U "‘ B Diposit digital
de documents
Universitat Autonoma de la UAB

de Barcelona

This is the published version of the bachelor thesis:

Puig Rubio, Joel; Vilalta i Soler, Marcel, dir. Analysis and reverse-engineering
of a multiplayer online game. 2022. (958 Enginyeria Informatica)

This version is available at https://ddd.uab.cat/record/264201
under the terms of the license

https://ddd.uab.cat/record/264201

TFG EN ENGINYERIA INFORMATICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTONOMA DE BARCELONA (UAB)

Analysis and reverse-engineering of a

multiplayer online game
Informe final

Joel Puig Rubio

Resum- Els jocs en linia s6n una molestia pels esforgos de preservacio de jocs. Lls de protocols
de capa d’aplicaci6 propietaris, combinat amb la seva naturalesa en constant evolucio, els fa
notoriament dificils d’analitzar. Com a resultat, aquests jocs sovint no es poden salvaguardar en una
capacitat jugable després del final de la seva vida, cosa que pot significar la seva mort a mesura
que la logica i els actius del costat del servidor deixen de ser disponibles. Lobjectiu del projecte és
mostrar maneres d’abordar aquest problema agafant un joc existent i creant una implementacié del
servidor que podria substituir el servidor de jocs original.

Paraules clau— Enginyeria inversa, joc en linia, emulaci6 de servidor

Abstract— Online games are a thorn in game preservationist’s side. The use of proprietary appli-
cation layer protocols combined with their ever-evolving nature makes them notoriously hard to pin
down. As a result, these games often fail to be saved in a playable capacity after their end-of-life,
which can spell their death as server-side logic and assets become unavailable. The goal of the
project is to show ways to tackle this problem by taking an existing game and creating a server-side

implementation that could replace the original game server.

Keywords— Reverse-engineering, online game, server emulation

1 INTRODUCTION

1.1 Motivation

S the internet became a more pervasive aspect of our
A lives, the gaming industry realized that it had the
potential to revolutionize the way players interact
with games. This development spawned an array of new
genres, some of which work solely because of this online
component. However, this proved a challenge for preser-
vation, as these games are now dependent on a third-party
service that could cease its operation. Unfortunately, it is
not common practice for the publisher or developer of these
games to release the server-side component in any capacity,
rendering these games partially or completely unplayable.

e E-mail de contacte: joel.puig.rubio@gmail.com

e Mencio realitzada: Tecnologies de la Informacié

e Treball tutoritzat per: Marcel Vilalta i Soler (Departament
d’Enginyeria de la Informaci6 i de les Comunicacions)

o Curs 2021/22

1.2 Scope

This project aims to tackle this issue by analyzing an ex-
isting game and implementing a new server that emulates
the real one. To this end, we applied reverse-engineering
techniques to unravel the inner workings of its proprietary
application layer protocol and design a compatible server.

Our target is Tanki Online [1], a game by Alternativa
Games where you control a tank and the goal is to destroy
those of other players. The game is based on Adobe Flash
and uses the ActionScript 3 programming language. We
also know that it uses a proprietary protocol on top of TCP
for networking.

2 OBJECTIVES

The main objectives of this project were:

* Reverse-engineer and document the application layer
network protocol used by the game

* Develop a compatible game server without or mini-
mally altering the client

We hoped this would allow us to gain much knowledge
about how game servers and protocols work in practice.

March 2022, Escola d’Enginyeria (UAB)

2 EE/UAB TFG INFORMATICA: Analysis and reverse-engineering of a multiplayer online game

In addition, we had the following secondary objectives to
fulfill if time allowed for it:

* Develop tools to aid with the reverse-engineering ef-
forts

e Apply common programming paradigms in the de-
velopment of the server

e Measure its performance under load, and analyze the
bottlenecks, if any

2.1 State of the art

Over the years, there have been many attempts to reverse-
engineer game servers for all kinds of games to varying de-
grees of success. I would say this primarily comes down to
two factors:

e Complexity: Referring to how complex a game is
in terms of features, or how difficult it is to reverse-
engineer

e Availability: Referring to the sources from which we
can recover information relating to the game, such as
the original server, packet dumps from other users or
binaries and other assets from the client

Games programmed in a scripted language or one that
compiles to an intermediate language (IL), such as Action-
Script, Java or C are easier to reverse-engineer than one that
has been compiled to a native executable. This is because
the compiled executable still contains much more debug-
ging information than otherwise.

