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Abstract

For the past century Einstein’s theory of general relativity has constituted our most
advanced understanding of gravitation and all of its associated phenomena. Nevertheless,
there are still many puzzling and unanswered questions in the field of cosmology related
to the nature of the universe over large scales and its history. In recent years a number
of modified versions of general relativity have been developed and explored to attempt
to give satisfying answers to these questions. Among them is what is known as action-
dependent gravity. The mathematical framework for this theory is actually very deep and
not just related to relativity. Indeed, this is an example of what is known in mathematics
as contact geometry, the theory which describes the dynamics of dissipative systems, just
as symplectic geometry underpins conservative Lagrangian and Hamiltonian mechanics.

In this wor we apply recent developments in the field of contact geometry to a suc-
cessful derivation of the field equations of an action-dependent theory of gravity by direct
variation of a modified Einstein-Hilbert action.
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Chapter 1

Background and motivation

Einstein’s theory of general relativity provides a description of gravity as a geometrical
effect that results from the interplay between the curvature of spacetime and the matter
that inhabits this spacetime. Its predictions have been tested to a very high degree of
accuracy. And yet, there are a number of puzzles in the field of cosmology that don’t have a
satisfactory answer. As new technological developments enable more precise observations,
evidence seems to point in the direction of a modified version of Einstein’s theory. There
are numerous possible avenues for generalisation, [ORW20] lists many of the ones under
current investigation and study. Among them, we will focus on the theory of gravity
that comes from taking what is known as an action-dependent version of the Einstein-
Hilbert Lagrangian, the Lagrangian from which the field equations of general relativity
are derived. This has been first developed in [Laz+17]. This generalisation operates at
the level of the variational principle, so it is not just the addition of ad-hoc terms to the
field equations.

Lagrangian (and Hamiltonian) mechanics can be formulated in the language of sym-
plectic geometry. The study of physical systems from this more abstract point of view
allows one to gain insight into how they operate at a geometric level, and provides a very
elegant way of formulating physical theories. On the other hand, all systems that can be
described by symplectic geometry are inherently conservative: the theory centers on sym-
metries and conserved quantities. And yet, not all physical systems are conservative, not
by any means. It turns out that symplectic geometry has a sister theory, called contact
geometry, and that it can be used to describe non-conservative (or dissipative systems)
from a geometric point of view. This has been applied to various areas of physics, the
most notable one being reversible and non-reversible thermodynamics (see [Mru+91]),
as well as other areas such as control theory and cosmology ([Laz+17]). So far, contact
geometry is well understood for mechanics, but not so much for field theory and even
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Chapter 1. Background and motivation

less for higher order field theories. See [Gas+20a; LL21; Gas+20b] for recent publications
related to ongoing efforts. General relativity is a second-order field theory, so writing
down the equations of a dissipative version of it would be one of the first times this is
done for a second-order theory.

The main contribution of this work is the derivation of the field equations of Einstein
gravity with an added linear action dependence. This is of interest from the point of view
of cosmology, since these equations are a starting point from which to make predictions,
and also from the point of view of mathematical physics, since these equations are the
equations of a second-order theory.

The manuscript is organised as follows: in Chapter 2 we will introduce the formalism
of action-dependent Lagrangians and show how it is a problem of constrained optimisa-
tion. This is a very recent breakthrough which circumvents many of the problems one
encounters when dealing with action-depenednet field theories. Then, in Chapter 3 we
apply this idea to a modified Einstein-Hilbert Lagrangian and derive its field equations
by direct variation of the action. This Lagrangian has actually already been studied in
a recent publication, [Laz+17], but in Chapter 4 we argue why the equations obtained
there are not the correct ones, and why the right version are those obtained in the present
work.
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Chapter 2

The Herglotz variational problem

In this chapter we develop the theory of action-dependent Lagrangians. The main appeal of
this formalism is that it allows for the description of non-conservative systems in terms of a
variational principle, which is in general not possible with standard Lagrangian mechanics.
The problem of finding the stationary paths of the action given by a Lagrangian of this
sort is known as the Herglotz problem. The main difficulty of this variational problem is
that, as opposed to the standard variational problem of Lagrangian mechanics, it is an
implicit optimisation problem. One way to approach this problem is the use of Lagrange
multipliers. We show how this leads to the equations of motion for this kind of systems,
known as the Herglotz equations, and how it can also be applied to field theory to derive
the field theoretical Herglotz equations.

2.1 The implicit formulation of the Herglotz problem

Let’s briefly describe what we will refer to as the implicit formulation of the Herglotz
problem, as presented in [Laz+18]. First we clarify what we mean by an action-dependent
Lagrangian. The idea is to consider the action as a dynamical quantity that changes along
the path, and then allow the Lagrangian to depend on it. Naively, we would write the
following. Starting with some path qµ : [a, b] → M in some configuration space M1 we
would write something like

S[qµ] =
∫ b

a
L(qµ(t), q̇µ(t), S(t)) dt

where S(t) is the action of the path until time t. Of course this makes no sense since we
are defining S on the left-hand side, and it appears on the right-hand side! We can turn

1M could be space in the context of classical mechanics or spacetime in the context of relativity
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2.1 The implicit formulation of the Herglotz problem Chapter 2. The Herglotz variational problem

this expression into something sensible if we add the time dependence of the action on
the left-hand side, so that we write

