postsynaptic receptors almost 

completely.  

 

Finally, the considerations on synaptic dynamics will raise from a biochemical approach, 

studying their behaviour in terms of chemical equilibrium, enzymatic kinetics, diffusivity, 

affinity… from here, a set of differential equations will be derived, and their justification 

in biological and chemical terms will be addressed in the section on synaptic dynamics 

and on the second annex, where we will discuss the synaptic modelling on which the 

whole derivation is grounded. With regarding to approximations, relevant to 

mathematical aspects, they will be mentioned and justified whenever they occur. 

 

 

1. Derivation of connectionist models  

 

2.1“Integrate-and-fire models” and synaptic current: the basics of the model 

 

“Integrate-and-fire” models are simplifications of the dynamics of a single neuron. Their 

precision level depends both on the nonlinear terms and the other equations that are added 

to the simplest one of those models, often called “leaky integrate-and-fire” (LIF)(Gerstner 

et al., 2014). The so called “adaptative exponential integrate-and-fire”, for example, 

stands out for being able to predict about 95% of the action potentials, if the governing 

parameters are chosen correctly (Brette & Gerstner, 2005). From now on, however, we 

will be based on the simplest model, from which the rest are just improvements. This one 

consists of a passive membrane, whose potential can be obtained from a lineal differential 

equation, analogous to the one of RC electronic systems. If the potential reaches a certain 

threshold, a spike is released and the potential is reset (or, in other terms, you “integrate” 

the equation until a certain potential is reached, “and” then the neuron “fires”).  

                                             

From this analogy, the neuron membrane can be considered as an electric capacitor, able 

to store a certain amount of charge on both sides of the membrane given a voltage 

difference (membrane capacitance, C) with a certain tendence of charge filtering 

(membrane resistance, R). This lineal circuit is certainly capable of approximating the 

solutions of the potential when it comes to values close to the resting potential, but what 

about the highly nonlinear situation that takes place when an action potential is triggered? 

That’s why, as we said, a threshold is added on, from which the neuron is assumed to 

generate a spike, after which the potential is set to a starting value again and again, form 

which the lineal sub-threshold dynamics are going to take on afterwards. The 

mathematical conditions are given by: 

 

 
 

                         𝜏
𝑑𝑉

𝑑𝑡
= −(𝑉 − 𝑉𝑟𝑒𝑠𝑡) + 𝑅𝐼(𝑡)                                                                      (2.1.1) 

 
if 𝑉 ≥ 𝜗 (the threshold), an action potential is generated and V takes automatically the Vr 

(reset) value (about -75 mV, given the hyperpolarization phenomena), where 𝜏 is the 

temporal constant of the membrane (which equals the product of the resistance for the 
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capacitance, RC); V is the membrane potential; 𝑉𝑟𝑒𝑠𝑡  is the resting neural potential 

(usually about -70mV); and I(t) is a function that governs the intensity of the injected 

current on the cell. (Gerstner et al., 2014) 

 

So far, we have just talked about a spiking system, that little or nothing have to do 
with a connectionist modelling. Our goal will be to derive rate models from spiking 
ones, and so we have to move from action potentials to frequency. 
 
      Figure 2.1.1 
     F-I curve 
 

 
 
Image from (Tateno et al., 2004) 

 

The image shows what are known as f-I curves, which relate the intensity of the injected 

current with the emitted action potential frequency (Tateno et al., 2004). The injected 

current, this is, the “input” of the studied neuron, depends on the output values of the 

neighbor neurons. Thus, the total membrane current can be thought as a propagation 

variable, which defines how the surrounding activations define the state of the unit in 

classical connectionist models (Rumelhart et al., 1986) and so, if we choose the firing 

frequency in Hertz as the activation units of the network elements, the f-I curve can be 

viewed as a kind of activation function. 

 

The deal now is how to relate this kind of connectionist propagation with the activation 

(i.e., the firing rate) of surrounding neurons. To solve this problem from the ground up, 

we will have to resort to synaptic biochemical dynamics. This, however, will be addressed 

in the following section. Before, nevertheless, we will rearrange equation (2.1.1), fitting 

in the known expression for chemical synaptic current, and therefore expressing I(t) in 

terms of membrane potential, membrane permeability and the reversal potential of the 

ions involved, just as follows: 
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           𝐼(𝑡) = ∑ 𝐼𝑖𝑗(𝑡),𝑖,𝑗           𝐼𝑖𝑗(𝑡) = −𝑔𝑖𝑗(𝑡)(𝑉 − 𝐸𝑗)                                                   (2.1.2) 

 
 
Where 𝑔𝑖𝑗(𝑡) is the membrane permeability of the ith synapse to the “j” ion, 𝐼𝑖𝑗 is the 

current associated to the same synapse for the same ion, and 𝐸𝑗 is the reversal potential 

for the mentioned ion (Gerstner et al., 2014). Usually, 𝑔𝑖𝑗(𝑡) is assumed to be a time 

dependent function that decays exponentially after each presynaptic spike. It can also be 

defined as: 

 
                                   
                                       𝑔𝑖𝑗(𝑡) = ∑ 𝑔

𝑖𝑗𝑘
𝑟𝑖𝑘(𝑡)𝑘                                                                          (2.1.3) 

 
(Destexhe et al., 1994; Gerstner et al., 2014) 
 
Where  𝑔

𝑖𝑗𝑘
 is the màximum permeability that the k-th kind of ionotropic receptor have 

for the jth ion in the ith synapse and 𝑟𝑖𝑘 is the proportion of these channels that are open. 

Although it may seem that we’re kicking the ball forward without solving the problem 

out, this expression will result of great value in the following sections. 

 

To ease things and suppress adders and index, from now on we will develop the model 

for the hypothetic case of a neural network with just one ionotropic receptor permeable 

to a single ion. This restriction, nevertheless, is not necessary, and so we will soon 

introduce a general model for diverse receptors and ions. This shift is just to simplify the 

next steps and make them more accessible, from which we will later be able to generalize 

the resulting equations to a more realistic situation. 

 

In this case, if we play the Russian dolls with the previous expressions, substituting (2.1.2) 

in (2.1.1), we find: 

 

𝜏
𝑑𝑉

𝑑𝑡
= −(𝑉 − 𝑉𝑟𝑒𝑠𝑡) − 𝑧(𝑡) (𝑉 − 𝐸)                                                                               (2.1.4) 

 
Where 𝑧 is just Rg(t) (the product of the membrane leak resistance for the membrane 

permeability to input current, which yields the dimensionless variable z). We have 

introduced this new function because, as we will soon see, it will have the honor to be the 

state variable of the system we are deriving. 

 

To obtain our activation function, we will remember that we measure the activation in 

frequency units, and that frequency is the inverse of the period. Thus, we will integrate 

the previous equation as follows (Stein, 1967): 

 

𝑇 = ∫ 𝑑𝑡 = ∫
𝑑𝑡

𝑑𝑉

𝜗

𝑉𝑟

𝑇

0

𝑑𝑉 = −𝜏∫
𝑑𝑉

𝑉 − 𝑉𝑟𝑒𝑠𝑡 + 𝑔𝑅(𝑉 − 𝐸)

𝜗

𝑉𝑟

 

 
(2.1.5) 
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This yield: 

 

𝑎(𝑧) =
𝑧 + 1

𝜏ln 
(𝑧 + 1)𝑉𝑟 − (𝑉𝑟𝑒𝑠𝑡 + 𝑧𝐸)
(𝑧 + 1)𝜗 − (𝑉𝑟𝑒𝑠𝑡 + 𝑧𝐸)

                                                                            (2.1.6) 

 

The following picture shows the graphics of the activation function (which is as we will 

label equation (2.1.6)) for the following values of the parameters: Vr=-80mV; 

 𝑉𝑟𝑒𝑠𝑡=-70mV; E=0mV (we have selected sodium to be our reference ion, which has a 

reversal potential about 0mV); 𝜗=10mV, 𝜏 = 1 .  

 
      Figure 2.1.2 

     Activation Function 

 
As a summary, so far, we have based on “integrate-and-fire” models, that are 

approximations to the dynamics of a single neuron, which have permitted us to define a 

state variable, 𝑧 , that as we will soon see enables us to relate the outcome of the 

surrounding neurons, just like in the rest of connectionist models happens with the 

propagation rule. At the same time, we have shown that the values of this function can be 

transformed into the frequency of the neuron via the activation function, equation (2.1.6). 

Finally, we have reduced the jungle of receptors and transmitters of the system just to 

make the next steps more accessible. At the end, however, we will return to more realistic 

situations. 

 

2.2 Synaptic chemical dynamics  

 

Our goal is to know, given a neural network with N elements, the evolution equations of 

the system, starting from the propagation of the units (𝑧), which we have seen to depend 

only on the activations (a(𝑧)) of the neighbor neurons. 
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Defined and interpreted these variables from a biological level, and having been 

categorized according to the connectionist scheme, now it’s time to derive the rules that 

will determine the behavior of this system of dynamical interactions. To begin this task, 

we will start from the model: 

 
   𝑟̇𝑖 = 𝛼[𝑇]𝑖(1 − 𝑟𝑖) − 𝛽𝑟𝑖                                                                                                         (2.2.1) 

 

Where 𝑟𝑖 is the fraction of ligand bounded receptors in the ith synapse of the studied 

neuron; 𝑟̇𝑖  is the variation rate of the mentioned variable; [𝑇]𝑖  is the concentration of 

neurotransmitter in the i-th synaptic cleft; 𝛼 and  𝛽  are the kinetic coefficients of the 

reaction (Destexhe et al., 1994; Gerstner et al., 2014). 

  

In the current case, in which we are just interested in neurons endowed with a single kind 

of receptor (so far), T could be glutamate and the receptor could be of the NMDA type, 

for example. We will study neural interactions only through ionotropic receptors, leaving 

aside metabotropic signalling. 

 

This kinetic approximation enables us to acknowledge which is the fraction of “activated” 

neuroreceptors knowing the synaptic concentration of the transmitter, [𝑇]𝑖 , that in this 

model usually takes the shape of a function to choose, depending only on time. We, 

however, will add a companion to this equation, that will enable to describe [𝑇]𝑖 through 

the activation state of the presynaptic neuron. This will be the first equation of own 

harvest, so it will regard a biological justification. Below we will set out the new 

parameters, and the deserved explanation of the biochemical sense of this new equation 

will be detailed in annex 2. The system takes the form: 

 

 

{
𝑟̇𝑖 = 𝛼[𝑇]𝑖(1 − 𝑟𝑖) − 𝛽𝑟𝑖

[𝑇]̇ 𝑖 = −𝛼𝑅0[𝑇]𝑖(1 − 𝑟𝑖) + 𝛽𝑅0𝑟𝑖 −
𝑉𝑚𝑎𝑥[𝑇]𝑖

𝑘𝑀+[𝑇]𝑖
+ 𝛾𝜎(𝑧𝑖) −

𝐷𝐴

𝑉
[𝑇]𝑖

                            (2.2.2)                                               

 

 

 

Where 𝑅0 ≡ [𝑅] + [𝑇𝑅]  is the sum of the free receptor concentration plus that of the one 

bounded to the transmitter, and can be read as the receptor total concentration, which we 

will consider constant for our purposes;  𝑘𝑀  is the transmitter reuptaker Michaelis-

Menten constant; 𝑉𝑚𝑎𝑥 is the maximum velocity at which glutamate can be reabsorbed; 

𝛾 is a new constant of mol/(l*s) units, that we will discuss in the annex; D is the diffusion 

coefficient of the neurotransmitter from the synapse to the external environment, A and V 

are, respectively, the area that limits the synapse with the surrounding medium and the 

total volume of the synapse; and 𝜎(𝑧𝑖) is the output value of the presynaptic neuron, 

which is defined as the composition of the output function with the activation function. 

The output function (𝜎) is defined, given an activation a(z), as: 

 

    𝜎(𝑧) =
𝑎(𝑧)𝑛

𝑎1
2

𝑛 + 𝑎(𝑧)𝑛
                                                                                                        (2.2.3) 
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Where 𝑎1
2

 is the frequency at which half of the transmitter release is reached, and n is a 

constant to be determined empirically. For more details about this output function, the 

issue is discussed in the annex that verses on biochemical argumentation (annex 2). 

  

A dilemma comes to mind when we pose (2.2.2). If what we want is an ODE system able 

to describe in a simplified and heuristic way the functioning of a biological neural 

network, how could we obtain it if we assume that each and every synapse, among the 

thousands with which every single neuron is endowed, already supposes two coupled 

differential equations? The complexity is huge, and so we will have to reduce the model 

using both techniques of phase plane analysis and the assumptions that have been pointed 

out previously. 

 

The first thing that comes to sight when analysing (2.2.2) parameters is the difference in 

its order of magnitude. On the one hand, the receptors are very specific to the transmitter. 