Generally, to be able to create a server emulator for a
game, we need some way to examine the packets sent to
and from the original game server. There are several ways
to accomplish this, which may be chosen depending on con-
venience or availability.

2.1.1 Prior art

I would like to briefly highlight some projects I have come
across during my research that have tackled game server
emulation.

Raise the Empires This is a community project to pre-
serve the Flash game Empires & Allies by Zynga [2]. This
game used to be hosted within Facebook, as an in-platform
game, meaning that your Facebook profile would be tied to
in-game progress. Like Tanki Online, this game was also
built in ActionScript 3. However, its development has been
impaired by a low degree of availability: the original server
is long gone and assets for the client disappeared with it.
Thankfully, one of the core contributors was able to recover
many assets from an old computer’s cache. For some of the
more critical remaining assets, the team attempted to recre-
ate them from whatever information they had available.

Wiimmfi Another community project, with the goal to
bring back the so-called Nintendo Wi-Fi Connection (WFC)
services, which a number of Nintendo games depended on
for online play. Its development started with Mario Kart
Wii and now supports more than 500 games [3]. Unlike the

previous project, this one did not face availability issues as
the developer started development before the shutdown of
the services and had the foresight to save packet dumps for
future reference.

2.1.2 Analysis through packet sniffing

The most obvious approach one may take to do this is to
sniff packets to and from the server. This can be accom-
plished by an application such as Wireshark [4] or though
another application that acts as a man-in-the-middle (MITM)
[5].

Wireshark allows the user to capture and analyze in de-
tail any packets going through a given network adapter [6].
It also can drill down into a number of well-known applica-
tion layer protocols such as HTTP. This is a very useful tool
if our game uses a proprietary protocol over TCP or UDP.

In addition, any captured packets can be saved for later
as a packet dump file. Packet dumps are invaluable to be
able to perform the reverse-engineering process even if the
original servers have gone offline. Moreover, packet dumps
can be performed by people who do not know reverse engi-
neering capabilities themselves and share them with some-
one who does.

It is important to notice that encryption of the packets
can difficult our task to sniff them [7]. Some games use this
as a dissuasive tactic against reverse-engineering attempts,
but may use a static encryption key or may share it with
the server over plaintext, which may allow the rest of the
conversation to be decrypted at a later date. However, if a
protocol like TLS is employed, we may be in for trouble. In
the following section we will go over an alternative method
to sniff packets in the case of encryption.

2.1.3 Code patching

A possible way to circumvent the problem with encrypted
protocols is to identify where packet encoding and decoding
occurs in the game client and patch the game to dump plain-
text packets to a file [7]. This can be accomplished in two
different ways, statically or at runtime. However, the most
common is to use find this routines using static analysis and
patching the game’s binaries.

2.1.4 Static analysis

Static analysis may be used in combination many other tech-
niques. For example, when combined with packet sniffing,
to understand the encryption used by a game. However,
pure static analysis may also be used to figure out what the
game expects the conversation with a potential game server
to look like. This can be a good recourse when a live game
server is no longer available, with certain caveats:

¢ Server-side behaviors: Depending on the degree to
which a game is server authoritative there may be en-
tire behaviors that are impossible to reproduce accu-
rately because they were handled entirely server-side.
If client/server authoritative were a scale, a purely
client authoritative game would send the state of the
game over to the server, which would simply relay it

Joel Puig Rubio: Analysis and reverse-engineering of a multiplayer online game

to other clients. On the other hand, a purely server au-
thoritative game server would take care of everything
and send commands to the client with what to display
or do next. Most games sit somewhere in-between the
two.

Resources loaded “on-the-fly”: Some games may load
required resources over the network, these can be-
come lost if the server goes offline. Although some
games may cache these to disk in a way that they can
be recovered [8], this is not always the case.