S[qµ](t) =
∫ t

a
L(qµ(τ), q̇µ(τ), S[qµ](τ)) dτ (2.1)

and if we differentiate with respect to time we actually get an ODE for S[qµ]! Indeed

Ṡ[qµ](t) = L(qµ(t), q̇µ(t), S[qµ](t)). (2.2)

Notice that Equation (2.1) actually forces the initial condition S[qµ](a) = 0. We can even
drop this requirement, since all we are interested in is the difference of values of S:

S[qµ](b)− S[qµ](a) =
∫ b

a
L(qµ(t), q̇µ(t), S[qµ](t)) dt. (2.3)

What we have here is a functional which, for every path, is defined by an ODE. To find
the stationary paths of this functional we would, in principle, have to solve Equation (2.2)
for any possible path and among all of them find which ones yield extrema. This is
the Herglotz variational problem. However, just like the variational problem of classical
Lagrangian mechanics can be turned into a set of ODEs, the Euler-Lagrange equations, so
can the Herglotz problem be turned into a set of ODEs. These are known as the Herglotz
equations, which can be written down as

∂L

∂qµ
− d

dt
∂L

∂q̇µ
+ ∂L

∂q̇µ
∂L

∂z
= 0 (2.4)

where the Lagrangian is L(qµ, q̇µ, z), z being the action dependence. These equations
differ from the Euler-Lagrange equations only by one term. And in fact, if L is action-
independent, thus ∂L

∂z
= 0, we recover exactly the Euler-Lagrange equations.

See [Laz+18] or §3.2 of [LL21] for a detailed derivation of the Herglotz equations
following the implicit approach.

2.1.1 Example: the damped harmonic oscillator

Before we move forward, let’s see what the Herglotz equations look like for a particu-
lar system. The simplest action-dependence we can introduce —other than no action-
dependence at all, of course— is a term linear in z. We will call this linear dissipation for
reasons that will become clear in a moment. Let’s see what happens when we add this
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2.2 The Herglotz problem as constrained optimisation Chapter 2. The Herglotz variational problem

term to the simple harmonic oscillator. Explicitly, consider the Lagrangian

L(q, q̇, z) = 1
2mq̇

2 − 1
2mω

2q2 − γz.

A straightforward computation shows that for this Lagrangian, Equation (2.4) becomes

−mω2q −mq̈ − γmq̇ = 0

which after some rearranging can be turned into

q̈ + γq̇ + ω2q = 0, (2.5)

which one recognises as the equation of motion of the damped harmonic oscillator. The
Herglotz principle delivers on its promise: we have just derived the equations of motion of
a fundamentally non-conservative system from a variational problem! This also clarifies
why we called the action dependence a dissipation term: the coefficient γ is related to the
damping of the system and governs the rate at which energy is lost after every cycle.

2.2 The Herglotz problem as constrained optimisation

We have derived the Herglotz equations, so it would seem we have already solved the
theory of action-dependent Lagrangians. However, general relativity is a field theory, so
if we wish to understand an action-dependent variant of it we have to know the form
the Herglotz equations take for field theory. If we try to apply the implicit method to
field theory we run into a number of problems. For one, it is just not very elegant. The
action functional is defined implicitly through an ordinary differential equation, one for
every path. What’s more, this equation is no longer an ODE in field theory, but rather
it becomes a PDE. PDEs are notoriously much more difficult to solve than ODEs, so we
would like a way to circumvent this issue.

The idea we describe in what follows is being developed by Manuel Lainz, a PhD
student at ICMAT. This is currently in a preprint stage, to which I have been graciously
given access. It is part of broader ongoing research on the mathematics underpinning the
theory of action-dependent field theory. As it was originally introduced, it was a more
elegant way to derive the Herglotz equations from a variational principle, but actually
it also provides a method of writing down second-order Herglotz equations by taking a
direct variation of the action. This is how we will be able to calculate the field equations
of action-dependent gravity, which is a second-order theory.
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The fundamental insight comes from framing the Herglotz problem as a constrained
optimisation problem. We describe what this looks like for mehcanics. First, instead of
considering paths in spacetime, qµ : [a, b] → M , we enlarge the configuration space with
one extra quantity, which we will call z. At this point z simply tracks a quantity that
changes along the path, but we will later require that z actually match the action of the
path at each time. This will be the constraint.

So, we have paths of the form (qµ, z) : [a, b]→M ×R. We define a functional on these
paths as

S[qµ, z] = z(a)− z(b) =
∫ b

a
ż(t) dt, (2.6)

so S is just the change in z along the trajectory. This functional as it stands has no
stationary paths, since we can find trajectories with arbitrarily large changes in z, both
positive and negative. So we constrain the possible paths. Namely, we require that z
actually represent the action. We try to find the paths that extremise S only among
those that satisfy the constraint

ż(t) = L(qµ(t), q̇µ(t), z(t)), (2.7)

where L is the action-dependent Lagrangian that describes the system. Notice that this
is very similar to Equation (2.2).

Say (qµ, z) is a trajectory that satisfies Equation (2.7). Then

S[qµ, z] = z(b)− z(a) =
∫ b

a
ż(t) dt =

∫ b

a
L(qµ(t), q̇µ(t), z(t)) dt.

So, for paths that satisfy the constraint, the functional S is indeed the action functional,
understood as the integral of the Lagrangian along the path.