That’s why their kinetic constants should be very large (especially when it comes to 𝛼, 

the parameter that governs the tendency of the neurotransmitter to join the receptor); On 

the other hand, the performance of the neurotransmitter reuptaker, that works against its 

gradient and thus belongs to the active transporter family (see annex 2) is going to be 

much slower compared to kinetic parameters. The same could be said about the diffusion 

coefficients.  

 

For instance, if we take the NMDA receptors, as we have done before for exemplification 

purposes, the kinetic parameters take values about 𝛼 = 1.7 ∗ 107𝑀−1𝑠−1, 𝛽 = 60𝑠−1 

(Borschel et al., 2015), and when it comes to the enzymatic properties of the glutamate 

transporters, although they can vary largely on many biochemical aspects, for EAAT3 

the parameters are known to take values that round, for the Michaellis-Menten constant,  

𝑘𝑀 = 2′7 ∗ 10−5𝑀, (Sun et al., 2014) and for the 𝑉𝑚𝑎𝑥 , according to the researchers, the 

values use to be of the same order of magnitude of 𝑘𝑀, depending on the transporter 

density. 

 

Intuitively, this implies two different time scales on the behaviour of (2.2.2). On the one 

hand, the system evolves quickly to the chemical equilibrium of the transmitter-receptor 

dissociation reaction, which takes the form of a non-isolated fixed points curve on the 

phase plane, which analytic form is given by the chemical equilibrium equation (see 

annex 3). But on the other hand, this dissociation reaction doesn’t happen on its own. As 

it is shown in annex 3, there is no conservation of mass inside the synapse, given that the 

transmitter can flow inward and outward. Thus, once the system has rapidly evolved to 

the mentioned curve of dissociative equilibrium, it is then slowly driven, thanks to the 

diffusion/transport/presynaptic signalling phenomena, towards the unique stable 

equilibrium point of the system. 

 

That’s why we could consider this curve of the dissociation reaction equilibrium as a 

center manifold (Carr, 2006). Afterwards, if we reduce the dynamics of the system to the 
dynamics on the central manifold (given this huge time-scale difference), the governing 

equations could be also reduced from two to one single ODE (Strogratz, 1994). The 

rigorous steps that involve this shift are, again, left to annex 2, where the simplified 

equation is derived using nondimensionalization and central manifold techniques. 
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Figure 2.2.1 

Phase flow towards the slow manifold 

 

 
 
In the image, some trajectories on the phase space of the problem. Separated dots indicate quick 

movements, while those that are together represent slow ones. It’s easy to intuit the two time scales, as well 

as the central slow manifold. 

 

As far as the synaptic current is concerned, the fraction of open ion channels, 𝑟𝑖, is the 

only variable to consider. That’s why, using the mentioned techniques, we can reduce 

(2.2.2) to the following equation for 𝑟𝑖: 
 
 

𝑟𝑖̇ =
1

𝑅0
(𝛾𝜎(𝑧𝑖) −

𝑉𝑚𝑎𝑥𝑟𝑖
𝑘𝑀
𝑘𝑑

+ (1 −
𝑘𝑀
𝑘𝑑
) 𝑟𝑖

−
𝑘𝑑𝐷𝐴

𝑉

𝑟𝑖
1 − 𝑟𝑖

)                                               (2.2.4) 

 

Where 𝑘𝑑 ,  the dissociation constant, is the equilibrium constant of the dissociation 

reaction between the receptor and the transmitter.  

 
 
2.3 Approximation to a system of connectionist equations 

 

It is time to close the circle, and to do so we will recover the connectionist vocabulary 

that we’ve lost in the last pages, when we seek to understand the chemical dynamics of 

the synapse. Now, we can use these results to conclude the development of the model. 

 

We have claimed that our propagation rule takes the form 𝑧 = 𝑅𝑔(𝑡) = 𝑅∑ 𝑔𝑖𝑖 (𝑡), 

assuming that just one ion and one receptor are on stage, and that 𝑔𝑖(𝑡) , the ion 

permeability to the i-th synapse, was obtained: 

 

𝑔𝑖(𝑡) = 𝑔
𝑖
𝑟𝑖(𝑡)                                                                                                                      (2.3.1) 

 

(Destexhe et al., 1994) 
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To find the equation for the evolution of the state variable of our neuron, (z), which is the 

golden egg we’re looking for, we could be tempted to plug (2.2.4) in the derivative of 

(2.3.1) and then sum over i. To make it possible, however, we still have to do another 

approximation before we move on. 

 

Although we have done a great step after dropping one equation of the synaptic dynamics, 

(2.2.4) is still very complicated, and the fact that it is nonlinear frustrates the previous 

assignment. But we can account a couple of things.  

 

First of all, if we consider (2.2.4) on the form 𝑟𝑖̇=f(𝑟𝑖, 𝑧𝑖), to simplify the notation, we can 

see that the domain of f(𝑟𝑖, 𝑧) that concernes us is only the interval when  0<𝑟𝑖 < 1, which 

is trivial given the definition of 𝑟𝑖. Secondly, f(𝑟𝑖, 𝑧𝑖) decreases monotonically on this 

interval as 𝑟𝑖 increases (i.e. 
𝜕

𝜕𝑟𝑖
f(𝑟𝑖, 𝑧𝑖) < 0, which is easy to prove) . This means that the 

dynamics on this narrow segment are not quite complicate (the solutions can either go 

left or right asymptotically approaching the fixed point). Actually, this is similar to what 

happens in a linear ODE, so we shouldn’t expect much difference between (2.4) and it’s 

linearized version (Strogratz, 1994).  

 

Therefore, it means that inside the (0,1) interval, f(𝑟𝑖, 𝑧𝑖) doesn’t differ that much from a 

negative slope affine function. Of course f(𝑟𝑖, 𝑧𝑖) has a vertical assimptote at 𝑟𝑖 = 1, but 

if we don’t consider the extreme cases when 𝑟𝑖 goes very close to that margin, the linear 

approximation will be acceptable (in fact, from (2.2.4) one can see that 1-𝑟𝑖 should be of 

𝑂(𝑘𝑑𝐷𝐴/𝑉) to be taken into consideration, and these parameters take really slow values 

(annex 3), so the effects of the asymptote on our approximation are negligible). We want 

to find for what slope our new affine function better fits the dynamics of the activated 

transmitter rate, 𝑟𝑖. A classical way to linearize would be to expand f(𝑟𝑖, 𝑧𝑖) into Taylor 

series on the fixed point, assuming 𝑧𝑖 to be a constant parameter, and then ignore the 

quadratic and higher order terms on 𝑟𝑖. The pity is that 𝑧𝑖 is not a constant parameter, but 

instead a non-autonomous term. This means that our fixed point can move along the 

interval, and so our linearized dynamics slope would have to depend on 𝑧𝑖, what would 

make our following steps cumbersome.  

 

With the aim of maintaining our heuristic spirit alive, we think that a good linear 

approximation to f(𝑟𝑖, 𝑧𝑖) could be obtained using least squares method, that consists in 

minimizing the sum (or, in continuous cases like that of our interest, the integral) of the 

squared differences between the affine function and f(𝑟𝑖, 𝑧𝑖). That is, we want to find the 

dynamical system of the form  

 

𝑟𝑖̇ =
1

𝑅0
(−𝑘𝑟𝑖 + 𝛾𝜎(𝑧𝑖))                                                                                                         (2.3.2) 

 

That better mimics the evolution of (2.2.4) in our interval of interests. This is going to be 

achieved by minimizing the quadratic error like: 

 

 

𝜕𝐸2

𝜕𝑘
= 0  ,

𝜕

𝜕𝑘
∫(𝑘

1

0

𝑟𝑖 − (
𝑉𝑚𝑎𝑥𝑟𝑖

𝑘𝑀
𝑘𝑑

+ (1 −
𝑘𝑀
𝑘𝑑
) 𝑟𝑖

−
𝑘𝑑𝐷𝐴

𝑉

𝑟𝑖
1 − 𝑟𝑖

))2𝑑𝑟𝑖 = 0             (2.3.3) 
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 Where 𝑘 is the absolute value of the slope of the approximation and 𝐸2 is the quadratic 

error, defined as the infinitessimal sum of the quadratic discrepance between the original 

function and the approximation. After showing that we can linearize (2.2.4) following 

this rule, the system will lose precision (the fixed point won’t be situated exactly as 

before, and the rate of change of 𝑟𝑖 will also have some discrepancies with respect to the 

original equation). However, we expect the new equation to reflect the overall evolution 

of the system as an exponentially fast asymptotic approach to a stable fixed point with a 

quite similar changing rate. This new approximation allows us to follow our path towards 

the evolution equations of the state variables of our modelling. 

 

The quadratic error integrand depends just on biochemical parameters, so k is a constant 

specific of our synapse that governs the speed at which it tends to its equilibrium. Because 

we have assumed that synapses have some degree of similarity, we can set 𝑅0 (this is, the 

concentration of total receptor) to be the same for all of them, and so we can introduce 

the next constant, aiming to reduce the number of parameters: 

 

𝜏 ≡
𝑅0

𝑘
 ⟹  𝜏𝑟𝑖̇ = −𝑟𝑖 +

𝛾

𝑘
𝜎(𝑧𝑖)                                                                                              (2.3.4) 

 
We can simplify further the above expression by using the assumption that synapses 

optimize the quantity of neurotransmitter release. This means that at the maximum rate 

of neurotransmitter emission, its concentration in the synaptic cleft saturates the receptors 

of the postsynaptic cell. This can be expressed mathematically saying that when 𝜎(𝑧𝑖)=1 

(the release is maximum), 𝑟𝑖 = 1 (the receptors are saturated) and 𝑟𝑖̇ = 0 (the sistem lays 

in the equilibrium). Using this optimality argument, we can eliminate another parameter 

using (2.3.2): 

 

−1 +
𝛾

𝑘
= 0 ⟹  𝜏𝑟𝑖̇ = −𝑟𝑖 + 𝜎(𝑧𝑖)                                                                                       (2.3.5) 

 

Where 𝜏 will be called the “temporal constant” of the system, as it is usually done in 

classic continuous time models. This simple linearized system allows us, finally, to get 

to the neural network equations. Since 𝑧 = 𝑅 ∑ 𝑔
𝑖
𝑟𝑖𝑖 = 𝑅𝑔∑ 𝑟𝑖𝑖 , as synapses are all twins 

of each other (as we have assumed), all their maximum permeabilities take the same 

value, allowing us to remove the index. Then: 

 

𝜏𝑧̇ = 𝜏𝑅𝑔∑𝑟𝑖̇
𝑖

= 𝑅𝑔∑(−𝑟𝑖 + 𝜎(𝑧𝑖))                                                                          (2.3.6)

𝑖

 

 

On the one hand, when adding up each open channel fraction (𝑟𝑖 ) weighted by the 

dimensionless maximum permeability of each synapse (𝑅𝑔) we will find, simply, the 

neuron total permeability to the ion, z. On the other hand, first we remember that 

𝜎(𝑧𝑖) stands for the presynaptic emission of transmitter in the ith synapse. Of course, not 

all the synapses are wired to different neurons, so there are groups of synapses tied to the 

same node of the network. Therefore, if we define 𝑧𝑗  not as the state of the specific 

presynaptic neuron joined to a given synapse, but as the state of the jth node of the neural 

network, and we let “𝑛𝑗” to be the number of synapses in our studied neuron wired to the 

same jth presynaptic node, then: 
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𝑅𝑔∑𝜎(𝑧𝑖) = 𝑅𝑔∑𝑛𝑗𝜎(𝑧𝑗)

𝑗

                                                                                         (2.3.7)

𝑖

 

 

 

From here, (3.5) allows us to interpret the weights, the parameters that govern the strength 

of the connexions of the network, in biophysical terms. They can be read as the total 

maximum permeability to the jth presynaptic neuron of our studied node, scaled by the 

membrane leak resistance. In fact, this product just nondimensionalizes the first quantity, 

that is, a given node’s total maximum permeability to a chosen presynaptic neuron. This 

is the same that happened to our propagation variable, z, interpreted as the permeability 

of the neuron to the ion scaled by R. Again, this product by the membrane’s leak 

resistance nondimensionalizes the synaptic permeability, which yields a dimensionless 

parameter, but still with a strong biophysical interpretation. Just as then, this ground-up 

derivation allows us to enlighten the standard connectionist variables and parameters, 

allowing us to read them in a biophysical key. Here are the weights algebraic definition: 

 
𝑤𝑗 = 𝑅𝑛𝑗𝑔                                                                                                                               (2.3.8) 

 

For all the above, the equation for the dynamics of our neuron of interest would be: 

 

𝜏𝑧̇ = −𝑧 +∑𝑤𝑗𝜎(𝑧𝑗)                                                                                                        (2.3.9)

𝑗

 

 

And if instead of a single neuron we are talking of multiple interconnected nodes, the 

previous would let to the following system of ODEs, which is the final expression for the 

one ion one receptor model: 

 

𝜏𝑧̇𝑖 = −𝑧𝑖 +∑𝑤𝑖𝑗𝜎(𝑧𝑗)                                                                                                    (2.3.8)

𝑁

𝑗

 

 

Where 𝑧𝑖 is the ith neuron state function, 𝑤𝑖𝑗 is the weight between two given nodes, and 

N is the total number of elements of the net.  

