
This is the published version of the bachelor thesis:

Joshi, Swarnima; Estravis Nieto, Sara, dir. Discovering Nuxt with Form Builder
and Table Component. 2022. (958 Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/264214

under the terms of the license

https://ddd.uab.cat/record/264214

TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Discovering Nuxt with Form Builder and
Table Component

Swarnima Joshi

Resum– La creació d’un lloc web intuı̈tiu i cosmopolita requereix l’assistència del marc adequat i
la definició del marc adequat en el desenvolupament web depèn de l’abast i el requisit del projecte
que s’està desenvolupant. Entre molts altres frameworks populars, Vue ha estat un marc JavaScript
de front-end progressiu utilitzat per crear interfı́cies d’usuari. Aquest projecte està inspirat per
entendre Nuxt, un marc de Vue, desenvolupant components basats en això i, eventualment, migrant
la base de codi Vue a Nuxt. Els dos components principals que s’estan construint són el component
Form-Builder i el component UserTable, per estudiar la compatibilitat i l’accessibilitat de Nuxt. El
primer component permet als usuaris crear el seu propi tipus de formularis depenent del sector per
al qual l’utilitzin, mentre que el segon component es va crear per mostrar dades juntament amb
altres funcions com ordenar, filtrar, editar, afegir i suprimir elements d’aquesta taula.

Paraules clau– Constructor de formularis, framework, Vue Formulate, Component de la taula,
Bootstrap, schema

Abstract– Creating an intuitive and cosmopolitan website requires the assistance of the right
framework and the definition of the right framework in web development depends on the scope and
requirement of the project being developed. Among many other popular frameworks, Vue has been a
progressive front-end JavaScript framework used in building user interfaces. This project is inspired
to understand Nuxt, a Vue framework, by developing components based on so, and eventually
migrating the Vue code-base to Nuxt. The major two components being built are Form-Builder
Component and UserTable Component, to study Nuxt’s compatibility and accessibility. The former
component allows users to make their own kind of forms depending on the sector they are using it for
whereas the latter component was built to display data along with other features like sorting, filtering,
editing, adding, and deleting items from that table.

Keywords– Form Builder, framework, Vue Formulate, Table Component, Bootstrap, schema

✦

1 INTRODUCTION

FORM builder is a tool that helps people build their
own kind of forms with their chosen fields, making it
highly dynamic, saving time for copy pasting to cre-

ate a new form, automating the entire process of building
so and simply making things easier and quicker for busi-
nesses, organisations, institutions, teachers, students and
professionals to build a varieties of such documents. And
one of the simplest and most effective ways of displaying

• E-mail de contacte: swarnimajoshi902@gmail.com
• Menció realitzada: Tecnologies de la Informació
• Treball tutoritzat per: Sara Estravis Nieto (Department of Informa-

tion and Communications Engineering)
• Curs 2021/22

data are tables. So the idea of this project was to discover
Nuxt [1] by developing these two component and eventu-
ally establishing it as the major candidate for the substi-
tution of Vue. The brief introduction of the Form-Builder
component would be, it lets users of all kinds to have as
many different forms as they need with as many distinct
fields as per their requirement. This led to eliminate any
kinds of restrictions that the built-in static form can bring.
And about the table-Component, it was not only aimed at
meeting the objective mentioned above but much more. For
this project, SaaS [2] is being used to manage CSS [3] and
heavy use of bootstrap Vue [4] is made, including libraries
like Vue-Formulate [6] and more. When using components
from external CSS frameworks like bootstrap [5], although
it comes of with many exciting features, it might feel re-
stricted in comparison to custom made components. So
table-Component was also developed as a research to elim-

“Marzo” de 2022, Escola d’Enginyeria (UAB)

2 EE/UAB TFG INFORMÀTICA: Discovering Nuxt with Form Builder and Table Component

inate those restrictions by not using the bootstraps compo-
nent directly, rather developing base components based on
those bootstrap components. This way more fields could
be introduced to your custom component and repetition of
code could also be avoided.

In the following sections and subsections of the article
we will be going through the objective of the project, the
methodology applied and planification required for its com-
pletion,technology used, detailed explanation of develop-
ment process, results obtained and conclusion .