2.2.1 Lagrange multipliers

This is all well and good, but how does one actually go about solving a constrained
optimisation problem? It turns out, we can use an infinite dimensional analog of Lagrange
multipliers to turn this into a regular optimisation problem to which we can apply the
tools of the calculus of variations.

Recall, given some function f : Rn → R, x ∈ Rn is an extremum of f subject to m
constraints Gk : Rn → R —i.e. Gk(x) = 0 — if and only if there exist numbers λk ∈ R
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such that x is an extremum of the function

F = f −
m∑
k=1

λkgk (2.8)

without any constraints. The numbers λk are called the Lagrange multipliers. It can
be shown that this result generalises to infinite dimensional spaces and infinitely many
constraints. In our case, the function we are trying to find the extrema of is the functional
S. Our constraints are parameterised by t ∈ [a, b]:

Gt[qµ, z] = ż(t)− L(qµ(t), q̇µ(t), z(t)) = 0.

Thus, replacing sums with integrals in Equation (2.8), the extrema of Equation (2.6)
subject to Equation (2.7) will be those that extremise the following functional:

S̃[qµ, z, λ] = S[qµ, z]−
∫ b

a
λtGt[qµ, z] dt

=
∫ b

a
ż(t) dt−

∫ b

a
λt
[
ż(t)− L(qµ(t), q̇µ(t), z(t))

]
dt

=
∫ b

a
(1− λt)ż(t) + λt

(
L(qµ(t), q̇µ(t), z(t))

)
dt. (2.9)

A couple of observations. First, we are thinking of the Lagrange multipliers as real
numbers parameterised by t, but we could equivalently think of them as a function of t
and write λ(t) instead of λt. We will do this. Additionally, we introduced λ as a dynamical
variable of the action functional. When we take the variation of the action with respect
to λ we will actually recover the constraint.

2.2.2 Deriving the Herglotz equations

If we write the integrand of Equation (2.9) as

L̃(qµ(t), q̇µ(t), z(t), ż(t)) =
(
1− λ(t)

)
ż(t) + λ(t)

(
L(qµ(t), q̇µ(t), z(t))

)
one should be able to recognise S̃ as something that looks just like a regular old action
functional defined by the integral of a regular old Lagrangian, except it is now defined on
expanded trajectories (qµ, z). So we should be able to use the Euler-Lagrange equations
to write down the equations of motion of its extremal paths! The equation for z reads

0 = ∂L̃

∂z
− d

dt
∂L̃

∂ż
= λ

∂L

∂z
+ λ̇

7
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or equivalently
λ̇ = −λ∂L

∂z
. (2.10)

The Euler-Lagrange equations for the positions then are

0 = ∂L̃

∂qµ
− d

dt
∂L̃

∂q̇µ
= λ

∂L

∂qµ
− λ̇ ∂L

∂q̇µ
− λ d

dt
∂L

∂q̇µ

and after substituting in Equation (2.10) and dividing through by λ we find

0 = ∂L

∂qµ
− d

dt
∂L

∂q̇µ
+ ∂L

∂z

∂L

∂q̇µ
(2.11)

which are exactly the Herglotz equations.
Let us for completeness write down the equation that results from taking the variation

with respect to λ:
−ż(t) + L (qµ(t), q̇µ(t), z(t)) = 0,

This is exactly the constraint.

2.3 Action-dependent field theory

We have seen how to derive the Herglotz equations in a more elegant way using Lagrange
multipliers. More importantly, we have written down a modified Lagrangian which gives
rise to them through standard calculus of variations techniques. This will be very useful
as, in some cases (general relativity being one of them), it is easier to derive the equations
of motion of a system by direct variation of the action, rather than writing down the
Euler-Lagrange equations. We will be able to do exactly this once we have the field
theoretic version of Equation (2.9) in our hands.

2.3.1 Classical field theory and Lagrangian densities

First off, we need to set the stage for Lagrangian field theory. The parameter space is no
longer just time, but rather all of spacetime, M . Fields are the assignment of some value
to each point in spacetime, so we could have scalar fields, vector fields, or, as is the case in
general relativity, tensor fields. Let us first fix some notation. We will denote by φ some
field configuration. If φ is a scalar field then it carries no indices. If φ is a vector field
then it carries one upper index, if it is a tensor field then it carries multiple indices. The
metric carries two lower indices since it is a (0, 2) tensor field. In almost all that follows
we will assume φ is a vector field, but the results we find transfer to tensors of other rank.
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Of course φ depends on spacetime, which we will sometimes write explicitly as φa(xµ).
As a convention, we will use latin indices for the indices of the field, and reserve greek
indices for spacetime coordinates. The Einstein summation convention is assumed to be
in place unless otherwise stated.

The Lagrangian of a field theory is a function of the field and of its derivatives. If it
only contains first derivatives the theory is called a first order theory. General relativity
is actually a second order theory, as we will discuss later. However, most of the following
discussion still applies to general relativity.

The Lagrangian in field theory does not take values in the real numbers. To define
the action we must integrate the Lagrangian, but as opposed to in mechanics where one
integrates over time, in field theory this integration is performed over a patch of spacetime.
Because spacetime is in general a curved manifold we will need to use the language of
differential forms, which are the objects that can be integrated over manifolds. In general,
a differential k-form2 can be integrated over a manifold of dimension k. So if spacetime
has dimension n, the Lagrangian has to be a differential n-form, alsow known as a top
form.