 

 

2.4 General case and formulation of a complex-valued model 

 

For more realistic situations, where we can be faced with several ions, receptors and 

transmitters, (2.3.8) would be expressed as follows: 

 

𝜏𝑗𝑧̇𝑖𝑗 = −𝑧𝑖𝑗 +∑𝑤𝑖𝑗𝑘𝜎(𝑧𝑘1, 𝑧𝑘2,…𝑧𝑘𝑛)                                                                      (2.4.1) 

𝑁

𝑘

 

 

Where 𝑧𝑖𝑗 is the permeability of the ith neuron to a given ion through a concrete receptor 

denoted with the subscript j, 𝜏𝑗 is the temporal constant relative to each kind of receptor, 

n is the number of possible combinations between ions and receptors (the number of “z" 

functions that define the state of a neuron) and 𝜎(𝑧𝑘1, 𝑧𝑘2,…𝑧𝑘𝑛)  is the output function 

for the kth neuron, 𝜎: ℝ𝑛 → ℝ. 
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The activation function for the general case can be obtained in the same way, and takes 

the following shape: 

 

𝑎(𝑧𝑘1, 𝑧𝑘2,…𝑧𝑘𝑛)  =
1 + ∑ 𝑧𝑘𝑙

𝑛
𝑙

𝜏ln (
(1 + ∑ 𝑧𝑘𝑙)𝑉𝑟 − 𝑉𝑟𝑒𝑠𝑡 − ∑ 𝑧𝑘𝑙

𝑛
𝑙 𝐸𝑙

𝑛
𝑙

(1 + ∑ 𝑧𝑘𝑙
𝑛
𝑙 )𝜗𝑘 − 𝑉𝑟𝑒𝑠𝑡 − ∑ 𝑧𝑘𝑙

𝑛
𝑙 𝐸𝑙

)

                                (2.4.2) 

 

Where the term  𝐸𝑙  refers to the different reversal potentials of the various ions that 

intervene in the synapses. The sub index k refers to the neuron numbered k, and l to the 

possible combination of the receptor and the ion in the lth position, out of n possible ones. 

 

Supposing the relation between frequency (activation) and NT release do not vary 

between units (a condition which is not necessary, but we will assume for sake of 

simplicity), the output will be defined just as we did previously: 

 

𝜎(𝑧𝑘1, 𝑧𝑘2,…𝑧𝑘𝑛)  =
𝑎(𝑧𝑘1, 𝑧𝑘2,…𝑧𝑘𝑛)

𝑛

𝑎1
2

𝑛 + 𝑎(𝑧𝑘1, 𝑧𝑘2,…𝑧𝑘𝑛)
𝑛                                                             (2.4.3) 

 

This model, while complete and detailed, involves throwing overboard all efforts that, 

until this moment, have been realized in order to elaborate a framework from which an 

understanding of neural behaviour can be built not only in a realistic manner, but also in 

a transparent and heuristic way. If we try, however, to interpret the sense of these 

equations making use of both our assumptions and empirical evidence, we can see that a 

model more suited to our interests can be revealed. 

 

Our goal will be to put together different synaptic conductance functions (𝑧𝑖𝑗) under a 

same variable, enabling us to decrease the grade of complexity of (2.4.1). What have 

stopped us to do so until this moment? Two factors: the fact that different ions have 

different reversal potentials, which makes it impossible for us to group their conductances 

inside the activation function 𝑎(𝑧𝑘1, 𝑧𝑘2,…𝑧𝑘𝑛), and the fact that every kind of synapse 

has its own temporal constant, which a priori makes impossible the goal of joining 

together the different open channel fractions of different kind of synapses under the same 

permeability function. 

 

As to the first question, it’s true that every ion has its own reversal potential, but it is also 

true that there exists two kind of ionotropic receptors: excitatory and inhibitory. The first 

ones use to be permeable to both sodium and potassium, leaving a net reversal potential 

of about ≈ 0𝑚𝑉. Second ones use to have potentials that round ≈ -70mV. (Purves et al., 

2008). It is true that there exists some variability within receptors of the same kind (in 

excitatory glutamate receptors, NMDA kind receptors are also permeable to calcium, for 

example), but given the large difference on these potentials between excitatory and 

inhibitory receptors, we will reduce all the reversal potentials to just a couple of them: 

one for excitatory transmission and another one for that of inhibitory. 

 

When it comes to the issue of temporal constants, we will follow the same idea that we 

used before. If we consider just two types of synapses (inhibitory and excitatory) and we 

presume that everyone of each kind has the same features, like the number or the sort of 
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receptors, volume, diffusivity (at least for each individual neuron, as we stated previously 

in our assumptions) then we could estimate the time constant for both excitatory and 

inhibitory synapses considering the proportion and the number of each type of receptor 

placed in them.  

 

In fact, we can understand time constants as a quantity proportional to the time that every 

synapse requires in order to desaturize their postsynaptic receptors when treating them as 

a whole, this is, as if they had no diversity, once after averaging their properties. In 

practice, it will become an adjusting parameter in charge of fitting the rate at which a 

neuron is “heated” or “cooled”, although we should not forget that it has units (of time) 

and a kinetical meaning as well. 

 

If we follow the previous argumentation, considering just neurons equipped with “twin” 

synapses, we will be placed with the following system of two equations per neuron:  

 

 

{
 
 

 
 𝜏𝑖

+𝑧̇𝑖
+ = −𝑧𝑖

+ +∑𝑤𝑖𝑗
+𝜎(𝑧𝑖

+, 𝑧𝑖
−)                                                                   

𝑁

𝑗

𝜏𝑖
−𝑧𝑖

− = −𝑧𝑖
− +∑𝑤𝑖𝑗

−𝜎(𝑧𝑖
+, 𝑧𝑖

−)                                                                   

𝑁

𝑗

(2.4.4)

 

 

 

Where + and – indices denote excitatory and inhibitory synapses, respectively. This is the 

set of connectionist equations that we would expect from a LIF network following the 

condition on synaptic similarity. A quite similar network has been used in the simulation 

of fish biological movements (Ekeberg, 1993; Ijspeert et al., 2004), so it looks like we’re 

not going astray. 

 

With (2.4.4) we could bring our seek to an end, since it is a model that fulfils all our 

assumptions and requirements. Nevertheless, this dynamical system can be expressed in 

a simpler and more compact way if we consider the equivalence between ℝ2𝑁 (the state 

space of (4.3)) and ℂ𝑁. Indeed, if we define a complex variable as 𝑧𝑖 =  𝑧𝑖
+ + 𝑖𝑧𝑖

−, and if 

we welcome input signals to the pitch (that we have ignored until now for being irrelevant 

to our purposes) we will be left with the following complex valued system, which is 

completely equivalent: 

 

𝛼𝑖𝑧̇𝑖 + 𝛽𝑖𝑧̇𝑖
∗ = −𝑧𝑖 +∑𝑤𝑖𝑗𝜎(𝑧𝑖) + 𝐼                                                                             (2.4.5) 

𝑁

𝑗

 

 

Where  𝑧𝑖 , 𝑤𝑖𝑗  ∈  ℂ , 𝑤𝑖𝑗 ≡ 𝑤𝑖𝑗
+ + 𝑖𝑤𝑖𝑗

− , 𝛼𝑖 =
𝜏𝑖
++𝜏𝑖

−

2
, 𝛽𝑖 =

𝜏𝑖
+−𝜏𝑖

−

2
 and 𝑧̇𝑖

∗stands for the 

conjugate of the derivative. 

 

 

 

Here, the activation function would be given by: 
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𝑎(𝑧𝑖) =
1 + 𝑅𝑒(𝑧𝑖) + 𝐼𝑚(𝑧𝑖)

𝜏ln (
(1 + 𝑅𝑒(𝑧𝑖) + 𝐼𝑚(𝑧𝑖))𝑉𝑟 − 𝑉𝑟𝑒𝑠𝑡 − 𝑅𝑒(𝑧𝑖)𝐸+ − 𝐼𝑚(𝑧𝑖)𝐸−

(1 + 𝑅𝑒(𝑧𝑖) + 𝐼𝑚(𝑧𝑖))𝜗𝑖 − 𝑉𝑟𝑒𝑠𝑡 − 𝑅𝑒(𝑧𝑖)𝐸+ − 𝐼𝑚(𝑧𝑖)𝐸−
)

          (2.4.6) 

 

 

Where 𝐸+and 𝐸− are, respectively, the excitatory and inhibitory reversal potentials. The 

output function remains the same. 

 

 

2.5 A way to classical real-valued recurrent networks 

 

Equation (2.4.5) resembles a classical time continuous recurrent neural network, if we 

leave out the fact that in (2.4.5) the state variables are complex-valued, while classical 

connectionist equations are real-valued. We now present two suppositions under which 

we can derive the exact classical model from (2.4.5): 

 
• There is just one time constant per neuron, even if there are both excitatory and 

inhibitory synapses 

• The activation function has a continuous translational symmetry 

 

First one is familiar, and we won’t get into details since it follows the same explanation 

we gave in the previous section. For instance, if we put excitatory and inhibitory synapses 

in the same bag, and we average their synaptic properties just as we did before, pretending 

they have similar parameters of diffusivity, affinity, volume… we will end up with a 

single time constant per neuron, in contrast to the couple of them we found previously.  

 

Again, time constants will play an adjusting role, ruling the speed at which a unit changes 

it state. Thus, if we consider a highly homogenic situation, where all the synapses have 

similar kinetic properties regardless of their associated transmitter, this approximation 

will fit the bill. In the case where we face connexions with different time constants, we 

will have to use some of the more general models that were announced previously.  

 

Second one is new to us. The steps will be like those of “canonical transformations” of 

Hamiltonian systems, in which a transformation of the phase space that leave the 

equations of motion unchanged is performed (Abramson, 2018). These transformations 

are useful because they allow to use the symmetries of the Hamiltonian function to reduce 

the system complexity by leaving some coordinates cyclic (this is, that the Hamiltonian 

don’t depend explicitly on them). We understand a continuous symmetry as a continuous 

transformation that leaves the Hamiltonian (or in our case, the activation function) 

unchanged. Similarly, if we had some type of symmetry in the activation function, we 

could perform a change of variables that could leave one of them cyclic, and thus 

irrelevant to the evolutionary equations. Now the question is, do we have any sort of 

symmetry? Strictly speaking, the answer to this question is negative in the general case, 

but let’s take a closer look to the activation function that we have discussed so far: 
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Figure 2.5.1 
Complex activation function 

 
 

This is the plot of the activation function over the complex plane for typical biophysical 

values. We can see that it tends asymptotically to a linear function as the real part 

increases, and that the domain of the mapping can be separated via a linear inequation 

between the null output region and the positive one. This separation line is not parallel to 

the contour lines of the plane at which the function tends, although it does not differ that 

much, as we can appreciate in the following contour plot: 

 

Figure 2.5.2 

Contour plot 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now, what would happen if all lines where parallel and straight? Let 𝑣  be a complex 

number whose direction is parallel to the contour lines. Then, in this case, if we translate 
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the function along this direction, the output will remain unchanged for every point, this 

is, 

 

   ∀𝑐 ∈ ℝ, 𝑎(𝑧) = 𝑎(𝑧 + 𝑐𝑣) 
 

In this case, where a(z) is invariant under translation, we say that our activation function 

has a translational symmetry. This allows to express this function on the real domain. If 

we consider the equivalence ℝ2 ≅ ℂ, we can perform a change of basis on ℝ2 by rotating 

the coordinate axis so that one of them is perpendicular and the other one is parallel to 

the contour lines. After this change of basis, the function won’t depend on the parallel 

coordinate (we could call it cyclic, in analytical mechanics jargon), and so the activation 

function will depend on just one real input. We will leave the mathematical details in the 

annex 4, which yields:  

 
(𝜗 − 𝐸−)𝐼𝑚(𝑧) = (𝐸+ − 𝜗)𝑅𝑒(𝑧) − 𝑏                                                                               (2.5.1) 

 

as the equation for the frontier line on the complex domain, where 𝑏 = (𝜗 − 𝑉𝑟𝑒𝑠𝑡) will 

be called the bias. The change of variables gives: 

 

𝑦 = (𝐸+ − 𝜗)𝑅𝑒(𝑧) − (𝜗 − 𝐸−)𝐼𝑚(𝑧)                                                                               (2.5.2) 

 
as our new state variable. Now it’s time to find an ℝ → ℝ map capable to approximate 

our ℂ → ℝ activation function, assuming it is almost symmetric. Our choice will be: 

 

𝑎(𝑦) = {
𝑝√𝑦2 − 𝑏2   𝑖𝑓  𝑦 ≥ 𝑏 

0                   𝑖𝑓     𝑦 < 𝑏
                                                                                            (2.5.3) 

 

because it is much easier to compute than the previous one and it has a similar shape 

(although, probably, not the best fitting one). Here, p is just an adjusting parameter with 

no direct physical meaning. Below, the comparations between the original and the 

approximated activation function, as well as its composition with the output function: 
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Figure 2.5.3 
Comparations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A B 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
C D 
 

A) The previously used activation function on the complex domain. B) the same 

function modified so that it can possess a continuous symmetry. C) the output 

function defined previously. D) symmetric approximation of the same. 