2.1.5 Dynamic analysis

Dynamic analysis is the process by which code is analyzed
while it is being run. Although there are many processes
that fit the description of ”dynamic analysis”, for the pur-
poses of reverse-engineering a game, this will often refer
to the use of a debugger. This may be used in situations
where static analysis is difficult because of code being hard
to read, whether deliberately, by result of obfuscation, or
simply due to the complexity of certain routines.

However, many games employ the use of anti-cheat code
that often includes anti-tamper mechanisms to hinder the
use of debuggers. While these can mostly be defeated, it
may hamper novice attempts at reverse-engineering.

3 METHODOLOGY

3.1 Approach

In the planning stage, we determined three crucial tasks
required to establish a path towards the completion of the
project’s main objectives:

* Establish methods to extract information from the game

* Determine the process by which information will be
analyzed

* Decide on the technology used to implement the server

I will begin by explaining how I tackled the task of ex-
tracting of information from the game. This was necessary
for the next point, in which I talk about processing this data
to obtain meaningful information necessary for understand-
ing the game’s network protocol. Finally, I will discuss the
technology that has been chosen for the development of the
server emulator.

3.1.1 Information extraction: Obtaining packet dumps

Using Wireshark, we were able to look at Tanki Online’s
network traffic. This involved some HTTP requests to gather
some configuration options about the client, including a list
of online game servers. The client then picks one of them
and initiates a TCP connection.

Once the connection is established to the game server,
we can see some printable strings containing bits of infor-
mation about the environment of the client. Unfortunately,
it is not possible to make sense of much else after that. Sus-
pecting encryption, we looked at the disassembly of the
game client and located some encryption routines. Fig. 1

[crent senver |

' connect(cl.eutankionline.com:5190) | establish control connection

| CL_HASH_REQUEST [client information: language. os, flash version, etc.] |

' SV_HASH_RESPONSE [32-bit hash + encryption flag]

| SV_OPEN_SPACE [space D]

| connect{ c1.eu tankionline.com:5190) || establish space connection ™

| CL_SPACE_OPENED [32-bit hash] 1| from here on out, the connection is encrypted)
[Crent] [sener]

Fig. 1: Handshake between Tanki Online client and server

shows the extent of the communication which could be de-
coded before encryption kicks in.

The most immediate thought was to patch the code to
dump unencrypted packets to disk to examine what they
look like. However, for security reasons, Adobe Flash does
not directly allow writing files to disk except in very specific
circumstances. Instead, Flash developers are encouraged to
make use of so called ”shared objects” [9], which are remi-
niscent of the more modern HTMLS local storage APL

Frustrated by this, we opted to print packets to the con-
sole. However, Flash does not have a console, and we had
to switch to the debugging version of Flash Player, as by
default, the trace() function, which is the one that permits
us to obtain the packet dumps, redirects nowhere.

Thankfully, switching to a debugging version of Flash
Player is easy enough. The Flash Player debug projector is
available as a standalone binary. However, we also need to
create a settings file at ”~ /mm. c£g” [10] to actually enable
trace output. Once that is done, trace output is written to a
text file, located at "$AppData%/Macromedia/Flash
Player/Logs/flashlog.txt” on Windows.

3.1.2 Information analysis: Inspecting and parsing pack-
ets

With a proper way of extracting packets from the game,
analysis of the proprietary protocol began. This process
consisted of a combination of looking at the individual pack-
ets, one at a time, and cross-referencing them with the de-
compiled code to figure out their structure and what their
purpose in the exchange is.

This required the creation of scripts that ingest extracted
packets, then parsed and annotate them into a more human-
readable form. As we got further into the exchange, and
document it, we started to form a sort of mental picture on
how the protocol works. In addition, it gave us some clues
on how we would write our own implementation.

3.1.3 Server emulator technology

As for the server implementation, we settled on a solution
using Java and the Netty framework. Java was chosen be-
cause of my existing familiarity with the language. In ad-
dition, I thought its static type system would ease develop-
ment and code readability compared to a dynamically typed
language. Due to the unfamiliar nature of the systems and
objects we would deal with, I believed a dynamically typed
language could result in more instances where we would
lose track of types or confuse them, leading to a slower and
more frustrating development process. The Netty frame-
work provides an event-driven abstraction layer [11] around
socket primitives and provides robust handling of connec-

4 EE/UAB TFG INFORMATICA: Analysis and reverse-engineering of a multiplayer online game

tions so we can focus on the definition of the service itself.
It defines a set of useful and easy to use interfaces that sat-
isfy many common needs of a UDP or TCP server.