With some care, however, we can still think of the Lagrangian as a function with values
in the real numbers. It turns out that any two top forms differ only by an overall factor,
i.e., given two top forms ω1 and ω2, there exists a unique scalar function f : M → R such
that ω1 = fω2. So what this means is that, for a given Lagrangian L, once we pick a
distinguished top form ω there is a unique scalar function L such that L = Lω. This
distinguished top form will in most cases be the top form induced by the coordinates we
are working in, which we will write as dnx. Sometimes we will use Lagrangian density to
refer to L and Lagrangian to refer to L.

The setup in classical field theory is as follows. Given some Lagrangian, which encodes
the system we are studying, we define the action functional on all the possible field
configurations as

S[φa] =
∫
D
L(φa(xµ), ∂µφa(xµ)) =

∫
D
L(φa(xµ), ∂µφa(xµ)) dnx,

where D is some region of spacetime where this integral makes sense.
Using the calculus of variations one can show that the stationary configurations of this

action functional satisfy the Euler-Lagrange equations of field theory

∂L

∂φa
− ∂µ

∂L

∂(∂µφa)
= 0.

2A differential k-form is a k-multilinear alternating form that acts on tangent vectors
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2.3.2 The action flux

How do we generalise this to an action dependent Lagrangian? The most naive approach
would be to try to replicate the Herglotz equations from mechanics wholesale and write
down

∂L

∂φa
− ∂µ

∂L

∂(∂µφa)
+ ∂L

∂(∂µφa)
∂L

∂z
= 0.

However this will not work because the last term has a pesky free µ index. This seems to
suggest that we need to modify the nature of z. We had claimed before that z represented
the action along the path, but if we look at Equation (2.6) we see this is not quite right.
In mechanics the analog of D is [a, b]. The difference z(a) − z(b) can also be written as∫
∂[a,b] z, since the boundary of [a, b] is just a and b. This seems to indicate that the correct
analog of Equation (2.6) for field theory should be

S[φa, z] =
∫
∂D
z.

What kind of obejct should z be then? ∂D has dimension n − 1, so z has to be
something we can integrate over an (n−1)-dimensional manifold, i.e. a differential (n−1)-
form. Strictly speaking, then, z is an object with n − 1 lower indices. In the case of
4-dimensional spacetime, z would have 3 antisymmetrised indices:

z = z[µνη] dxµ ∧ dxν ∧ dxη.

As it turns out, (n−1)-forms can be identified with vector fields. The idea is that instead
of labeling the components of z by three indices, we label them by the missing index.
Some signs appear because of the antisymmetry, which are encoded by the Levi-Civita
symbol:

zµ = εµνηαz[νηα].

So we have the identity

z = zµ dxµ = z[µνη] dxµ ∧ dxν ∧ dxη.

where
dxµ = εµνηα dxν ∧ dxη ∧ dxα.

But z is not a vector, since its components do not transform as the components of a
vector, but rather as the components of a 3-form. This is very similar to the distinction
between vectors and pseudo-vectors in 3-space.

10
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Let’s have a closer look at what z represents. We know that
∫
∂D z has dimensions

of action. The volume element of ∂D in natural units (setting c = 1) has dimensions of
length3, so the components of z have dimensions of action/length3. This means that z is
the action flux. From Stokes’ theorem,

S[φa, zµ] =
∫
∂D
z =

∫
D

dz,

so dz has to be the action density, i.e. the Lagrangian. The constraint we want to impose
is therefore

dz(xµ) = L(φa(xµ), ∂µφa(xµ), zµ(xµ)) (2.12)

analogous to Equation (2.7).
dz is the exterior derivative of z, which is a top form, so this equality makes sense.

In coordinates it is easy to show that dz = ∂νz
ν dnx, so that Equation (2.12) reads in

coordinates as
∂νz

ν(xµ) = L(φa(xµ), ∂µφa(xµ)). (2.13)

For field configurations that satisfy this constraint then one has, applying Stokes’ theorem

S[φa, zµ] =
∫
∂D
z =

∫
D

dz =
∫
D
L(φa, ∂µφa, zµ).

So we have arrived at the right formulation of the Herglotz variational problem for field
theory.

2.3.3 Constrained optimisation in field theory

Just like before, we will turn this constrained optimisation problem into an unconstrained
one using Lagrange multipliers. The expanded action, in analogy with Equation (2.9) will
be

S̃[φa, zµ] =
∫
D

(1− λ) dz + λL(φa, ∂µφa, zν) =
∫
D

dnx
[
(1− λ)∂µzµ + λL(φa, ∂µφa, zν)

]
(2.14)

Note that the Lagrange multiplier λ is a function of spacetime. Like in mechanics, the
Lagrange multiplier is technically also a dynamical quantity, but variation with respect
to it just gives back the constraint. Let us write down the integrand of Equation (2.14)
as an expanded Lagrangian:

L̃(φa, ∂µφa, zν , ∂µzν) = L̃(φa, ∂µφa, zν , ∂µzν) dnx =
[
(1− λ)∂µzµ + λL(φa, ∂µφa, zν)

]
dnx.
(2.15)
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The Euler-Lagrange equations for this Lagrangian are the Herglotz equations for the
theory. We write them down in the next section. Note that they are actually the Her-
glotz equations for a first-order field theory. If the theory is second order then the correct
equations are the second-order Euler-Lagrange equations, which include additional terms.
Alternatively, we could still perform a direct variation of the action to get the field equa-
tions, without worrying about the order of the theory. This is the procedure we will follow
in the next chapter.