 

 

We can see that the approximation is better for low values of Im(z). Thus, the greater the 

inhibitory conductances are in a neuron, the higher the discrepancies will be. 

 

Once we’ve stated our approximation choice for the activation function, it’s time to derive 

the new set of evolution equations. From (2.4.4), and taking our assumption about 

synaptic similarity into account: 
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𝜏𝑦̇𝑖 = 𝜏((𝐸+ − 𝜗)𝑧̇𝑖
+ − (𝜗 − 𝐸−)𝑧̇𝑖

−)

= −(𝐸+ − 𝜗)𝑧𝑖
+ + (𝜗 − 𝐸−)𝑧𝑖

−

+ (𝐸+ − 𝜗)∑𝑤𝑖𝑗
+𝜎(𝑦𝑗 , 𝑏) − (𝜗 − 𝐸

−)∑𝑤𝑖𝑗
−𝜎(𝑦𝑗 , 𝑏)

𝑁

𝑗

𝑁

𝑗

                                    (2.5.4) 

If we define 𝑤𝑖𝑗 ≡ (𝐸+ − 𝜗)𝑤𝑖𝑗
+ − (𝜗 − 𝐸−)𝑤𝑖𝑗

− and we add the inputs, we find the 

equations for the simplified model: 

 

𝜏𝑦̇𝑖 = −𝑦𝑖+∑𝑤𝑖𝑗𝜎 (𝑦𝑗, 𝑏𝑗)+ 𝐼𝑖                                                                                         (2.5.5)
𝑁

𝑗

 

 
Which matches the classical time-continuous connectionist models that we have 

discussed in the introduction (Hopfield, 1984; Hopfield & Tank, 1986). We are now 

allowed to interpret the model variables and parameters in neurobiological terms, and to 

specify for which cases it will perform a good approximation to the studied phenomenon.  

 

This concludes our derivation. 

 

 
 

2. Computational experiments 

 

Regarding the implementation, it’s been used MATLAB version R2021a to simulate the 

previous models. In order to perform numerical integration, we chose the program ode45, 

which allows to approximate solutions to systems of ordinary differential equations via 

Runge-Kutta method (Senan, 2017). 

 

Below, some simulations of biological neural networks are performed, showing that the 

discussed modelling can replicate the behaviour of real neural circuits. You can find the 

code for each of the three simulations at the following repository: 

 

https://github.com/joangort/ComputationalExperiments 

 

 
 
3.1 Tritonia swim network 

 
Tritonia Diomedea is a nudibranch mollusc that exhibits a characteristic escape-swim 

pattern executed via ventral and dorsal body flexions (Katz, 2009). The neural 
mechanisms underlying such cyclic behaviour have been isolated, registered and analysed 

(Getting, 1981; Popescu & Frost, 2002) and it has been revealed that such exhibited 

rhythmic patterns are generated by a central mechanism, where sensory inputs don’t play 

any important role apart from triggering the action (Dorsett et al., 1973). Such central 

mechanism, enabled to create periodic signals by itself, is called a central pattern 

generator (CPG). Different neural circuits of this kind have been found and studied in 

different species (Katz, 2016). 
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     Figure 3.1.1     

   Tritonia CPG scheme 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Schematic representation of Tritonia swim CPG that we’ve used in our implementation. Triangles represent 

excitatory synapses and circles inhibitory ones.  For a much more detailed study of this network, see 

(Getting, 1981). 

 

 
We will wire the derived dynamic recurrent neural network just as in the previous scheme, 

which boils down the Tritonia swim CPG to this simplified version (Katz & Frost, 1997). 

Below, we show that the resulting dynamics of the network exhibit sustained periodic 

oscillations in the presence of stimuli, just as in the Tritonia CPG. 

 

 

           Figure 3.1.2 
         Recordings and simulations 
 
 
 
 
 
 
 
 
 
 
 
                          A 



24 
 

 
 

                           
 
 
 
 
 
 
 
 
 
 
 
               
 
 
                           B 
 
 

A) Recording of the Tritonia Diomedea CPG, exhibiting oscillatory behaviour (Katz, 2009). B) 

Simulation of the connectionist network using the scheme of Fig.1, which also exhibits rhythmic 

oscillations. 

 
 
3.2 Half center oscillator 

 

Oscillatory behaviour is widespread along the brain, and so the study of CPGs is of great 

importance in neuroscience. They could even play an important role in the understanding 

of the rich dynamics observed in the cortex, as it also behaves in an oscillatory fashion 

(Yuste et al., 2005). In lots of cases, however, we do not need only a periodic pattern of 

activity, but also a synchronization between different neurons.  

 

Imagine, for example, the flight of a dragonfly. To raise over, the insect needs to swing 

their wings up and down. During this fluttering, two muscles need to be synchronized: 

one to extend the wing up, and another to bend it down. Therefore, when one muscle is 

tensed, the other needs to be relaxed. The kind of CPGs that allows this synchronized 

anti-phase pattern are called “half center oscillators”, and they play an important role in 

movement and locomotion, also in vertebrates and mammals (Katz, 2016; McCrea & 

Rybak, 2008). The simplest model of these kind of CPGs consists of two reciprocally 

inhibited neurons with adapting spike patterns (Skinner et al., 1994). Unfortunately, our 

modelled neurons are unable to reproduce this kind of modulations (as they are, in 

essence, LIF neurons).  

 

Nonetheless, there have been proposed other kinds of more complex CPGs which can 

work with simpler neurons, just like ours (Guertin, 2009). We will try to reproduce the 

half center oscillations of a neural circuit of the Lamprey, a jawless fish endowed with a 

particularly well studied CPG in its spinal cord (Goulding, 2009). This circuit consists of 

two groups of interneurons that are wired symmetrically (Grillner et al., 1998; Grillner & 

Matsushima, 1991), which we schematically represent below. 
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 Figure 3.2.1 

 Lamprey CPG scheme 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A schematized version of the Lamprey swimming CPG, that we have implemented. For more information 

about the network and it’s functioning, see (Grillner et al., 1995) or the previously cited articles. 

 

 
 
A continuous stimulus of the brainstem origins the half center oscillations of the circuit, 

which in turn evoque the synchronized swinging of the fish body while swimming 

(Ekeberg & Grillner, 1999;Grillner et al., 1991). Below, we compare the prototypical 

functioning of this network with our simulation using the derived continuous recurrent 

network. 

 
                 
   
              
                 Figure 3.2.2 

                 Simulations 

 
 
 
 
 
 
 
 
 
                               A 
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                            B  
 

 
 
 
A) Network behaviour according to (Grillner et al., 1988). B)  Simulation using our model. In 

both cases, the half center oscillations are appreciable  

 
 
We would like to point out that the simulation of the lamprey swimming had already been 

done previously using continuous connectionist models. For instance, it’s been realized 

with a system of three-state variables per neuron that is very similar to our complex 

variable model, as we have discussed previously (Ekeberg, 1993; A. Ijspeert et al., 2004) 

and with classical dynamic neural networks (A. J. Ijspeert & Kodjabachian, 1999). In 

both cases, it is shown that continuous time connectionist networks are able to model the 

lamprey locomotion. 

 
3.3 Aplysia withdrawal reflex 

 

Aplysia Californica is a type of sea slug which has been extensively studied for its 

withdrawal reflex, similar to that of snail horns, because it has enabled the research about 

neural mechanisms involved in sensitization and habituation processes (Castellucci et al., 

1970; Rayport & Schacher, 1986) as well as classical conditioning studies (Carew et al., 

1981; Hawkins et al., 1983). 

 

Here, we will present a simulation of its neural circuit using our connectionist modelling. 

This neural network can be schematized as a set of sensory neurons that wire with some 

motoneurons as well as with some interneurons, which postsynaptic time constants are 

way higher than those of sensory neurons (White et al., 1993). This fails to comply the 

suppositions we made previously about synaptic similarity, so the real valued recurrent 

network won’t hold here. Therefore, in this occasion we will have to use a form of the 

previous higher dimensional generalized models (see section 2.4). We set the parameters 

the way it’s done in the mentioned paper (see “Table 1” and “Table 2” of the same). 

Below, we compare the results after a brief stimulation of the sensory neurons. 
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             Figure 3.3.1 

             Simulations 

 
 
 
 
                       A 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        B 
 
 
 

 
 
A) Motoneuron response according to a simulation in White et al., 1993. B) motoneuron 

response using our connectionist modelling. In both cases, we can see a slow initial burst 

followed by a moment of decreased activity, after which the motoneuron spikes tonically and 

gradually turns off. 

 
     
 
 

3. Conclusions 

 

Throughout these pages, we have provided a method to derive continuous-time 

connectionist networks from neuroscientific computational models. Starting from spiking 

LIF neurons and the biochemical kinetics of the synapse, we have been able to obtain 

different neural networks that, depending on the assumptions we make, are meant to 

simulate the behaviour of neural structures with specific conditions. 

 

This effort is aimed as an allegation of the biological plausibility that corresponds to these 

models, and by that we mean connectionist networks with continuous dynamics.  

 

If it is true that the restrictions that made possible the series of approximations that led to 

this model narrow the diversity of neurons which they are capable to represent, ignoring 

neural populations endowed with more complex firing patterns (Gerstner et al., 2014) or 

connexions with a large difference on their kinetic parameters within the same neuron, 

the existence of some groups of neurons which follow these rules allows to apply some 
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well-known results about this kind of networks to the study of at least some kind of neural 

populations. 

 

 We have shown that such kind of circuits can be found, by reproducing the behaviour of 

some simple neural circuits using numerical solutions of the derived models, that gave 

similar behaviours to those observed. 

 

However, although these simulations have given promising results, they are not 

exhaustive and are based on simplified versions of the real networks, and thus we consider 

that their significance is restricted. Although we think that showing a direct path towards 

their derivation from previous models is in itself an evidence of validation, we think it’s 

also necessary to sum direct evidence, based on empirical data, to widen the validation 

on the performance of continuous connectionist models. This task has only been timidly 

hinted in the performed simulations, and we think a wider research in this direction is 

necessary. 

 

Nevertheless, we think that the previous work can help to consolidate the theoretical 

bridge that links connectionist foundations to neurobiological modelling. Besides, on the 

one hand, our line of reasoning could be applied starting from more complex models than 

LIF, like Generalized LIF or Adaptative Exponential Integrate-and-Fire models, which 

would allow to increase the range of described firing patterns and frequency responses 

(Gerstner & Brette, 2009; Teeter et al., 2018) and thus widening the class of represented 

neurons,  at the expense of increasing the number of state variables of the system. Thus, 

we think that the kind of rate models like those we derived could be of interest in 

neuroscientific research. 

 

On the other hand, as far as psychology is concerned, the dynamical properties of these 

kind of networks could gave birth to a new set of scientifical interpretations within 

cognitive perspectives, as their mathematical features, like the ones we discuss in annex 

1, could be labelled in terms of learning, behaviour and information processing, allowing 

to infer the computational capabilities that emerge collectively from neural activity.  

 

Therefore, we think that research on these systems should be spurred beyond their 

technological applications, as they could constitute a point of access to the link between 

neural and mental phenomena. 
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Annex 1  

 

Emerging properties and their link to neural synchronization 

 

So far, it has been shown that continuous time connectionist models can be understood 

as a simplification of the dynamics of biological neural networks for certain kinds of 

neurons, and that they are therefore capable to simulate their behaviour, as we have just 

shown. However, there exist many other neuroscientific models that are able to perform 

more accurate simulations of this kind, being able to predict even individual spikes with 

different grades of precision (Brette & Gerstner, 2005; Jolivet et al., 2004; Teeter et al., 

2018). So why are these connectionist models supposed to be useful? And in what terms 

can they contribute to psychology?  