3.2 Implementation

Earlier in the development process, we were able to reach
the game’s login screen by feeding the client packets dumped
using our existing tools. Our next task is to inspect the con-
tents of these dumped packets to learn what they do and
build these programmatically instead. However, before that,
we must implement the encryption used in the protocol in
our server reimplementation.

3.2.1 Protocol encryption

During our work of the project, time we switched a flag in
the control command SV_HASH_RESPONSE, which would
disable encryption in the client. Although implementing
this serves no practical purpose given the existence of this
flag, we must if we strive to create a faithful implementa-
tion.

The encryption routines are found in a script named
XorBasedProtectionContext, and as the name implies it in-
volves the use of a lot of bitwise-XOR operations. The use
of XOR is common in many ciphers, so this does not give
us much information.

Cipher initialisation The cipher takes two parameters, a
32-byte long buffer named hash and a 64-bit integer named
spaceld. During the initialisation steps, these are both com-
bined through the use of XOR into a 32-bit integer key,
named initialSeed.

1. Initially, initialSeed is set to 0.

2. Each byte of the hash buffer is XORed into initialSeed.
After each operation, the resulting value is stored in
initialSeed.

3. Next, spaceld is unpacked into 8 individual bytes,
starting from the MSB and XORed into initialSeed
in the same way as before.

4. After all these operations, if the value of initialSeed
is greater than 127, we subtract 256 from initialSeed.

After this, initialSeed is used to initialized two 32-bit
integer arrays with 8 elements each, named serverSequence
and clientSequence respectively:

1. Set a counter n at 0. Repeat the following steps eight
times.

2. Shift the value of n three bits to the left. This gives
you the n-th power of 2. Store this value in a register.

3. XOR the value of initialSeed with the value in the
register. Store the result in the n-th slot in the ser-
verSequence array.

4. XOR the value of initialSeed with the value in the
register, then XOR the result with 87. Store the result
in the clientSequence array.

5. Increase the counter n by 1.

Finally, we initialize two 32-bit integer values to 0. They
will be used during the ciphering processes and are named
clientSelector and serverSelector respectively. If we are the
client, we must use clientSequence and clientSelector to en-
cipher, and serverSequence and serverSelector to decipher,
or vice-versa.

Encrypting Repeat these steps for each byte we want to
encipher:

1. Store the value of the byte we want to encipher in
register A.

2. Read the slot in the sequence array pointed to by the
selector. Store it in register B.

3. Copy the value of register A into the slot in the se-
quence array pointed to by the selector.

4. Perform a bitwise AND of register A and 7. Then
perform a XOR of the selector and the result of the
previous operation. Store the result back into the se-
lector.

5. XOR the value of register A with register B. Store the
result back into A.

6. Register A contains our enciphered byte.

Decrypting Repeat these steps for each byte we want to
decipher:

1. Store the value of the byte we want to decipher in
register A.

2. Read the slot in the sequence array pointed to by the
selector. Store it in register B.

3. XOR the value of register A with register B. Store the
result back into A.

4. Copy the value of register A into the slot in the se-
quence array pointed to by the selector.

5. Perform a bitwise AND of register B and 7. Store the
result into the selector.

6. Register A contains our deciphered byte.

The values of spaceld and hash are sent over to the
client in cleartext, so this cipher is vulnerable to man-in-
the-middle attacks. Due to that, it seems more likely that
this cipher is an attempt to dissuade and provide security
through obscurity rather than an attempt at data protection.
Although it is a bit concerning, given that user credentials
are transmitted through this protocol, so a determined at-
tacker could steal credentials of users in the same network.

We were not able to determine what kind of cipher this
was based on. Thankfully, since the code was nicely read-
able it was possible to simply rewrite it in Java and slot it
into our server.