2.3.4 The Herglotz equations for field theory

Finally, we can derive the Herglotz equations for field theory from the expanded La-
grangian we have just obtained in Equation (2.15). The equations for the action flux
are

0 = ∂L̃

∂zν
− ∂µ

∂L̃

∂(∂µzν)
= λ

∂L

∂zν
+ ∂µ(λδµν ) = λ

∂L

∂zν
+ ∂νλ.

So, rearranging,
∂νλ = −λ ∂L

∂zν
. (2.16)

This equation actually has implications for the type of action dependence that is allowed
in L. We will see it again later on in the context of relativity as it forces the dissipation
form to be closed.

And for the values of the field

0 = ∂L̃

∂φa
− ∂µ

∂L̃

∂(∂µφa)
= λ

∂L

∂φa
− (∂µλ) ∂L

∂(∂µφa)
− λ∂µ

∂L

∂(∂µφa)

and, when plugging in Equation (2.16) and dividing through by λ we arrive at the field
theoretical Herglotz equations

∂L

∂φa
− ∂µ

∂L

∂(∂µφa)
+ ∂L

∂zµ
∂L

∂(∂µφa)
= 0. (2.17)
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Chapter 3

Action-dependent Einstein gravity

In this chapter we apply the language and tools developed in the previous chapter to
the specific case of Einstein gravity. We first describe the Lagrangian from which the
Einstein field equations come from and then introduce an action-dependent version of
this Lagrangian and derive its field equations.

3.1 The Einstein-Hilbert Lagrangian

As is well-known, the Einstein field equations can be obtained from a variational principle.
The Lagrangian that gives rise to these equations is the Einstein-Hilbert Lagrangian.
Let’s write it down in the language of Section 2.3.1. The Einstein-Hilbert action acts on
metrics. Given a metric g, one can construct a top form, which we will write ωg. Choosing
coordinates one has ωg = √g d4x, where √g is the square root of the determinant of the
expression of g in the coordinates that induce d4x. This is not yet the Einstein-Hilbert
Lagrangian. The other element is the scalar curvature R = gabRab, which is a Lorentz
invariant scalar that encodes the curvature associated to g. In coordinates, the Ricci
tensor Rab takes the form

Rab = ∂mΓmab − ∂aΓmmb + ΓmmnΓnab − ΓmanΓnmb (3.1)

and since the Christoffel symbols contain first derivatives of the metric, Rab and hence R
contain second derivatives of the metric.

The Einstein-Hilbert Lagrangian is

LE-H(gab, ∂µgab, ∂µ∂νgab) = Rωg = R
√
g d4x. (3.2)

This is a second order Lagrangian. From now on we will write gab,µ and gab,µν instead of

13



3.2 An action dependent Einstein-Hilbert Lagrangian Chapter 3. Action-dependent Einstein gravity

∂µgab and ∂µ∂νgab.
The Einstein-Hilbert action is therefore

SE-H[gab] =
∫
D
LE-H(gab, gab,µ, gab,µν) =

∫
D
R
√
g d4x. (3.3)

A variation of this action leads one to the Einstein field equations, which in natural units
are

Rab − 1
2gabR = 0. (3.4)

More precisely, these are the Einstein field equations in a vacuum, since one can add vari-
ous matter terms to the Einstein-Hilbert Lagrangian which leads to the Einstein equations
in the presence of matter,

Rab − 1
2gabR = Tab. (3.5)

The object Tab is the energy-momentum tensor and collects all of the terms coming from
the presence of matter. See §4 of [Car97] for a derivation of the Einstein field equations.

3.2 An action dependent Einstein-Hilbert Lagrangian

What kind of action dependence can we incorporate into the Einstein-Hilbert Lagrangian?
The simplest one is a linear dissipation term:

LE-H(gab, gab,µ, gab,µν , zµ) = Rωg − θ ∧ z. (3.6)

Recall, z is the action flux which is a 3-form. Then if θ is a 1-form over spacetime, also
known as a covector, the wedge θ∧ z is a 4-form, so that Equation (3.6) makes sense. We
call this a linear dissipation term because it is linear in z. It is also linear in θ which we
will call the dissipation form. If we write θ out in some coordinate system then θ = θµ dxµ,
and its components transform covariantly. In natural units, θ must have dimensions of
length−1, since then θ ∧ z has dimensions of action/(length)4, i.e. dimensions of action
density.

In coordinates

θ ∧ z = (θµ dxµ) ∧ (zν dxν) = θµz
ν dxµ ∧ dxν = θµz

νδµν d4x = θµz
µ d4x

so Equation (3.6) becomes

LE-H(gab, gab,µ, gab,µν , zµ) = (R√g − θµzµ) d4x. (3.7)

14
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This Lagrangian does not quite match the one proposed in eq. (9) of [Laz+17]. It can be
shown that in fact the Lagrangian we propose and the one they propose are actually the
same, just expressed in different coordinates.