 

The answer we give is that connectionist models have been meticulously studied for their 

long list of applications in both science and engineering. By now, we have tried to show 

that this modelling does not only offer applications for prediction and classification, but 

also descriptions of real neural processes. Since the mathematical formalism is the same, 

we can use these results to infer the emerging computational properties of real neural 

circuits. In other words, we can use some results on “artificial neural networks” to 

understand biological ones, since we have shown that the behaviour of at least some kinds 

of neural circuits can be assimilated to that of continuous-time recurrent networks.  

 

For instance, it opens the possibility to apply a well-known theorem, that states the 

following: 

 

Theorem 1:(Funahashi & Nakamura, 1993)   

 

Let D be an open subset of ℝ𝑛, 𝐹: 𝐷 → ℝ𝑛 a 𝐶1mapping and 𝐾 ⊂ 𝐷 a compact subset. 

Then, for any solution 𝒙(𝑡) ∈ 𝐾of an initial value problem of the form 

 

𝒙̇(𝑡) = 𝐹(𝒙(𝑡)) ,         𝒙(0) ∈ 𝐾 ,       

 
defined for 𝑡 ∈ 𝐼, where 𝐼 = [0, 𝑇], 0 < 𝑇 < ∞, and given an arbitrarily small 𝜀 > 0, 

there exists a recurrent neural network with n output units and m hidden units such that  

 
∀𝑡 ∈ 𝐼, ∥ 𝒙(𝑡) − 𝒖(𝑡) ∥< 𝜀 

 

Where 𝒖(𝑡) is the vector of the internal states (what we have called propagation or state 

variables throughout these pages) of the output units of the network. 

 

This means that a neural network like those we derived previously, of the form: 

 

𝜏𝑦̇𝑖 =−𝑦𝑖+ ∑ 𝑤𝑖𝑗𝜎 (𝑦𝑗, 𝑏𝑗)                                                                                              (𝑎. 1.1)

𝑛+𝑚

𝑗

 

 
can approximate arbitrarily well any dynamical system that lays on a bounded region 

during some interval of time, if it has enough hidden units.  
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Figure A.1.1 
Fitting the van der Pol  
oscillator 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plot showing some trajectories of the van der Pol system. In green, the original solutions; in blue, the ones 

approximated by a recurrent neural network, according to Trischler & D’Eleuterio, 2016. The overlaping 

shows how accurate these aproximations can be. 

 
 

This represents an emerging property that, since some neural circuits have been shown to 

behave as recurrent networks of this kind, can also be attributed as a characteristic of 

some real neural populations, stating that these possess the ability of approximating any 

kind of output trajectory, this is, any kind of pattern of behaviour.  

 

And there’s a clear example of how this modelling can be useful to psychology, in order 

to infer the immanent dynamic ground on which cognitive and behaviour processes are 

hold in the brain, from where this or that conduct is raised after learning and conditioning. 

 

 By studying these emerging properties of neural structures, like that of being universal 

approximators of dynamical systems, we think there can be built a systematic way to 

shorten the shadows that wander between stimuli and behaviour, the long-awaited noon 

of cognitive science, using mathematical methods. 

 

But how do these kind of networks approximate dynamical flows? First, we assume a 

system where the output units are uniquely determined by the hidden units, with no 

reciprocal connections between these layers. Then, the weight matrix takes the following 

form: 

 

𝑊 = (
0 𝐴
0 𝐶

) 

 
 
and the vector of the state values of the system can be written as 𝒚(𝑡) = (𝒖(𝑡), 𝒉(𝑡))𝑇, 

where u stands for the vector of the output units and h for the hidden ones. A and C are, 

respectively, 𝑛 × 𝑚 and 𝑚 ×𝑚 matrices. Therefore, the evolution of the output units of 

such a network, using the derived connectionist model, can be written in vector notation 

like: 

 
𝜏𝒖̇ = −𝒖 + 𝐴𝜎(𝒉, 𝒃)                                                                                                        (𝑎. 1.2)  
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Where 𝜏 is the time constant, which we will suppose the same for all neurons of the whole 

network, in order to ease the following steps, just as it’s done in the proof of theorem 1 

(Funahashi & Nakamura, 1993). The components of the vector 𝜎(𝒉, 𝒃) are just 𝜎(ℎ𝑖, 𝑏𝑖), 
where  𝜎  is a single-valued function that is continuous and bounded, called sigmoid 

function (in the previous pages, a function coherent with this definition has been called 

output function).  

 
But the previous equation is set to approximate a dynamical system, like the one defined 

in theorem 1, inside a domain K, and therefore: 

 

∀𝒖 ∈ 𝐾,    𝒖̇ = 𝐹̃(𝒖) → 𝐴𝜎(𝒉, 𝒃) = 𝜏𝐹̃(𝒖) + 𝒖                                                          (𝑎. 1.3)                                                                                 
 
Where 𝐹̃ is the resulting mapping that approximates the desired flow. In the above 
equation, the right-hand side depends only on 𝒖, and the left-hand side does so for 
𝒉 (b is a constant vector, not a variable). How could the system set 𝐴𝜎(𝒉, 𝒃) so that 
𝐹̃  mimics the target flow as accurately as possible? The universal approximation 
theorem states that a feed-forward network with output 𝐴𝜎(𝐵𝒖, 𝒃) can approximate 
any continuous function on a compact domain with an arbitrary grade of precision, 
given enough hidden units, m, and an appropriate configuration of the parameters 
(Funahashi, 1989). Although the theorem is more general, here we will stick to ℝ𝑛 →
ℝ𝑛 mappings, since 𝐹̃ belongs to this class. Therefore, 𝐵 is a 𝑚× 𝑛 matrix.  
 
In order to find the best set of parameters A, B , b there exists some well-known methods, 

like the backpropagation algorithm (Rojas, 1996), which is massively used in machine 

learning. Although the biological plausibility of these algorithms is still a subject of 

research (Lecun et al., 2015), the universal approximation theorem assures that, 

regardless of the learning algorithm, such configuration exists. 

 

A consequence about this setting towards the approximation of the flow is that 

 
 𝒉 = 𝐵𝒖                                                                                                                                (𝑎. 1.4)  
 
which is a consequence of the universal approximation theorem. These implies that 

hidden states depend linearly on output units, and thus the trajectories on the hidden space 

must rely on a n-dimensional linear subspace, in order to approximate the mentioned 

dynamical system. Not only that, but this linear manifold is also attracting.  

 
Here’s the reasoning: the dynamics on the hidden space are given by  

 

𝜏𝒉̇ = −𝒉 + 𝐶𝜎(𝒉, 𝒃)                                                                                                         (𝑎. 1.5) 
 
analogously to the system (a.1.2). From (a.1.4) we can see that 

 

𝜏𝒉̇ = 𝜏𝐵𝒖̇ = −𝐵𝒖 + 𝐵𝐴𝜎(𝒉, 𝒃)                                                                                       (𝑎. 1.6)             
  
for every h laying on the mentioned subspace where the flow can be approximated.  
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This implies, for equation (a.1.6) to equal (a.1.5), that C=BA, since W does not depend 

on h. The matrix B results from the optimization procedure, and its columns are nothing 

but the set of the vectors that span the subspace where h should lie for u to approximate 

a given flow, since (a.1.4) is given in vector parametric form (Lay, 2007). We could call 

these vectors 𝒗𝑖 , : 
 
𝐵 = (𝒗1, 𝒗2, ⋯ , 𝒗𝑛)                                                                                                             (𝑎. 1.7)                                                                                                                         
 
Now we will define a set of vectors {𝒏1, 𝒏2, ⋯ , 𝒏𝑚−𝑛} which are both linearly 

independent and perpendicular to the manifold defined by (a.1.4). To see the evolution of 

the system projected onto each of these normal vectors, we can compute the scalar 

product of these vectors with both sides of (a.1.5): 

 

𝜏〈𝒏𝑖 , 𝒉̇〉 = −〈𝒏𝑖, 𝒉〉 + 〈𝒏𝑖, 𝐵𝐴𝜎(𝒉, 𝒃)〉 
 
But since 〈𝒏𝑖,  𝒗𝑗〉 = 0 , as the vectors 𝒏𝑖  are defined to be perpendicular to the 

subspace, the term 〈𝒏𝑖, 𝐵𝐴𝜎(𝒉, 𝒃)〉 must vanish, since the product of B by any n-
dimensional vector gives a linear combination of the set  {𝒗1, 𝒗2, ⋯ , 𝒗𝑛} . As 

〈𝒏𝑖,
𝑑

𝑑𝑡
𝒉〉 =

𝑑

𝑑𝑡
〈𝒏𝑖, 𝒉〉, since these normal vectors are, of course, constant, we find the 

following linear differential equation: 
 

𝜏
𝑑

𝑑𝑡
〈𝒏𝑖, 𝒉〉 = −〈𝒏𝑖, 𝒉〉                                                                                                        (𝑎. 1.8) 

 
The solution of the previous equation yields: 
 

〈𝒏𝑖, 𝒉〉 = 〈𝒏𝑖, 𝒉𝟎〉𝑒
−𝑡

𝜏                                                                                                             (𝑎. 1.9)                                                                                                                
 
Which says that the scalar product of any normal vector 𝒏𝑖 with any trajectory laying in 

the hidden unit’s phase space tends to zero exponentially fast. Therefore, the manifold on 

which the approximation of a dynamical system is performed is an invariant, stable, lower 

dimensional and globally attracting set where all the phase trajectories tend as time goes 

on. 

 

We have been able to proof that for any system of the form (a.1.1) with feed-forward 

connections between the hidden and the output layer, whose output’s internal states are 

able to mimic a given flow for some compact domain, by making use the approximation 

universality of feedforward networks (Funahashi, 1989), there exists a unique globally 

and asymptotically stable manifold on the hidden units space where all the phase 

trajectories tend exponentially fast. 
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Figure a.1.2 
Attracting invariant manifold 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A stable manifold like the ones we have just discussed in neural spaces. We can see that this subspace is 

invariant, meaning all trajectories embedded in the manifold remain wandering there forever. Illustration 

from (Kvalheim, 2018). 

 

 
This result is conclusive with neurophysiological data. It’s been reported a phenomenon 

by which different neuron firings tend to couple, existing a correlation between their 

activities that cause their patterns to live in a lower dimensional manifold of the neural 

space (Gallego et al., 2017, 2018; Rabinovich et al., 2006).  

 
This coupling restricts the possible dynamics of the population to a subspace embedded 

in the larger space of possible neural configurations, in a synchronous activity that have 

been registered in the cortex of different animals (Okun et al., 2015; Tsodyks et al., 1999) 

which is not merely a product of sensory inputs, but rather characteristic of the neural 

population itself (Luczak et al., 2009). 

 
This can be explained if we understand the neural structures of the cortex as universal 

approximators of dynamical systems. Indeed, the previous analysis showed that all 

networks which adopt a series of optimization procedures, based on a feed-forward 

network structure optimization, include a linear attracting invariant manifold on the 

hidden states space. Of course, we have seen in section 2.5 that the state variables are 

nothing but a combination of the synaptic conductances, and hence are not directly 

measurable. But the firing rates could be obtained by applying the activation function. 

From here we can conclude that there must exist an attracting manifold also in the 

activation space of the hidden neurons, that will take the form: 

 

𝒂 = 𝑎(𝒉) = 𝑎(𝐵𝒖)                                                                                                           (𝑎. 1.10) 
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This manifold is not linear, but since the activation function is continuous and locally 

bounded, the resulting subspace will keep these properties.  
 

As we see, this implies that the firing rate vector spontaneously tends to a manifold, and 

it remains there in the lack of perturbations. This implies that neural activities are not 

independent, but rather tied to each other, since they are restricted to a lower-dimensional 

subspace, where the activity of some units are determined by some others, which implies 

a correlation between them. This is exactly the kind of phenomenon that has been reported 

to take place in the cortex, so it could be a signal that some populations of neurons really 

behave as universal approximators of dynamical systems, which is a specific 

characteristic of the networks we have derived in the present work. 

 
With this, we have shown that we can apply at least some results derived from the study 

of well-known neural networks to infer the emerging properties that real neural 

populations could hold in the nervous system, and that the understanding of neural circuits 

as universal approximators of flows is coherent with  the synchronies that have been 

already observed in the cortex (Okun et al., 2015). 
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Annex 2  

 

Biochemical justification of the adopted synaptic model 

 
The first equation of the system (2.2.2) is just equation (2.2.1), already discussed, which 

describes the tax variation of 𝑟𝑖. The second equation, that we added on, describes the 

change of [𝑇]𝑖, and to study it in detail we can rewrite it as: 

 

[𝑇]̇ 𝑖 = −𝑅0𝑟̇𝑖 −
𝑉𝑚𝑎𝑥[𝑇]𝑖

𝑘𝑀+[𝑇]𝑖
+ 𝛾𝑏(𝜙𝑖) −

𝐷𝐴

𝑉
[𝑇]𝑖                                                                 (a. 2.1)                                                                                    

 
The term -𝑅0𝑟̇𝑖  is deduced from the chemical kinetic of the reaction between the 

transmitter and the receptor in absence both of transporters, reuptakers and presynaptic 

release. The stoichiometric equation of the mentioned reaction is:  

 
𝑇 + 𝑅 ⇋ 𝑇𝑅                                                                                                                          (𝑎. 2.2)                                                                                                                            
 
Where T is the transmitter, R the free receptor and TR the ligand bonded receptor. As it 

can be seen, for every mole of TR that is produced a mole of each reactant is decreased, 

so ignoring the rest of the synaptic biochemical aspects, the reaction velocity of TR shall 

be of the same magnitude and opposite sign as that of T, relation that is represented by 

the first term of (4.3), since −𝑅0𝑟̇𝑖=-[𝑇𝑅]̇ 𝑖. 