Joel Puig Rubio: Analysis and reverse-engineering of a multiplayer online game

3.2.2 Space prototypes

You may have seen these mentioned throughout this report
but they have never been clearly defined. Spaces are con-
fined environments that the server puts the client into, they
contain a series of game objects, each of which can have
models tied to them. Models are a series of remote proce-
dures, they can be server procedures that the client can call
or vice-versa. Each space, game object and model have a
numerical id, for models it is a hardcoded id that lets both
client and server refer to the same interfaces. Spaces are
themselves a game object, the so called root object and their
id is 0. They also each have a definite lifetime: creation, ini-
tialization and destruction.

In the server they are implemented as two different kinds
of objects: SpacePrototype and Space, the former describes
how the specific space behaves while the latter contains in-
formation about a Space instance. It may be possible to
refactor this into a single class, but this is just the way it has
been done for now.

3.2.3 Encoding of native protocol types using a type
adapter pattern

The protocol establishes a set of encodings for primitive
types which are combined to build more complex encoders.
While the Flash client addresses this by calling individual
primitive encoders from code-generated codecs, we opted
to address this with a composable type adapter system. This
idea came from a JSON encoding library I have used in the
past called Moshi [12], developed by Square. The final re-
sult is a combination of Moshi’s implementation with some
extensions specific to satisfy the requirements of the Alter-
nativa protocol. In my personal opinion, this resulted in a
rather elegant solution.

The building stone for each adapter resides in a class
named BufferAdapter, not unlike JsonAdapter in Moshi,
which declares an interface for all of its implementations:

1 [Jpublic abstract class BufferAdapter<T> {
2
3 public abstract T fromBuffer(ProtocolBuffer buf);
4
5 public abstract void toBuffer(ProtocolBuffer buf, T value);
6
7 | public BufferAdapter<T> nonNull() {
8 return new NonNullBufferAdapter<>(this);
9 1}
10
11 [public BufferAdapter<T> optional() {
12 return new OptionalBufferAdapter<>(this);
13
14
15 [interface Factory {
16 BufferAdapter<?> create(Type type, ObjectEncoder encoder);
17 }
18 }

Fig. 2: Code for BufferAdapter

The main two operations of a BufferAdapter are from-
Buffer and toBuffer: the first takes ProtocolBuffer, a pro-
tocol primitive which contains an OptionalMap and a byte
buffer and decodes into an object of an arbitrary type, the
second does the reverse operation, it takes a ProtocolBuffer
and an object which to be encoded into the buffer

The remaining two are a bit more interesting, and are re-
lated to the domain-specific “extensions” I mentioned ear-
lier. nonNull wraps the given adapter into an adapter that

behaves identically, except if it is given a null value in fo-
Buffer, in which case it throws an exception. This is related
to OptionalMap functionality for types not strictly marked
as nullable as they also need to be marked as such in the
OptionalMap for the decoding process to succeed. optional
wraps the given adapter into an adapter that behaves iden-
tically, except that it emits an OptionalMap bit for types
marked as nullable.

The Factory interface, as its name implies, allows the
creation of BufferAdapter factories for specific types and
is used by ObjectEncoder which itself holds a registry of
all available factories and a BufferAdapter cache for perfor-
mance.

1 public static final BufferAdapter.Factory FACTORY = new BufferAdapter.Factory() {

2 @Override

< public BufferAdapter<?> create(Type type, ObjectEncoder encoder) {

4 if (type == boolean.class || type == Boolean.class) return BOOLEAN_BUFFER_ADAPTER.nonNull();
5 if (type == byte.class || type == Byte.class) return BYTE_BUFFER ADAPTER nonNuII()

6 |f (type == double.class || type == Double.class) return DOUBLE_BUFFER_ADAPTER.nonNull();

float.class || type == Float.class) return FLOAT_BUFFER_ADAPTER.nonNull();
.class || type == Integer.class) return INTEGER BUFFER _ADAPTER.nonNull();
if (type == long.class || type == Long.class) return LONG_} BUFFER. _ADAPTER.nonNull();

10 if (type == short.class || type == Short.class) return SHORT?BUFFEFLADAPTER.nonNuH(),
11 if (type == String.class) return STRING_BUFFER_ADAPTER.nonNull();

12 return null;

Fig. 3: BufferAdapter factory used for primitive types

Another factory exists which crafts BufferAdapters for
arbitrary POJOs (Plain Old Java Objects) using these adapters,
there also exist specific BufferAdapters for generic Java List
and Map types.