2 OBJECTIVE

The long term objective of this project was:

• Build the form builder component which can be used
across different platforms and organizations

• Build the custom made tableComponnet to display the
data and replace bootstrap based table-Component.

The generic objectives to be achieved were:

• Final product had to be scalable so that it can be reused

• Better User Experience with user friendly interface

• From the developer point of view, it was imperative
to follow atomic structure for code management and
build reusable component

3 METHODOLOGY

Continuous improvements were required for this project de-
velopment. So setting the foot forward with Scrum [7]
methodology of project management. The project was di-
vided into sprints.After each sprint, the code was reviewed,
all the features were tested properly so as to remove all kind
of dissatisfaction before moving forward with next sprint.

4 PLANIFICATION

Planification of this project consisted of different phases, it
started with Preparation phase, then Draft phase, followed
by Design, Development, Testing, Deployment and Docu-
mentation as shown in the Fig. 1 of Appendix A.

4.1 Preparation of Project

The principal phase of the planification process was to de-
fine the objective of the project, discussing what features
and fields were wanted in the final product and what would
be the scope of the built component. Similarly, assigning
minimum and maximum time required for its completion
was also done during this discussion. It also consisted of re-
searching similar projects, understanding what was already
in the company’s platform, what were the missing points
and what had to be achieved next. So as a result, sketching
out the draft of functionality and code structure was done.

4.2 Design
After having a rough sketch of what functionalities were
wanted, it was now time to prepare a clean UX design. After
its completion,it was rechecked to finalise how feasible and
pragmatic it was. Based on those arguments, the plan would
either move to the development phase or some modification
would be brought to the current design.

4.3 Development
This phase mostly consisted of coding and giving a shape
to the objectives defined. It started with building smaller
components and then integrating all of them to have a final
product. The main focus thus, was to develop a reusable
and customizable element keeping the clean code structure.

4.4 Testing
After the completion of development phase, the product
was sent for testing. Each features were tested using end-
end testing framework, Cypress, on different platforms and
screens. Once all the test passed the plan moved to the de-
ployment Phase. For failed test, it required going back to
development phase to fix the bug.

4.5 Deployment
On the successful running of tests, it was time to release the
product and have it ready for users to use it.User’s response
to the new product release were taken into account in order
improve the UX standards.

4.6 Documentation
The final phase of planification process is formally docu-
menting the entire process of development, recording the
results obtained and officially closing the project.

The timeline of the planification is represented as a Gantt
chart in figure above as Fig. 2 of Appendix A.

5 TECHNOLOGY STACK

This project is front-end based project, so the tech stack
used for its development are mainly Nuxt and Saas. For the
code management, Git was used as a continuous develop-
ment tool.

5.1 Nuxt
Nuxt is an open source framework of Vuejs (a javascript
framework) [8] that is shipped with plenty of features to
boost developer productivity and the end user experience.
The reasons why this framework was chosen for the project
are:

• It needs zero configuration, app can be coded right
away

• Automatic routing and code-splitting for every page,
unlike in Vue or any other javascript framework, de-
veloper doesn’t need to write code to define the routes.

• Nuxt auto imports the components built

Swarnima Joshi: Discovering Nuxt with Form Builder and Table Component 3

• It allows Universal Rendering (both client side and ser-
vice side) which in-turn helps in Search Engine opti-
mization (SEO) [9].

• Easy integration with SaaS, Vuex [10] and any other
Vue-libraries or modules

5.2 SaaS
SaaS is a preprocessor scripting language that is interpreted
or compiled into Cascading Style Sheets(CSS). When the
project gets bigger, large numbers of files are encountered
and each of those files are associated with unique CSS. It is
messy, unreadable to developers and hard to maintain when
CSS is directly used. SaaS allows to have different folders
to maintain the code structure in atomic style. Sass lets you
use features that do not exist in CSS, like variables, nested
rules, mixins, imports, inheritance, built-in functions, and
much more. It reduces repetition of CSS and thus saves
time.

6 STATE OF THE ART

Form builders have existed for a long time and have been
used in different way. The working mechanism of these
tools looks very simple. All that needs to be done is to cre-
ate labels and questions and respondents can provide the in-
formation that is being looked for through text boxes, drop-
downs, slides, description box, radio buttons, and much
more. The fields could be set as required or optional and
restriction can be applied to the the types of responses that
is being received to have more control over the data being
collected. Even though building forms and getting answers
looks quite straightforward process, these apps come in all
shapes and sizes depending on the requirement of the user
or the business it is required for. So what makes some of
them great and other not so much?