 
The above can also be justified by the law of the conservation of mass. If the system is 

closed (in the dissociation reaction stated in (a.2.2), the system doesn’t exchange mass 

with the outside) the amount of mass is therefore constant. This can be stated, through the 

conservation of the total concentration of the transmitter, in the following way: 

 
                                                              [T]+[TR]=constant  ⇒ 

 
𝑑

𝑑𝑡
 ([𝑇] + [𝑇𝑅]) = [𝑇]̇ + [𝑇𝑅]̇ = [𝑇]̇ + 𝑅0𝑖𝑟̇ = 0 ⇒ 

[𝑇]̇ = −𝑅0𝑖𝑟̇ 
 
 
However, the synapse is not a closed system. We have, on the one side, transporters, 

reuptakers or enzymes that diminishes the synaptic concentration of transmitter, and on 

the other side the presynaptic axon button, that tends to increase it. Besides, we should 

also considerate the diffusion of the transmitter outside of the synapse. That’s why we 

should incorporate the terms that specify which way this exchange is given in the above 

expression. 
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Figure a.2.1 
Schematic representation of the glutamatergic synapse 
 
 

Image from (Bernard, 2012), in the book Jasper's Basic Mechanisms of the Epilepsies 

 
 
For example, in the case of glutamatergic synapses, the managers of decreasing the 

glutamate concentrations are the glutamate transporters. Those form part of the EAATs 

(Excitatory Amino Acid Transporters), transmembrane proteins with a specific domain 

for this kind of transmitters that carry out the active transport of the same, using sodium 

electrochemical gradient as a source of energy to realize a change of conformation that 

enables the amino acid to cross to the intracellular space against the gradient (Magi et al., 

2019).  

 
While it is true that these transporters are not enzymes (as enzymes catalyse spontaneous 

reactions without varying the equilibrium, changing only the intermedium state and 

decreasing the activation energy, while this kind of transporters perform a non-

spontaneous process, therefore altering the equilibrium of the diffusion), their kinetics 

can be modelled as that of an enzyme, as it is explained below. The derivation of the 

kinetic equation of an enzyme starts from the stoichiometric equation: 

 
𝐸 + 𝑆 ⇌ 𝐸𝑆 → 𝐸 + 𝑃                                                                                                          (𝑎. 2.3)                                                                                                   
 
According to this scheme, the enzyme binds to the substrate to form an intermedium 

product, which will give birth to the products of the reaction plus to the starting enzyme, 

following some equilibriums. In the case of the simport of glutamate and sodium, the 

substrates would be extracellular glutamate and sodium, and the products would consist 

in intracellular glutamate and sodium, which would enter the cytoplasm thanks to a 

change of conformation of the transporter facilitated due to the energy proportionated by 

the sodium electrochemical gradient. 
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Due to the considerable electrochemical gradient of sodium, together with the action of 

the sodium-potassium pump, that re-establishes it quickly, we could assume that the 

gradient of sodium stays constant (the ions of sodium that enters the cell are compensated 

by the ones that the pump expels, being able to consider thus the flux of sodium across 

the membrane practically null). Therefore, if the concentrations of sodium stay constant, 

we can neglect this variable in the study of glutamate transport, being the only substrate 

to consider the extracellular transmitter, and the only product the intracellular glutamate. 
 
Thus, although EAATs are not enzymes, as they don’t catalyse any spontaneous reaction, 

we can approximate their kinetics to that of Michaelis-Menten, as the reaction scheme 

agrees with the stated in the previous equation, and therefore it could be regarded to 

follow the steady state assumption from which the Michaelis-Menten equation is 

constructed. Therefore, given the various equilibrium constants and initial conditions of 

the system, the decrease of neurotransmitter can be approximated to the classic equation 

of enzymatic kinetics. Although we have focused on glutamate and the EAATs, the 

existence of transporters, reuptakers and degrading enzymes is common for all the other 

transmitters, so this argument could also be applied for other transporters and, of course, 

for all kinds of degrading enzymes that follow a Michaelis-Menten kinetics. 

 
Let’s now talk about the 𝛾𝜎(𝑧𝑖) term. Which is the increment of NT concentration for 

unit of time as a function of the frequency, 𝑎(𝑧𝑖) ? 

 
The relation between the release of transmitter and presynaptic spike frequency cannot 

be linear. This is because the release of the vesicles of the axon terminal button is 

mediated by calcium ions (Llinás, 1982), and since they have a reversal potential, their 

intracellular concentration is bounded, and so must be the transmitter release. This 

dependence on the calcium influx causes the transmitter release to be sigmoid shaped 

with respect to the presynaptic activation (Katz & Miledi, 1970). That’s why we will 

model the output function in the following way: 

 

𝜎(𝑧) =
𝑎(𝑧)𝑛

𝑎1
2

𝑛 + 𝑎(𝑧)𝑛
 

 
Which is a sigmoid function with 𝑎1

2

 being the activation at which half of the output 

transmission is reached and n is a parameter to be empirically determined, which we will 

usually set to 2 or 1. 𝛾 stands for the maximum neurotransmitter release, in moles/l*s, 

that is reached when the presynaptic activation is maximum (in our case, where we 

haven’t imposed any upper bound, when it tends to infinity). 

 
Finally, let’s deal with the term referring to diffusion. First Fick law says that the flux is 

proportional to the gradient of the concentration of the solute. This yields an equation in 

partial derivatives that doesn’t fit the “ordinary” spirit of the rest of the derivatives of the 

system, so instead of understanding the extracellular space as a continuum (as it is set in 

the classic formulation of Fick laws), we will reduce it to a discrete space, formed by two 

regions that have a uniform concentration of solute: an intrasynaptic region and another 

for extrasynaptic space. This makes sense if the diffusion between these two spaces is 

much slower than the flux inside of them. In this case, the concentration distribution 

would be step-shaped, and because this is not a continuous function, and hence it’s not 
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differentiable, we won’t be able to compute the gradient at the boundary, substituting it 

for a difference: 
 
𝐽𝑖𝑛𝑡 = −𝐷([𝑇]𝑖 − 𝐶𝑒𝑥𝑡)                                                                                                       (𝑎. 2.5) 
 
 
𝐽𝑖𝑛𝑡 is the flux of transmitter inside the synapse and 𝐶𝑒𝑥𝑡is the concentration of that in the 

outside. Taking the definition of the flux as the passage of moles of solute per unit of time 

and area, we can see that  𝐽𝑖𝑛𝑡 =
𝑉

𝐴

𝑑[𝑇]𝑖

𝑑𝑡
. We can think that the concentration outside the 

synapse will be very low, thanks to the action of transporters, glia cells and enzymes, so 

if we set 𝐶𝑒𝑥𝑡 to be zero and we substitute for the previous expression of the flux, we find 

the term that describes the change of synaptic concentration caused by diffusion, 

completing the system we used in section 2.2: 

 
 

{
𝑟̇𝑖 = 𝛼[𝑇]𝑖(1 − 𝑟𝑖) − 𝛽𝑟𝑖

[𝑇]̇ 𝑖 = −𝛼𝑅0[𝑇]𝑖(1 − 𝑟𝑖) + 𝛽𝑅0𝑟𝑖 −
𝑉𝑚𝑎𝑥[𝑇]𝑖

𝑘𝑀+[𝑇]𝑖
+ 𝛾𝑏(𝜙𝑖) −

𝐷𝐴

𝑉
[𝑇]𝑖

                              (𝑎. 2.6)                                                                                   
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Annex 3  

 

Reducing the dimensionality of the model 

 
In order to start analysing (2.2.6), we will nondimensionalize the system. First equation 

is partially nondimensionalized, as: 

 

  𝑟𝑖 =
[𝑇𝑅]𝑖

𝑅0
=

𝑚𝑜𝑙𝑒𝑠/𝑙𝑖𝑡𝑟𝑒𝑠

𝑚𝑜𝑙𝑒𝑠/𝑙𝑖𝑡𝑟𝑒𝑠
                                                                                                          (a.3.1) 

 
As it can be seen, units vanish mutually leaving 𝑟𝑖 as a dimensionless variable. We will 

do the same with all the terms in the system, defining the following dimensionless 

variables, that scale the original transmitter concentration and time to remove their units: 

 

𝑠𝑖 =
[𝑇]𝑖

𝑅0
, 𝜏 =

𝑉𝑚𝑎𝑥

𝑅0
𝑡                                                                                                              (𝑎. 3.2)                                                                                                  

 
 
 
We will start by plugging 𝑠𝑖 in the system, resulting in: 

 

{

𝑟̇𝑖 = 𝛼𝑅0𝑠𝑖(1 − 𝑟𝑖) − 𝛽𝑟𝑖

𝑠̇𝑖 = −𝛼𝑅0𝑠𝑖(1 − 𝑟𝑖) + 𝛽𝑟𝑖 −

𝑉𝑚𝑎𝑥
𝑅0

𝑠𝑖

𝑘𝑀
𝑅0
+𝑠𝑖

+
𝛾

𝑅0
𝜎(𝑧𝑖) −

𝐷𝐴

𝑉
𝑠𝑖
                                          (𝑎. 3.3)                                           

 
And to erase time units we will use the chain rule to set de derivatives respect 

dimensionless time, 𝜏 : 
 

𝑟′𝑖 =
𝑑𝑟𝑖

𝑑𝜏
=
𝑑𝑡

𝑑𝜏
𝑟̇𝑖 =

𝑅0

𝑉𝑚𝑎𝑥
𝑟̇𝑖                                                                                                       (𝑎. 3.4)                                                                                         

 

using (a.3.2) to compute 
𝑑𝑡

𝑑𝜏
. It’s easy to see that we would obtain an equivalent expression 

for 𝑠′𝑖  . Substituting the dimensionless derivatives: 

 

{

𝑟′𝑖 =
𝛼𝑅0

2

𝑉𝑚𝑎𝑥
𝑠𝑖(1 − 𝑟𝑖) −

𝛽

𝑉𝑚𝑎𝑥
𝑅0𝑟𝑖

𝑠′𝑖 = −
𝛼𝑅0

2

𝑉𝑚𝑎𝑥
𝑠𝑖(1 − 𝑟𝑖) +

𝛽𝑅0

𝑉𝑚𝑎𝑥
𝑟𝑖 −

𝑠𝑖
𝑘𝑀
𝑅0
+𝑠𝑖
+

𝛾

𝑉𝑚𝑎𝑥
𝜎(𝑧𝑖) −

𝐷∗𝐴∗𝑅0

𝑉𝑚𝑎𝑥∗𝑉
𝑠𝑖
                      (𝑎. 3.5)                                                

 
Finally, we will define the dimensionless groups of the system, 

 

𝑎 ≡
𝛼𝑅0

2

𝑉𝑚𝑎𝑥
, 𝑏 ≡

𝛽𝑅0

𝑉𝑚𝑎𝑥
, 𝑐 ≡

𝛾

𝑉𝑚𝑎𝑥
, 𝑘′𝑀 ≡

𝑘𝑀

𝑅0
, 𝛿 ≡

𝐷∗𝐴∗𝑅0

𝑉𝑚𝑎𝑥∗𝑉
                                                (𝑎. 3.6)                                

 
Thus, nondimensionalization yields: 

 

{
𝑟′𝑖 = 𝑎𝑠𝑖(1 − 𝑟𝑖) − 𝑏𝑟𝑖

𝑠′𝑖 = −𝑎𝑠𝑖(1 − 𝑟𝑖) + 𝑏𝑟𝑖 −
𝑠𝑖

𝑘′𝑀+𝑠𝑖
+ 𝑐𝜎(𝑧𝑖) − 𝛿𝑠𝑖

                                                   (𝑎. 3.7)                                         
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In order to reduce the dimensionality of this system we will ask, what would happen in 

the extreme case where a and b were much larger than the rest of the groups? If kinetic 

constants were much higher than 𝑉𝑚𝑎𝑥, how would this system evolve? This is the case 

we have discussed in section 2.3, showing empirical evidence (Borschel et al., 2015; Sun 

et al., 2014), and the following task will be to use this piece of information to consolidate 

the intuition that we have gained about this biochemical system, justifying the presence 

of two time scales and the existence of a slow manifold.  
 