3.2.4 Models and remote procedure calls

As we previously mentioned, models define a set of remote
procedure call interfaces. The type adapter system fits right
in here, as it allows us to implement them transparently as
regular Java interfaces.

—public class ChatModelServer extends Model {

public ChatModelServer(Space space) {
super(space);

1
2
3
4
5
6
7 @Modelld()
8 [public void changeChannel(String channel) {
9 ChatMessage welcome = hew ChatMessage();
10 welcome.messageType = 1;
11 welcome.text = String.format("\Welcome to #%s!", channel);
12 ChatModelClient chat = space.getModel(ChatModelClient.class);
13 chat.showMessages(Collections.singletonList(welcome));
14

o}

Fig. 4: Server-side model implementation (Java)

As displayed in Fig. 4, ChatModelServer defines a method
called changeChannel that receives a parameter of type String,
and in the body of the method, it takes a client-side model
from the current space and calls the method showMessages
with a parameter of type List on it.

The following interface defines ChatModelClient.

—public interface ChatModelClient {

void showMessages(List<ChatMessage> messages);

1

2

3 @Modelld(
4

S '}

Fig. 5: ChatModelClient interface

As for its implementation, there is none. Not on the
server, of course. Any calls to this interface are dynamically

6 EE/UAB TFG INFORMATICA: Analysis and reverse-engineering of a multiplayer online game

proxied, its arguments serialized into a remote-procedure
call compatible with the Alternativa protocol and automag-
ically sent over to the client.

If we turn to the decompilation of the client, this is the
actual code the server is calling:

171
172
173
174
175
176
177
178
179
180
181
182
183
184 -
185

186

public function showMessages(param1:Vector.<ChatMessage>) : void

=

var _loc2_:ChatMessage = null;

var _loc3_:String = null;

var _loc4_:int=0;

var _loc5_:BattleChatLink = null;

var _loc6_:BattlelnfoData = null;

for each(_loc2_ in param1)

loc3=_loc2_.text;
if(this.antiFloodEnabled)
= {
Antiflood.getMessageKeys(_loc3_,true);

clientLog.log(LOG_CHANNEL_NAME,"showMessages : %1",_loc3_);
this.htmlFlag = false;

Fig. 6: Client-side model implementation (AS3)

As we can see, this provides pretty seamless interoper-
ability between ActionScript 3 and Java code.

4 RESULTS

4.1 Testing game features in the client

Let us review which features we were able to introduce
into our server implementation so far. While defining our
goals for our project, we ruled out getting in-game as it is
too much work in terms of replicating subsystems in the
server: match creation, matchmaking, physics simulation,
etc. Most of which would fall out of scope of our project.
However, we can log-in and do several things around the
lobby. One of which is being able to have a chat with other
people, as demonstrated below.

COMMUNICATOR

: Cool Cool
 brings back some memories
: Thisis running on a raspberry pi
: hahahah
that is sweet
XXLuigiMario — &

noworries

Just testing PMs

& x
& x
&
&
@& x
& x
&
&
&
2]

¥xLuigiMario: Let's see if ganon gets in here

joel@pizero: ~/tanki

Fig. 7: Demonstration of the chat working with two people

In addition to messaging, the game has chat commands
available to administrators and I implemented a couple for
further testing.

* /Jaddcry: Adds in-game currency (crystals) to a player’s
profile

* /addexp: Adds in-game experience to a player’s pro-
file

1 [public class AddCry extends Command {
2
3 =] public AddCry() {
4 super("addcry");
5 }
6
7 @Override
8 = public void handle(LobbyUser user, String[] args) {
9 int crystals = Integer.parselnt(args[0]);
10 user.addCrystals(crystals);
11 user.sendMessage("Your wish is my command");
12 - }
1SEN -}

Fig. 8: Example chat command implementation

4.2 Test suite

Some things like OptionalMap were tricky to implement
because of the convoluted encoding algorithm, involving a
great number of bitwise operations. For this reason, we cre-
ated a few unit tests to ensure that our understandings were
correct and there were no flaws in our implementation.