Consider a modified basis for the 3-forms, ωg,µ = √g dxµ. If ζµ are the components of
the action flux with respect to this new basis, then

z = ζµωg,µ = ζµ
√
g dxµ

which implies zµ = √gζµ. So, writing the components of the action flux in the basis ωg,µ,
Equation (3.7) looks like

LE-H(gab, gab,µ, gab,µν , ζµ) = (R√g − θµζµ
√
g) d4x = (R− θµζµ)ωg. (3.8)

This is the Lagrangian proposed in equation (9) of [Laz+17].
We now write down the constraint in Equation (2.12) for this Lagrangian. In the

original coordinates for the action flux we have

dz = ∂µz
µ d4x

so, in coordinates
∂µz

µ = R
√
g − θµzµ. (3.9)

If instead we choose the other basis for the action flux, we see

dz = ∂µ(√gζµ) d4x = ∇µζ
µ√g d4x = ∇µζ

µωg

where ∇ is the covariant derivative induced by g. We have made use of a useful identity
about the divergence:

∇µX
µ = 1
√
g
∂µ(√gXµ). (3.10)

In the new coordinates the constraint looks like

∇µζ
µ = R− θµζµ (3.11)

which is the same form that appears in equation (8) of [Laz+17].
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3.3 Derivation of the field equations

So we have seen what the Herglotz problem looks like for an Einstein-Hilbert Lagrangian
with a linear action dependence. We will apply the method of Lagrange multipliers, as
described in previous chapter, to derive a modified version of Einstein’s equations. The
expanded Lagrangian is

L̃E-H(gab, gab,µ, gab,µν , zν , ∂µzν) =
[
(1− λ)∂µzµ + λ(R√g − θµzµ)

]
d4x.

3.3.1 Variation of the action flux

Let’s compute the variation of the action given by this Lagrangian

δS̃[gab, zν ] =
∫
D

[
(1− λ)δ∂µzµ + λ(δ(R√g)− θµδzµ)

]
d4x

=
∫
D

(1− λ)∂µδzµ − λθµδzµ d4x+
∫
D
λδ(R√g) d4x

=
∫
D
∂µ
(
(1− λ)δzµ

)
d4x+

∫
D

(∂µλ− λθµ)δzµ d4x+
∫
D
λδ(R√g) d4x. (3.12)

The first integral is a boundary term coming from an integration by parts. It vanishes
because we assume the variations vanish at the boundary of D. From the second integral
we can read off, using the fundamental theorem of the calculus of variations, that

∂µλ = λθµ. (3.13)

Coordinate free this can also be written as dλ = λθ. This has an interesting implication
for θ since

d(λθ) = dλ ∧ θ + λ dθ = λθ ∧ θ + λ dθ = λ dθ

and
λ dθ = d(λθ) = d2λ = 0

so we conclude dθ = 0, i.e. θ cannot be any 1-form, it must be a a closed form. This
means that in coordinates ∂µθν = ∂νθµ.

3.3.2 Variation of the metric

We retake the calculation from Equation (3.12). Since the integrals involving z and g

decouple, we can just consider the last term. We will follow the derivation in [Car97] for
as long as we can. Since R√g = gabRab

√
g, from the product rule its variation results in
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three terms:
∫
D
λδ(R√g) d4x =

∫
D
λδgabRab

√
g d4x+

∫
D
λgabδRab

√
g d4x+

∫
D
λRδ
√
g d4x (3.14)

The first term is already in the form required to apply the fundamental theorem of the
calculus of variations. For the third one uses the standard result

δ
√
g = −1

2
√
ggabδg

ab.

The first and third terms of Equation (3.14) can be combined into
∫
D
λ(Rab − 1

2Rgab)δg
ab√g d4x. (3.15)

In the standard derivation of Einstein’s equations, one shows that the middle integral of
Equation (3.14) actually vanishes, so that if Equation (3.15) is to vanish for any variation
δgab, or equivalently for any variation of the inverse metric δgab the integrand itself must
vanish. This gives Einstein’s equations. In the presence of λ, however, the middle integral
doesn’t vanish and actually contributes additional terms to the equations.

Let’s work out the variation of the middle integral of Equation (3.14). We will do this
step by step. The variation of the Ricci curvature can be shown to be

gabδRab = gab(∇mδΓmab −∇aδΓmmb) = ∇n(gabδΓnab − gnbδΓmmb) (3.16)

so ∫
D
λgabδRab

√
g d4x =

∫
D
λ∇n(gabδΓnab − gnbδΓmmb)

√
g d4x

and if λ weren’t there this integral would vanish because of the divergence theorem and
the fact that the variations vanish on the boundary ofD. In the presence of λ the standard
trick is to perform integration by parts:
∫
D
λgabδRab

√
g d4x =

=
∫
D
λ∇n(gabδΓnab − gnbδΓmmb)

√
g d4x

=
∫
D
∇n

(
λ(gabδΓnab − gnbδΓmmb)

)√
g d4x−

∫
D

(∇nλ)(gabδΓnab − gnbδΓmmb)
√
g d4x.

The first integral vanishes because it is the integral of a divergence and the variations
vanish on the boundary of D. The second integral is where the additional terms will
come from. We split it into two terms.
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The variation of the Christoffel symbols can be shown to be

δΓabc = 1
2g

am(∇cδgbm +∇bδgmc −∇mδgbc). (3.17)

Using this and Equation (3.13) (since ∇nλ = ∂nλ) we compute for the first integral

−
∫
D

(∇nλ)gabδΓnab
√
g d4x = −1

2

∫
D
λθng

abgnk(∇bδgak +∇aδgkb−∇kδgab)
√
g d4x. (3.18)

The presence of gab means the indices a and b are symmetrised, so

gab∇bδgak = gab∇aδgkb.