Figure 2.2.1 

Phase flow towards the slow manifold 

 

     
 
In the image, some trajectories on the phase space of the problem. Separated dots indicate quick 

movements, while those that are together represent slow ones. It’s easy to intuit the two time scales, as well 

as the central slow manifold. 

 
Which is the interpretation of the system’s phase portrait? Substrate and receptor 

concentrations tend to equilibrium with great celerity. Once they meet on the manifold, 

instead of remaining motionless, concentrations travel towards an equilibrium that is 

given by the input signal: while terms refering to the neurotransmitter transporters as well 

as diffusion pull concentration down the curve, the term related with presynaptic output 

pushes it up, compensating both effects in a stable equilibrium, laying inside the slow 

manifold, that can be classified as a nonlinear node. 

 
We could now ask, what is this curve over which transmitter and bound receptor 

quantities move? In the case where a,b>>1: 

 
𝑏

𝑎
=

𝑠𝑖(1−𝑟𝑖)

𝑟𝑖
                                                                                                                             (𝑎. 3.8)                                                                                                                                
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This is nothing but the equation that determines the chemical equilibrium of the 

dissociation reaction between receptor and transmiter, in dimensionless form. The 

original expression, recovering the original units, is given by: 

  
 

𝑘𝑑 =
[𝑇][𝑅]

[𝑇𝑅]
                                                                                                                              (𝑎. 3.9)                                                                                                                                   

 
Where 𝑘𝑑  is the equilibrium constant, known as the dissociation constant, used in 

biochemistry to know the specificity, in this case, of the receptor. Thus, using the 

definitions of dimensionless groups, it can be seen that: 
 
𝑏

𝑎
=

𝑘𝑑

𝑅0
                                                                                                                                   (𝑎. 3.10)                                                                                                                                           

 
The following step will be to replace the parameter b in the first equation of (a.3.7) by the 

previous expression: 

 

 𝑟′𝑖 = 𝑎𝑠𝑖(1 − 𝑟𝑖) − 𝑎
𝑘𝑑

𝑅0
𝑟𝑖= 𝑎 (𝑠𝑖(1 − 𝑟𝑖) −

𝑘𝑑

𝑅0
𝑟𝑖) = 𝑎𝑓(𝑟𝑖, 𝑠𝑖)                             (𝑎. 3.11)                               

  
Where the function 𝑓(𝑟𝑖, 𝑠𝑖) is just to shorten the notation. As it can be seen from (a.3.8) 

and (a.3.10), in the central manifold, 𝑓(𝑟𝑖, 𝑠𝑖) = 0 . When the output of this function is of 

order one, O(1), and remembering we are dealing with the case where a>>1, it’s easy to 

see that the magnitude of 𝑟′𝑖 will be large, 𝑟′𝑖 ≈ 𝑂(𝑎). This confirms what we saw in the 

phase portrait: trajectories starting outside of the slow manifold tend to it quickly. Now, 

what happens in the case where trajectories lay almost along the curve? If we set 

 

𝑓(𝑟𝑖, 𝑠𝑖) ≈ 𝑂 (
1

𝑎
)   ⟹ 𝑟′𝑖 ≈ 𝑂(1) 

 
This means that after a brief state of transition where 𝑟′𝑖  has a large magnitude, 

trajectories aproach the maniford, where they evolve more slowly, but still with 

considerable speed. Thus, while it is true that when measuring a system like that of our 

interest we could find configurations placed outside of the slow manifold, we know that 

they would not last long, as they would tend quickly to the central curve, where they 

would continue evolving, more slowly once there, towards the equilibrium.  

 
Therefore, we could reduce the dynamics of the whole system to that found on the center 

manifold (Carr, 2006), from a two dimensional system to a single ODE.  

 
To do so, we will take the second equation of (a.3.7) and we will rewritte it in the 

following way:  

 

𝑠′𝑖 = − 𝑟′𝑖 −
𝑠𝑖

𝑘′𝑀+𝑠𝑖
+ 𝑐𝜎(𝑧𝑖) −𝛿𝑠𝑖                                                                              (𝑎. 3.12)                                                                            

 
And we will restrict the flow on the center manifold, that we know for (a.3.8) that can be 

written as: 

 

𝑟𝑖 =
𝑠𝑖

𝑘𝑑
𝑅0
+𝑠𝑖
                                                                                                                           (𝑎. 3.13)                                                                                                                             
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Expressing the curve in this explicit form, we can apply the chain rule to compute the 

following derivative: 

 

𝑟′𝑖 =
𝑑𝑟𝑖

𝑑𝑠𝑖
𝑠′𝑖,  

𝑑𝑟𝑖

𝑑𝑠𝑖
=

𝑘𝑑

𝑅0(𝑠𝑖+
𝑘𝑑
𝑅0
)2
⇒ 𝑟′𝑖 =

𝑘𝑑

𝑅0(𝑠𝑖+
𝑘𝑑
𝑅0
)
2 (− 𝑟

′
𝑖 −

𝑠𝑖

𝑘′𝑀+𝑠𝑖
+ 𝑐𝜎(𝑧𝑖) − 𝛿𝑠𝑖)         

 
After some algebra, expressing 𝑠𝑖  as a function of 𝑟𝑖  using (a.3.8), and isolating 𝑟′𝑖 
afterwards, we can finally find the ODE that wewere searching, which describes the 

behaviour of ligand bound receptors over the equilibrium curve where they quickly tend: 

 

𝑟′𝑖 =
(1−𝑟𝑖)

2

𝑘𝑑
𝑅0
+(1−𝑟𝑖)

2
(𝑐𝜎(𝑧𝑖) −

𝑟𝑖
𝑘𝑀
𝑘𝑑
+(1−

𝑘𝑀
𝑘𝑑
)𝑟𝑖
− 𝛿

𝑘𝑑

𝑅0

𝑟𝑖

1−𝑟𝑖
)                                                (𝑎. 3.14)                                   

 
Nevertheless, we could simplify the previous expression by taking into account the order 

of magnitude of the constants that show up, as we did before. Reembering that we have 

set  𝑘𝑑 = 3.53 ∗ 10
−6𝑀 (Borschel et al., 2015), and assuming that 𝑅0 is large, as it stands 

for the concentration of the total receptor in the synapse, we can therefore approximate: 

 
(1−𝑟𝑖)

2

𝑘𝑑
𝑅0
+(1−𝑟𝑖)

2
≈ 1                                                                                                                     (𝑎. 3.15)                                                                                                                         

 
Which will be acceptable as long as the receptors are not extremely saturated, this is, 

unless 𝑟𝑖 tends to one. This tranforms (a.3.14) into: 

 

𝑟′𝑖 = 𝑐𝜎(𝑧𝑖) −
𝑟𝑖

𝑘𝑀
𝑘𝑑
+(1−

𝑘𝑀
𝑘𝑑
)𝑟𝑖
  −𝛿

𝑘𝑑

𝑅0

𝑟𝑖

1−𝑟𝑖  
                                                                        (𝑎. 3.16)                                                                              

 

Finally, if we divide by the dimensionless time factor, 
𝑅0𝑖

𝑉𝑚𝑎𝑥
, the above expression yields, 

using the previous parameters and original time units: 

 

𝑟𝑖̇ =
1

𝑅0
(𝛾𝜎(𝑧𝑖) −

𝑉𝑚𝑎𝑥𝑟𝑖
𝑘𝑀
𝑘𝑑
+(1−

𝑘𝑀
𝑘𝑑
)𝑟𝑖
−
𝑘𝑑𝐷𝐴

𝑉

𝑟𝑖

1−𝑟𝑖
)                                                                  (𝑎. 3.17)                                                                 

 
Which is the equation stated in section 2.2 and used in the steps of 2.3. With this, we 

conclude the dimensionality reduction. 
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Annex 4 

 

Changing variables 

 

In order to perform a transformation such that the new expression for the activation 

function does not depend on one of the new variables, we have carried out the following 

steps: 

 

If x refers to the real part (this is, the state variable referring to the activation permeability) 

and y to the imaginary part (or, what is the same, the state associated with the inhibitory 

transmission), we want to find the line defined by a(x,y)=0. This is the frontier from 

where both activation and output functions increase their values monotonically, and we 

will consider that, under the symmetrical approximation, this is the direction of 

symmetry, parallel to the rest of contour lines of both functions. From numerical 

evidence, we infer this is a straight line, so we will consider the explicit form y=mx+n 

and we will substitute it in the activation function, which yields: 

 
(𝑚 + 1)𝑥 + 𝑛 + 1

𝜏ln (
(𝑉𝑟(𝑚 + 1) − (𝐸+ +𝑚𝐸−))𝑥 − 𝑉𝑟𝑒𝑠𝑡 − 𝑛𝐸− + 𝑉𝑟(𝑛 + 1)

(𝜗(𝑚 + 1) − (𝐸+ +𝑚𝐸−))𝑥 − 𝑉𝑟𝑒𝑠𝑡 − 𝑛𝐸− + 𝜗(𝑛 + 1)

= 0                   (𝑎. 4.1) 

 

If we find m,n such that the denominator of the logarithm vanishes, the logarithm will 

tend to infinity and thus the function will reduce to zero. As it must cancel regardless of 

the value of x, both 𝜗(𝑚 + 1) − (𝐸+ +𝑚𝐸−)  and −𝑉𝑟𝑒𝑠𝑡 − 𝑛𝐸
− + 𝜗(𝑛 + 1)  should 

vanish separately. This implies a system of equations that, after simplification, takes the 

following shape: 

 

{
(𝜗 − 𝐸−)𝑚 + 𝜗 − 𝐸+ = 0
(𝜗 − 𝐸−)𝑛 + 𝜗 − 𝑉𝑟𝑒𝑠𝑡 = 0

                                                                                           (𝑎. 4.2) 

 

Below, the obtained expressions for the coefficients: 

 

𝑚 =
𝐸+ − 𝜗

𝜗 − 𝐸−
      ,       𝑛 =

𝑉𝑟𝑒𝑠𝑡 − 𝜗

𝜗 − 𝐸−
                                                                                (𝑎. 4.3) 

 

And so, the frontier line is given by 𝐼𝑚(𝑧) =
𝐸+−𝜗

𝜗−𝐸−
𝑅𝑒(𝑧) +

𝑉𝑟𝑒𝑠𝑡−𝜗

𝜗−𝐸−
. It’s director vector is 

(𝜗 − 𝐸−, 𝐸+ − 𝜗)𝑇 . As we will choose our new basis as a set of orthogonal axis, the 

component along this line is given by the dot product with any point in the plane (x,y), 

which recovering complex notation gives: 𝑦′ = (𝜗 − 𝐸−)𝑅𝑒(𝑧) + (𝐸+ − 𝜗)𝐼𝑚(𝑧). This 

variable is going to remain cyclic, as the activation function won’t depend explicitly on 

its value, so it will be discarded. With respect to the second axis, we find a vector 

perpendicular and pointing in the direction of growth, like (𝐸+ − 𝜗,−(𝜗 − 𝐸−))𝑇 . Using 

the same method, we find the only state variable that matters in the translational 

symmetric case, which is: 

 

𝑦 = (𝐸+ − 𝜗)𝑅𝑒(𝑧) − (𝜗 − 𝐸−)𝐼𝑚(𝑧)                                                                      (𝑎. 4.4) 
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1. Agents clau i context del treball 

Aquest treball es proposa estudiar el vincle entre els modelatges computacionals 

provinents de la neurociència i aquells en que es basa la perspectiva connexionista, sovint 

relacionats amb les xarxes neuronals artificials. Per tal de dur a terme aquesta tasca, s’ha 

adoptat un enfocament interdisciplinari que utilitza i integra diferents perspectives i 

mètodes, com ara models neurocientífics que parteixen de fenòmens biofísics, fisiològics 

i de cinètica química; xarxes neuronals artificials, centrant-nos en el seus fonaments i la 

seva estructura matemàtica; l’estudi de les equacions diferencials, els sistemes dinàmics 

i l’ús de metodologies computacionals.  

És per això que pensem que la present recerca pot interpel·lar a aquelles persones 

interessades en camps tant diversos com les neurociències, la psicologia cognitiva, 

l’aprenentatge automàtic, la intel·ligència artificial o altres camps de les matemàtiques 

aplicades, a les quals els preocupi la qüestió del modelatge realista dels processos 

neuronals i cognitius. 
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2. Introducció: 

Durant les últimes dècades, l´ús de modelatges matemàtics inspirats en el funcionament 

de les neurones han suposat una revolució tecnològica, establint les bases de 

l’aprenentatge automàtic i la intel·ligència artificial, tot permetent la implementació 

d’algoritmes capaços de reconèixer, classificar i predir fenòmens i objectes tant diversos 

que, a hores d’ara, és difícil anomenar algun camp de la ciència o la tecnologia on no se’n 

hagi fet cap mena d’ús. 