The differences are in following points:

• Simple to use: Easy understandable User Experi-
ence(UX) is the only way for the product’s success

• Highly customizable: It should be highly flexible with
the changes and should allow users to customize their
form with wide selection of options

• Easy to distribute: The forms built needs to get to as
many participant as possible

• Powerful analytical tools: The data collected needs to
be analyzed and should be able to be exported

The most commonly used reference would be google
forms, which allows the incorporation with google docs,
google sheets or google slides. It lists all fields or ques-
tions from another Google Forms or google platforms men-
tioned before and makes fields available to import into the
new Google Form allowing users to easily select and im-
port necessary fields or questions into that Form. It allows
easy export of Form Questions so that whenever it has to be
reused, it can simply be imported back.

Besides this, there are other popular Online Form builder
tool in existence, such as:

• Microsoft Form: for collecting and analyzing form re-
sults in Excel

• JotForm: for building a form from a template

• Formstack: for advanced analytical and regulated in-
dustries

• Typeform: for conversational data collection

• Paperform: for creating order forms

• Formsite: for protecting sensitive data

Tables being used as the way of representing data across
multiple platforms, especially larger data set is nothing new.
There exist simpler tables to highly advanced excel like
tables in the market. A good table representation of data
would be a cleaner, easily readable and easily usable.

While there are so many easily accessible options in the
market, sometimes you still fall sort due to the specific re-
quirement of the company which might include need of a
specific field or a specific layout or even specific client pref-
erence.

7 PROJECT DEVELOPMENT

The base of project development is project designing, so the
first thing to do was have a design ready for the product to
be developed. And in order to design the product, the re-
quirements need to be set beforehand. Below we will men-
tion some of the functional and non-functional requirement
of this project.

7.1 Requirements

As requirement process is the critical one for the success of
any system or software project, we will see some of them
categorised as functional and non-functional in the subsec-
tion below:

7.1.1 Functional Requirements

For Form-Builder Component

• There should be a drag (where field required for form
are located) and drop zone (where field are dropped)

• The fields should be cloned once dragged and each
copy must be associated with unique key value

• Each dropped element must have option to be edited
and deleted

• User should be allowed to choose whether the field is
required or not while still in the drop area

• User should be allowed to see the preview of the form
built so far

• Forms built should be previewed.

4 EE/UAB TFG INFORMÀTICA: Discovering Nuxt with Form Builder and Table Component

For table-Component

• Showing skeleton loader for 2 secs before displaying
the table

• A button to add new item to the table

• A column of actions to edit or delete the existing item

• Sortable columns

• Filtering options established outside the table and a
button to reset already established filters if any

7.1.2 Non-Functional Requirements

For Form-Builder Component

• The drop-zone and drag-zone must be clearly visible
and understandable to the users

• The preview and save button must be understandable
to the users.

• There should be icon next to each dropped field to let
users know that the fields can be rearranged in the drop
area as per their liking.

• Once the form is submitted user should return to the
main page.

• The design of the product should be user-friendly.

For table-Component

• Edit button should open modal which must have the
current data of that chosen row

• After submitting the forms used for adding and editing
the items in table, the modal should close and show the
table page

• User friendly

• Component developed should be reusable

7.2 Design

7.2.1 Design of the Table Component

Fig. 1: Draft of design of Table

Bootstraps b-table component acted as an underlying
component for the design shown in (Fig.1). The objec-
tive was to make custom table components with b-table only
acting as a base. This table supported features like sorting
the columns and it had a separate small table for users to
enter the filters, to make the search of items in the table

easier. A reset button in filter table was also introduced in
order to allow users to clear the filters used. The buttons
being used were also customised in a sense that they were
not using b-buttons of directly, rather a skeleton for all the
buttons being used in the project was made and that sin-
gle skeleton was used everywhere, the only difference in all
those buttons being the data passed. This concept applied
to modals [11] used in the project too. Basemodal was built
using b-modal and any modals being used in the projects
used this Basemodal, avoiding a lot of code repetition. The
buttons used in Actions column of table opened up modals
which were using Vue-formulate libraries to display forms
to users in order to capture data entered by them.