This means Equation (3.18) simplifies to

−
∫
D

(∇nλ)gabδΓnab
√
g d4x =

= −
∫
D
λθng

abgnk∇bδgak
√
g d4x+ 1

2

∫
D
λθng

abgnk∇kδgab
√
g d4x

= −
∫
D
λθn∇b(gabgnkδgak)

√
g d4x+ 1

2

∫
D
λθn∇k(gabgnkδgab)

√
g d4x. (3.19)

Let’s perform an integration by parts for the first integral. We have to be a bit careful.
Introducing the shorthand Xbn = gabgnkδgak, we compute

∇c(λθnXbn) = ∇c(λθn)Xbn + λθn∇cX
bn

so

−
∫
D
λθn∇b(gabgnkδgak)

√
g d4x = −

∫
D
λθn∇bX

bn√g d4x

= −
∫
D
∇b(λθnXbn)√g d4x+

∫
D
∇b(λθn)Xbn√g d4x.

The first integral is the integral of a divergence, so it vanishes. We are left with the second
which we can expand into

∫
D
∇b(λθn)Xbn√g d4x =

∫
D

(θn∂bλ+ λ∇bθn)(gabgnkδgak)
√
g d4x

=
∫
D
λ(θbθn +∇bθn)(gabgnkδgak)

√
g d4x

As a last step, we use the identity

δgab = −gamgbnδgmn
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to write our integral as a variation with respect to the inverse metric.
∫
D
λ(θbθn +∇bθn)(gabgnkδgak)

√
g d4x = −

∫
D
λ(θbθn +∇bθn)δgbn√g d4x.

Without going through the details again, the other integral in Equation (3.19) can be
brought to the form

1
2

∫
D
λθn∇k(gabgnkδgab)

√
g d4x = −1

2

∫
D
∇k(λθn)gabgnkδgab

√
g d4x

= 1
2

∫
D
λ(θkθn +∇kθn)gabgnkgmaglbδgml

√
g d4x

= 1
2

∫
D
λgnk(θkθn +∇kθn)gmlδgml

√
g d4x

There is still another integral we need to evaluate, the second term in the variation of
Rab, namely
∫
D

(∂nλ)gnbδΓmmb
√
g d4x = 1

2

∫
D
λθng

nbgmk(∇bδgmk +∇mδgkb −∇kδgmb)
√
g d4x. (3.20)

Because m and k are symmetrised, the second and third terms cancel, leaving us with

1
2

∫
D
λθng

nbgmk∇bδgmk
√
g d4x = −1

2

∫
D
∇b(λθn)gnbgmkδgmk

√
g d4x (3.21)

= 1
2

∫
D
λ(θbθn +∇bθn)gnbgmkgamglkδgal

√
g d4x (3.22)

= 1
2

∫
D
λgnb(θbθn +∇bθn)galδgal

√
g d4x. (3.23)

We have calculated all the integrals we need. Before we put them all together, let us
make the following observation:

∇aθb = ∂aθb − Γmabθm = ∂bθa − Γmbaθm = ∇bθa

which uses the fact that θ must be closed. Therefore we can define the follwoing symmetric
(0,2) tensor

Kab = θaθb +∇(aθb). (3.24)

So, after liberal relabeling of indices, we find that Equation (3.12) becomes

δS̃[gab, zµ] =
∫
D

(∂µλ− λθµ)δzµ d4x+
∫
D
λ(Rab − 1

2Rgab −Kab +Kgab)δgab
√
g d4x (3.25)

with Kab defined as in Equation (3.24) and K = gmnKmn its trace.
Applying the fundamental theorem of the calculus of variations, the action will be
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stationary if and only if the integrands of both terms vanish. From the first integral we
get Equation (3.13), which we have already used. And from the second one we get the
modified Einstein field equations

Rab − 1
2Rgab −Kab +Kgab = 0. (3.26)
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Chapter 4

Significance of the equations

In this chapter we discuss the equations we have obtained and how they compare to those
appearing in existing publications. We also make the case that the version we have derived
is the correct one.

4.1 The dissipation tensor

Let us recap what we did in the previous chapter. We have shown, by computing the
variation of the corresponding action, that the field equations of an Einstein-Hilbert La-
grangian with linear dissipation, namely

L(gab, gab,µ, gab,µν , zµ) = R(gab, gab,µ, gab,µν)
√
g − θµzµ (4.1)

are
Rab − 1

2Rgab −Kab +Kgab = 0 (4.2)

where Kab is the (0, 2) symmetric tensor defined as

Kab = ∇(aθb) + θaθb. (4.3)

We will call Kab the dissipation tensor.
Kab is indeed a tensor and this means these equations are actually covariant. Let’s

show this in more detail.
We could compute the explicit transformation law of the dissipation tensor and see

that it transforms as a (0, 2) tensor. But a simpler way is writing it out in a coordinate-
free manner. Specifically, Kab are the components of the object K = θ⊗ θ+∇θ. Indeed,
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given two vector fields X and Y

K(X, Y ) = (θ ⊗ θ)(X, Y ) + (∇Xθ)Y

= θaθbX
aY b +Xa∇aθbY

b

= (θaθb +∇(aθb))XaY b

where in the last step we used that ∇aθb = ∇(aθb) because θ is closed. This shows Kab are
the components of a tensor since θ⊗ θ and ∇θ are both (0, 2) tensors (they are bilinear).