Coverage

Fig. 9: Coverage statistics for OptionalMapReaderTest

As you can observe in Fig. 9, OptionalMapReaderTest
brings OptionalMapReader to 100% code coverage. Al-
though IntelliJ claims 98% line coverage, that is because
one line is effectively unreachable and contains an asser-
tion.

5 CONCLUSION

Our main goal was to take an existing game and reverse en-
gineer its server protocol, and I believe we have been able
to do that. We started from nothing and built a server that
is able to hold a session with the game as if it were the of-

A ficial server, without any modification done to the client.

Although it was not an absolute requirement, we also im-
plemented the cipher used by the game protocol, so even in-
specting the traffic with adequate tools you would be hard-

§ pressed to find a difference against a regular game session.

We also created convenient tooling that can compile vi-
able documentation of the game protocol from its binaries,
this speeds up development and provides invaluable infor-
mation, as binary protocols such as this one do not allow
for any flexibility in its encoding. One mistake will render
the rest of the message unreadable, leaving the two parties
unable to communicate.

The server does not currently implement all subsystems
required for the game to progress to an in-game match, but
that is a matter of building on top of the framework we have
created and is left as future work, and I personally found
this project motivating enough to keep working on it and
see this through.

Joel Puig Rubio: Analysis and reverse-engineering of a multiplayer online game

6 ACKNOWLEDGEMENTS

First and foremost, I would like to thank my tutor, Marcel
Vilalta i Soler, for his efforts and guidance, which ensured
this project was able to fulfill its end goals within the des-
ignated time frame. In addition, I would like to acknowl-
edge the support and feedback of my peers at BlueMax-
ima’s Project in this endeavour which helped in shaping this
project.

REFERENCES

[1]

(2]

(3]

[4]

[5]

[6]

[10]

[11]

[12]

Alternativa Games, “Tanki Online”. Accessed on:
Mar. 6, 2022. [Online] Available: https://alte
rnativa.games/games/tanki-online-2/

AcidCaos et al., "Raise The Empires”. Accessed on:
Jun. 26, 2022. [Online] Available: https://gith
ub.com/AcidCaos/raisetheempires

Wiimm et al. "Wiimmfi Main Page”. Accessed on:
Jun. 26, 2022. [Online] Available: https://wiim
mfi.de/

F. Faessler, “Information Gathering / Recon - Pwn
Adventure 3”. Accessed on: Apr. 10, 2022. [Online]
Available: https://youtu.be/pzMdob6gxssk

F. Faessler, "Developing a TCP Network Proxy - Pwn
Adventure 3. Accessed on: Apr. 10, 2022. [Online]
Available: https://youtu.be/iApNzWZG-10

R. Sharpe, E. Warnicke and U. Lamping, ”Wireshark
User’s Guide”. Accessed on: Apr. 10, 2022. [Online]
Available: https://www.wireshark.org/do
cs/wsug_html_chunked/

Manfred, "Twenty Years of MMORPG Hacking: Bet-
ter Graphics, Same Exploits” in: DEFCON 25, Las
Vegas, United States, Jul. 2017

BlueMaxima’s Flashpoint, “"Recovering Files from
Browser Cache”. Accessed on: Apr. 10, 2022. [On-
line] Available: https://bluemaxima.org/f
lashpoint/datahub/Recovering. Files_f
rom_Browser_Cache

Adobe, “SharedObject - Adobe ActionScript® 3
(AS3) API Reference”. Accessed on: Apr. 10, 2022.
[Online] Available: https://help.adobe.com
/en_US/FlashPlatform/reference/acti
onscript/3/flash/net/SharedObject.
html

Adobe, “Configure the debugger version of Flash
Player”. Accessed on: Apr. 10, 2022. [Online] Avail-
able: https://web.archive.org/web/2021
0216051441 /https://helpx.adobe.com/
flash-player/kb/configure-debugger
—-version-flash-player.html

Netty project, "Netty: Home”. Accessed on: Apr. 10,
2022. [Online] Available: https://netty.io/

Square et al., ”A modern JSON library for Kotlin and
Java.”. Accessed on: Jun. 17, 2022. [Online] Avail-
able: https://github.com/square/moshi