Aquest treball, però, no tracta de lloar les virtuts de les xarxes neuronals artificials en tant 

a eines, si no més aviat d’estudiar-les en tant a reflex, com una representació de l’activitat 

neuronal, és a dir, de mostrar el seu potencial per a explicar fenòmens neurobiològics 

reals, més enllà de la seva utilitat a l’hora d’implementar algoritmes.  

El naixement de l’aprenentatge automàtic i la intel·ligència artificial mai ha estat 

desvinculat de la psicologia. El connexionisme, perspectiva que entén els processos 

psicològics com a fenòmens emergents de l’activitat col.lectiva i distribuïda en paral.lel 

de les neurones, s’ha basat des dels seus orígens en el que avui coneixem com a xarxes 

neuronals artificials, entenent-les com una via capaç de donar resposta a les preguntes 

que planteja la ciència cognitiva. 

Aquesta perspectiva, però, està basada en uns fonaments que podríem considerar poc 

ferms, tremolosos, travessats per una qüestió que els posa en dubte i els amenaça de ruïna, 

la qual es presenta a continuació: si bé es cert que els modelatges connexionistes han 

permès la implementació de molts fenòmens que podríem considerar de caire psicològic, 

tals com l’aprenentatge, el reconeixement de patrons o el condicionament als estímuls, 

què ens permet mantenir-nos ferms a l’hora de defensar que aquests processos es donen 

al compartir la mateixa base neural que trobem al cervell? En altres paraules, són aquests 

algoritmes un reflex innocent d’una realitat compartida amb els cervells reals? O són, per 

contra, un producte interessat de la mà humana, un resultat deliberat que no comparteix 

les premisses, si no tant sols uns resultats que no es poden assimilar a l’acció d’un mateix 

mecanisme? 

En aquest treball, investigarem la base neurobiològica d’un modelat connexionista 

concret: les xarxes neuronals recurrents contínues en el temps. Aquestes, si bé s’han 

emprat per simular molts processos associats als sistemes nerviosos reals, manquen d’una 

fonamentació teòrica que justifiqui el seu bon funcionament en termes neurobiològics. És 

així que pretendrem mostrar la relació d’aquestes xarxes tant amb els models 

neurocientífics computacionals com amb les observacions de fenòmens neurofisiològics.  

Amb això, pretenem donar impuls a la seva validació biocomputacional, així com 

defensar la idea de que algunes xarxes neuronals artificials tenen una relació amb els 

circuits neuronals reals que va més enllà d’una mera inspiració, cosa que podria fer-les 

menys artificials del que havíem pensat.   
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3. Objectius, aportació i rellevància: 

El nostre objectiu principal és el de derivar explícitament aquestes xarxes connexionistes 

partint de models neurocientífics ben estudiats, com els integrate-and-fire (que prediuen 

l’emissió dels potencials d’acció de les neurones partint dels seus corrents iònics) o de la 

cinètica química de la sinapsi, on s’estudien les reaccions de dissociació que es donen 

entre receptors i transmissors i com aquestes són influïdes per l’acció dels transportadors, 

els recaptadors i l’activitat presinàptica. Tal és així que, per una banda, pretenem 

determinar quines són les premisses i idealitzacions sobre les quals es pot erigir aquest 

procés de derivació, detallant per a quins grups de neurones i sota quines circumstàncies 

aquest modelat connexionista pot suposar una bona aproximació; per altra banda, també 

aspirem a expressar totes les variables i paràmetres d’aquestes xarxes en termes 

neurobiològics, remarcant la correspondència entre el model i els processos neuronals 

que aquest pretén representar. 

A més, també realitzarem simulacions numèriques per tal de contrastar si el 

comportament d’aquestes xarxes és compatible amb els enregistraments realitzats en 

circuïts neuronals biològics, mostrant la rellevància que podrien tenir per tal de simular 

processos neuronals reals.  

Per últim, indagarem en les propietats emergents d’aquestes xarxes, com ara que, de tenir 

suficients neurones, són capaces d’aproximar qualsevol tipus de comportament 

observable. 

Pensem que aquestes tasques permetran refermar les bases en que es sustenta la 

perspectiva connexionista, aportant evidències de validació a nivell teòric i 

computacional, i mostrant que l’ús del seu formalisme pot ser una eina útil tant en el camp 

de la neurociència com en el de la psicologia. 

 

4. Mètodes 

Per assolir aquests objectius, utilitzarem recursos matemàtics provinents de l’estudi dels 

sistemes dinàmics i les equacions diferencials, com ara l’anàlisi de l’estabilitat d’òrbites, 

subespais i punts d’equilibri; la linealització d’equacions diferencials ordinàries; 

l’adimensionalització de les seves components; la reducció del nombre de variables 

d’estat en presència de varietats centrals; o la disminució de la dimensionalitat del model 

utilitzant transformacions que n’aprofitin les simetries. 

 Així doncs, l’ús de totes aquestes tècniques d’anàlisi, juntament amb l’ús 

d’aproximacions i premisses pertinentment enunciades i justificades, ens permetran 

realitzar una derivació explícita i exhaustiva del formalisme de les xarxes neuronals 

recurrents, partint sempre de principis neurobiològics i computacionals.  

Pel que respecta als mètodes numèrics, les simulacions es realitzen emprant el mètode 

d’integració de Runge-Kutta, implementat amb la funció ode45 del programa MATLAB, 

versió R2021a. Aquestes simulacions s’han realitzat en base als paràmetres i l’estructura 

de circuits biològics estudiats en  mol·luscs i peixos, per tal de comparar enregistraments 

dels mateixos amb el comportament del model. 
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5. Resultats 

El procés de derivació ha conduït a diversos models de caire connexionista, amb diferents 

capacitats de ser generalitzats depenent de les consideracions adoptades. En el cas de 

neurones que tinguin patrons d’activació senzills, on no es considerin retards en el temps 

de transmissió i se suposi un alt grau de similitud  pel que fa als paràmetres cinètics, 

morfològics i de difusivitat de les sinapsis, s’ha obtingut que la dinàmica d’una xarxa 

formada per aquestes unitats pot ser aproximada per un sistema d’equacions diferencials 

que es correspon amb el formalisme de les xarxes neuronals recurrents, mostrant que 

aquestes poden ser derivades explícitament de principis neurocientífics. Amb això, 

donem per assolit l’objectiu de derivació, enunciant les condicions de generalització que 

delimiten l’aplicabilitat del model i traduint el significat de paràmetres i variables en 

termes neurobiològics.  

Per tal de mostrar que les neurones representades es poden aplicar a circuïts reals, s’han 

realitzat simulacions numèriques d’aquestes xarxes, cablejant-les tot imitant circuïts 

biològics ben estudiats. Els resultats han mostrat que aquests models poden reproduir-ne 

el seu comportament. Pensem, però, que cal acumular més evidència en aquesta direcció. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1: en molts moviments, sobretot locomotors, diverses neurones s’han de sincronitzar per tal de 

generar un comportament periòdic. Pensi’s en l’aleteig d’una libèl·lula: quan el múscul encarregat 

d’extendre l’ala cap amunt es tensa, el que la flexiona ha de relaxar-se, i viceversa. Quelcom similar passa 

amb la natació de molts peixos, com els Hiperoartis, els quals posseeixen un circuit senzill que hem pogut 

simular emprant el model connexionista. 
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Per últim, també hem analitzat una de les propietats emergents d’aquestes xarxes, la de 

poder aproximar qualsevol trajectòria de sortida (llegeixi’s en termes psicològics com a 

conducta), i que això implica la correlació de l’activitat de les unitats de la xarxa. Aquesta 

correlació ha sigut observada al còrtex, on moltes neurones es sincronitzen 

espontàniament. Això, pensem, reforça la idea de que els model estudiat pot ser útil en 

l’estudi dels fenòmens neurals. 

 

6. Conclusions 

 Creiem que el marc connexionista té potencial per esdevenir una perspectiva capaç tant 

de modelar processos neuronals reals, com  d’inferir-ne els processos emergents que 

d’aquests es deriven, doncs creiem haver mostrat amb aquest treball que alguns models 

connexionistes no tant sols són interpretables i heurístics, si no que també poden ser 

bastits partint de principis neurocientífics, de manera sistemàtica, i predir fenòmens de 

caire fisiològic, tals com el comportament de circuits específics o la sincronització 

observada en grups de neurones a gran escala. 

Per això, creiem que és necessari encoratjar-ne la seva investigació, per tal d’ampliar-ne 

les evidències de validesa computacional; avançar cap a modelatges més complerts i 

generals, capaços de representar poblacions més àmplies de neurones; entendre les seves 

propietats matemàtiques, i construir, a partir d’elles, interpretacions rigoroses i falsejables 

sobre la fenomenologia dels processos psíquics, partint directament de la base neural que 

els origina. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Les xarxes neuronals
artificials, més reals del

que pensàvem?

El formalisme matemàtic de la
intel·ligència artificial pot ser

derivat directament del
comportament real de les
neurones, segons l’estudi

La intel·ligència  artificial  ha  sigut,  durant
dècades, un tòpic de la ciència ficció: des
de  les  novel·les  d’Isaac  Asimov  fins  al
“2001, una odissea a l’espai” de Kubrick,
la  possibilitat  de  que  les  màquines
esdevinguin  éssers  racionals  ha  inundat
l’imaginari col·lectiu.  

Paral·lelament  a  la  fantasia  i
l’entreteniment,  la  idea  de  les  màquines
intel·ligents ha conduït a moltes persones
a plantejar-se la naturalesa mateixa del
pensament  i  el  raciocini,  una  idea  que
posa en tela de dubte la vella concepció de
l’ànima  immaterial  com  a  causa  de  la
intel·ligència  i  el  lliure  albir  com  el  seu
atribut. Podríem ser tots i totes, al cap i a la
fi,  una  espècie  màquines,  tant  lligades  i
determinades pels seus propis mecanismes
com els objectes que ens envolten ho estan
a les lleis de la natura?

Durant les últimes dècades, la idea de que
el  cervell  és  una  màquina  de  pensar  ha
conduït a la creació de models matemàtics,
inspirats  en  el  funcionament  de  les
neurones,capaços  d’aprendre,
reconèixer,  predir  i  reaccionar  als
estímuls,  conegudes  com  a  xarxes
neuronals  artificials. Amb  elles,  aquella
utopia  futurista  s’ha  començat  a
implementar,  i  actualment  aquests
programes són capaços des de  de llegir o
reconèixer  tota  mena  de  patrons  fins  a
inclús  simular  comportaments  empàtics  i
expressions afectives, entre d’altres.

És  així  com  dintre  la  psicologia  es  va
plantejar  la  possibilitat  de  que  aquests
models  poguessin  constituir  un  nucli
d’accés  realista  als  fenòmens  cognitius,
plantejant  al  cervell  com  un  sistema  de
còmput  equipat  amb  propietats  similars  a
les d’aquestes xarxes neuronals artificials. 

Aquesta  idea,  associada  a  un  moviment
conegut  com  a  connexionisme,  no  s’ha
pogut  deslliurar  d’una  qüestió  encara
oberta, que penja sobre seu com una espasa
i  que  amenaça  la  seva  validesa  en  tant  a
teoria  científica:  si  és  cert  que  aquests
modelatges  (les  xarxes  neuronals)  poden
replicar  alguns  comportaments  de  caire
psicològic, que ens fa pensar que això sigui
degut a la seva similitud al cervell, i no pas
a les finalitats pràctiques per les que van ser
creades? És realment  el seu funcionament
un  reflex  innocent  d’una  base  neuronal
compartida amb els cervells reals?

En  la  present  recerca,  hem  aconseguit
derivar explícitament el formalisme d’un
tipus de modelat connexionista (les xarxes
neuronals  recurrents  dinàmiques)  des
d’una  vessant  únicament  biològica,
partint  d’equacions  de  la  neurociència
computacional,  camp  que  es  dedica  a
estudiar  les  neurones  reals  partint  de
models  matemàtics.  Així,  mostrem
l’existència d’un fil conductor que uneix els
models connexionistes als neurocientífics.

A  més,  també  hem  sigut  capaços  de
simular grups de neurones reals utilitzant
aquests  models  connexionistes,  amb
resultats  satisfactoris.  Per  últim,  hem
evidenciat  que  en  el  comportament
d’aquests  models  es  donen  fenòmens
observats  al  còrtex,  com la  sincronització
espontània de l’activitat de les neurones.

Amb  això,  pretenem  impulsar  la
investigació d’aquests modelatges, mostrar-
ne el potencial més enllà de les tecnologies,
i  alimentar  la  flama  de  la  teoria
connexionista, des d’on la intel·ligència de
les màquines podria ser menys artificial del
que pensàvem.
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