4.2 Non-covariance of existing equations

These equations are not the ones obtained in [Laz+17]. For the same Lagrangian, the
equations derived are

Rab + K̃ab − 1
2gab(R + K̃) = 0 (4.4)

where the dissipation tensor they obtained is

K̃ab = θmΓmab − 1
2 (θaΓmmb + θbΓmam) . (4.5)

We will make the case as to why these equations are not the correct ones. The first issue
is that K̃ab is actually not a tensor. To see this, we will compute K̃ab in two different
coordinate systems and show that it does not transform as a (0, 2)-tensor would.

The Christoffel symbols of the flat Minkowski vanish if we take cartesian coordinates.
Therefore, for any dissipation form we might consider, Kab would vanish. Now, if Kab

actually were a tensor then it would vanish in any other coordinate system. But we
can show this is not the case. If instead of cartesian coordinates we choose spherical
coordinates then the Christoffel symbols don’t vanish. Specifically, the non-vanishing
ones are

Γrθθ = −r Γθrθ = 1
r

Γφrφ = 1
r

Γrφφ = −r sin θ2 Γθφφ = − sin θ cos θ Γφθφ = 1
tan θ .

This means that, for example,

K̃tr = 0− 1
2(θtΓmmr + 0) = − θt2r

which is certainly non-zero if θt does not vanish. This shows that K̃ab is not a tensor, or
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rather K̃ab do not represent the components of a tensor, since if it were then if it vanishes
in some coordinate system it must do so in any other coordinate system, and we have
just exhibited a coordinate system in which it vanishes and another one in which at least
one of its components does not. In other words, the object derived in [Laz+17] is not
coordinate independent so it cannot possibly represent meaningful physics.

There is another reason that indicates that the equations in [Laz+17] are not the
correct ones. When we wrote down the Herglotz equations for the harmonic oscillator
with linear dissipation we obtained equations linear in the dissipation coefficient (see
Equation (2.5)). However, the Lagrangian for this system is first order, whereas, as we
had already discussed, the Einstein-Hilbert Lagrangian is actually second order. The
equations of motion for a specific second order Lagrangian with linear dissipation, called
the damped Pais-Uhlenbeck oscillator, are derived in [Leó+21], and they are in fact not
linear in the dissipation coefficient, but rather quadratic. In our case, the dissipation form
plays the role of the dissipation coefficient so by analogy we would expect the equations
to be quadratic in θ, not linear. And this is indeed the case for the equations we derived,
whereas the equations in [Laz+17] are linear in θ.

So these are reasons for why the equations derived in [Laz+17] are not the right
ones, but we can actually point at why they derived them in the first place. One of the
simplifying assumptions they made was to take a simplified version of the Ricci curvature.
Specifically, the Ricci curvature consists of four terms. Two of them are contracions of
the Christoffel symbols with themselves, the other two are derivatives of the Christoffel
symbols. It can be shown that if one drops these last two when writing down the Einstein-
Hilbert action, the resulting equations remain unchanged. The justification is that the
terms with derivatives are a divergence, so they leave the action unchanged. However,
this justification fails for action dependent Lagrangians, which is ultimately what dooms
the whole computation.
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Chapter 5

Conclusions

Let us now summarise the most relevant points of this thesis.

5.1 Main contributions

These are the three principal ideas developed in this thesis

• First, we have taken an existing method of deriving the Herglotz equations and used
it to write down the action of a second-order action-dependent theory.

• With this action we can then calculate its variation directly, which is a way of finding
the field equations, even for a second order theory. Chapter 3 is dedicated to the
detailed computation of this variation.

• We also argue why the equations that appear in existing studies of the action-
dependent Einstein-Hilbert cannot be correct and exhibit their main problems

These are of significance for two reasons. Firstly, these equations are the field equations
of an action-dependent field theory of second order. This is relevant because the mathe-
matical theory to handle this sort of theories is still in its early stages, so having concrete
examples will be helpful to point in the right direction for the more general cases. On
the other hand, from a more physical point of view, one wishes to understand what kind
of cosmology is implied by this theory and what kind of predictions can be made from
them. Having a solid derivation and understanding that this is the correct form of the
field equations is a necessary starting point.

Additionally, by attacking this problem from a more geometrical perspective we are
able to clarify the nature of the elements that appear, specifically the role that the action
flux and dissipation form play and the kind of objects they are.
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5.2 Further research

The results of this work open many avenues for further research. For one, we have just
studied linear dissipation, but of course other kinds of dissipation terms could also be
investigated. Furthermore, we have not taken into acount any matter. This is represented
by the matter Lagrangian, which is added to the other terms. In the standard theory the
impact this has on the final equations is easy to see, but in the case of contact geometry and
action-dependent Lagrangians extra care has to be taken because the Herglotz equations
are non-linear.

Finally there is the study of possible solutions to these equations. Are homogeneous
and isotropic solutions possible? How does the dissipation form influence any anisotropy
or inhomogeneity of the solutions? These are all questions that have yet to be addressed.
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