All the operations done on the table were recorded in
Vuex store with help of getters, mutations and actions. It
was from where data was displayed and also saved, in case
of users making any change to table.

7.2.2 Design of the Form-builder Component

For the second component, Form-Builder, the inspiration of
how the design should potentially look like was taken from
Dribble [12]. However, design and development go hand in
hand, sometimes due to development restrictions, designs
might need slight deviations. For example, regarding the
edit feature linked with each field, the initial design was
made in a way such that users could modify the properties
of that field right from the position they were but as the de-
velopment had started, it looked better to have one edit but-
ton that allowed to do the same actions once it’s clicked, so
a layering was added to that action. For the better user ex-
perience, icons were added next to each field so that it was
clear that they were also drag-gable between themselves.

Regarding the fields used, we have different types, some
of them are:

• Text Box: input type is text

• Information section: a group of multiple input which
includes a text box, Url, image and Paragraph

• Select: input type is checkbox

• Radio button: input type of radio

• Date Selector: input type of date

• Slider: of type range

Since the design was based on schemas [13](Fig. 2), it
was very easy to add or remove fields as per requirements.
So in that sense the design was prone to easy customiza-
tion. The buttons used were based on reusable component
’BaseButton’ like we discussed previously. Same goes for
the ’BaseModal’ which for example is being used in case
of Preview and Edit-Button. Before submitting the form, it
was made sure that the user input coincided with the input
type of fields and to do so validations were set for each one
of them with the help of Vue-formulate library.

The draft of the design can be illustrated above in Fig.3.

Swarnima Joshi: Discovering Nuxt with Form Builder and Table Component 5

Fig. 2: Schema of Fields

Fig. 3: Draft of design of Form-Builder

7.3 Development

7.3.1 Setting up the workspace

Once the design was ready, the development work started.
Like every other development project, it started with set-
ting up the technology stack being used. First, installa-
tion of Nuxt, on which this project was primarily based,
then incorporating SaaS which was used to manage CSS
and installing plugins. One of the major reason why Nuxt
was chosen for this project is, besides its server side ren-
dering feature, the routing in Nuxt was very easy, no con-
figuration was required, no extra line of codes were re-
quired to establish the routes, each file in pages direc-
tory was automatically established as a route, and it came
with a standard directory structure which makes devel-
oper’s job uncomplicated and the keeps the code-base eas-
ily readable and clean. Managements of the folders fol-
lowed atomic-structure, a concept of dividing the files into
atoms, molecules and organisms depending on their role,

for both SaaS and Nuxt which helps in code management
especially when the project is of production level. The fol-
lowing figure (Fig.4) shows the directory structure and as
we can see SaaS folder has sub-folders, for example ab-
stract had CSS related to typology, colors, base-margin and
base-height used in the platform which allowed the use of
variables and kept the CSS clean and managed. Similarly,
it had different folder corresponding to each Vue folders to
keep their corresponding CSS.

Fig. 4: Folder Structure

7.3.2 Header and Sidebar

Before going into the development of components, a header
and a sidebar was required. Nuxt provides a folder called
layouts where different layout for different pages can be
stored. For this project, a single layout was used for both
form builder page and table page, a layout consisting of
header and a sidebar.

<nuxt-link /> is used for routing and traverse
through different pages.

Header Component and Sidebar Component were created,
Sidebar Component having all the links of route passed as
props to it. Font-awesome library was used to import icons
used in the project, that were also used alongside the links
in the sidebar (Fig 5). Sidebar footer consisted of Collapse

6 EE/UAB TFG INFORMÀTICA: Discovering Nuxt with Form Builder and Table Component

Sidebar text which allowed users to hide or show sidebar
as they wished for. On sidebar collapse, only icons were
shown.

Fig. 5: Sidebar

7.3.3 Development of Table Component

After having the layout of the project, development of table-
Component began since it also meant developing all the
base components which were later going to be used for
the Form-Builder too. Under the base folder, BaseButton,
BaseModal and BaseTable were developed using b-button,
b-modal and b-table of bootsrap-Vue framework as a un-
derlying component respectively. For BaseModal, id and
title of that modal were passed as a prop [14], default footer
was hidden, a binding of computed value was done for it’s
opening and closing and slots were used to represent the
different content that was to be shown depending on where
those modals were going to be used for, meaning the slots
were occupied by the content passed from a parent com-
ponent making them scalable and reusable. Similarly, in
case of BaseTable data (items and fields) were passed as a
prop, item representing content of row and fields represent-
ing header of each column. This data was obtained from
Vuex store with help of mapGetters as shown below:

...mapGetters({
loadItems: "users/getUsers",
loadFields: "users/getFields",

}),

Before loading the actual data in the table, a skeleton
loader was displayed for couple of seconds using b-table’s
empty slot feature. For actions (edit and delete) and filter
table, slots were used so that everything for this base com-
ponent would be dynamic.

The slots used for actions, skeleton loader and filter table
can be shown below respectively:

<template v-for="
slot in Object.keys($scopedSlots)"
v-slot:[getCell(slot)]="data">
<slot v-bind="data" :name="slot" />

</template>

<template #empty>
<slot name="empty-content">

<b-skeleton-table
:rows="5"
:columns="4"
:table-props=
"{ bordered: true,

striped: true }"
></b-skeleton-table>

</slot>
</template>

<slot name="filter-content"
v-if="!showFilters"></slot>

Moving into the development of actual table compo-
nent, in this case UserTable, was developed which used
BaseTable as it’s child component. The content for slots de-
fined previously were provided from this component. The
use of BaseButton was made for every button used here
for example for deleting the row of table, resting the fil-
ters in filter table, edit and add user button . And on click-
ing edit and add button, modals were opened that dispa-
lyed forms for users to input value, these modals were re-
spectively called EditUserModal and AddUserModal which
were constructed using BaseModal. The snippet of code in
UserTable component making use of BaseButton and Base-
Modal is shown in following figure (fig. 6):

Fig. 6: Code snippet of UserTable

And finally, the parent component was used as:

<UsersTable
:users="users"
:fields="fields">

</UsersTable>

The deleting of item was handled by Vuex store too, with
use of Actions, shown as below:

...mapActions({delete: ’users/deleteUser’})

Here is the functional structure of tableComponent
shown as summary in fig.7:

Fig. 7: Functional structure of tableComponent

7.3.4 Development of Form Builder Component

The backbone of this component was, Vue-formulate li-
brary, a developer’s ease which not only allows to build

Swarnima Joshi: Discovering Nuxt with Form Builder and Table Component 7

forms easily but also has built-in validations, styling con-
trol and form generator along with other important features.
The basic fields that were used in forms, for example, text-
input, radio button, select, Date, Measurement, Paragraph
etc, were built on right side of the page also called as drag-
zone and the other side was built as a drop-area. Vue drag-
gable [15] library was used to make each of those fields
drag-gable. The drop area was where the form element
were established and it can be represented by following
code snippet:

<draggable
class="list-group dropCol "
:list="forms"
:group="{ name: ’myGroup’ }"

>

The form was schema-based, meaning each of these
fields were a separate schema. The list passed as a prop
was the list of all the schemas that represented each field
situated in drag zone. The drag zone can be shown in the
code snippet below:

<draggable
class="list-group"
:list="formSchemas"
:group="{ name: ’myGroup’, pull: ’clone’, put: false }"
:clone="clone"
@end="preview"

>

Once the fields were dragged, a cloning [16] property
was used, meaning the component could be duplicated with
unique id, so that same field could be dragged as many times
as the user want and the forms could have as many same
item. It can be seen in the snippet above with the use of
clone passed as a prop to draggable component.

The schemas were imported from store, with use of get-
ters established in that store:

...mapGetters({
formSchema:
"schemas/getFormschemas",

}),

Each of these field draged into drop zone had required
property enabled with switch button, so that users could
classify which one of those field couldn’t be left empty
while filling the form. And this was done using ¡b-form-
checkbox/¿. This element was bound with a boolean prop-
erty which was placed under watch, so that every time its
true, that specific field was made obligatory. A delete icon
was also added to each item, allowing users to modify their
forms as per their requirements. The font-awesome icon
was wrapped around a button, which when clicked called
a function, its parameter being the selected form object,
which removed that object from a list of form schemas.

...mapGetters({
formSchema:
"schemas/getFormschemas",

}),

Moreover, each fields were associated with edit button
that allowed users to edit features of those fields like label
or placeholder. For this to happen, on clicking the button,
modal containing a edit form schema was opened and the
inputs by users were recorded. For the modal BaseModal
and for the form FormulateForm was used which can be
shown in the following figure (Fig. 8):

Fig. 8: Edit of form element

And this is the schema passed to FormulateForm to be
able to edit (Fig. 9)

Fig. 9: Schema for editing form object

In order for user to see how the final created form would
look, a Preview button was created using BaseButton,
which on emitting click event would open a modal, again
built using BaseModal, displaying how the form would
look. This displayed form was created with FormulateForm
shown as below:

<FormulateForm
:schema="[form]"
v-model="values"\>

As it can be seen that form has a two-way binding prop-
erty called values. Values is an object which stores all the
inputs of the form which later is used in viewing submitted
form. This led to developing View Form button again fol-
lowing the same mechanism and the values stored in previ-
ously mentioned property are shown when clicking this but-
ton which was again based on BaseButton and BaseModal.

One of the most important parts of building forms is val-
idation associated with it. Thanks to the Vue-formulate li-
brary, it came built in with it, so it was not necessary to

8 EE/UAB TFG INFORMÀTICA: Discovering Nuxt with Form Builder and Table Component

establish our own validations, the only line of code needed
to enable validation was having validation property in the
schema for each field, which was set to required when users
clicked the required switch mentioned above. On the re-
quired field being true, the validations were set automati-
cally depending on the input type of the schema.

Finally, all the CSS used for developing these two com-
ponents were stored in SCSS folder under assets and were
categorised depending on the Vue files they were associated
with.

8 RESULTS

As a result of completion of project, a form builder com-
ponent and table component was developed with Nuxt and
SaaS as a major technology stack. The project follows
atomic-structure as mentioned during planification phase,
along with the usage of reusable Nuxt components. Users
can now build their own forms as per their requirement with
the help of drag and drop feature developed in the project.
They have an option to have their own desired fields with
the choice of being able to edit those fields (for example
being able to change the labels of the field), making those
fields to be obligatory or optional and being able to arrange
them however they want. Before submitting the form val-
ues, they also get to see the Preview of their design and after
submitting the submitted form.

The figure in Appendix B shows the end result of form
component (Fig. 12).

The preview of the form looks like in the figure shown
in Appendix B (Fig.13) and the saved form looks like as
shown in Appendix B (Fig.14)

Regarding the table Component, it had features like
adding new item to the table, editing and deleting existing
item. Moreover, users could filter the table with all the col-
umn labels it had, as well sort each column. This can be
illustrated in the Appendix B (Fig. 15):

The add (Fig.16) and edit (Fig. 17) feature works as
shown in the Appendix B:

9 CONCLUSION

Nuxt has proven to be a great substitute for frameworks like
Vue, React [17], Angular [18] and so on. It is component
based and is a very easy tool for developers to use to manage
the production level projects, thanks to its standard folder
structure. As a part of discovering its usage, accessibility
and performance, a form builder and table components were
developed. Different dependencies and libraries were used,
not to mention the incorporation with SaaS which proved
that Nuxt was easily accessible. The built component had
user friendly interface that allowed users to build their own
forms and access the table easily.

Initially this project was carried out to meet the specific
requirements of a company. The form builder was needed in
the research platform of company to capture the data stored
by it’s client obtained during the clinical trials performed
on different medical cases and table component was devel-
oped to replace all the tables of company’s platform by the
customised table, meaning no more directly using the ta-
ble of bootstrap framework. Due to change in the plans

midway, even though the correspondence with the com-
pany changed, since the project was almost at the end, it
was aimed at finishing it. This led to change in the ob-
jectives and the duration of project development previously
declared, for example the design was no more done or ap-
proved by the designers, testing phase was shortened, de-
ployment phase was eliminated and development phase was
lengthen.

However, this project has been about understanding the
compatibility and accessibility of Nuxt and it would be safe
to say that it has been acquired through the development
of Form-builder and Table component. These components
can be used across various platform and are reusable as they
have been based on the custom made base components. The
atomic structure had been followed as planned providing
easy development path for developer. And a user friendly
interface had been achieved to provide better UX.

10 ACKNOWLEDGMENT

I would like to earnestly acknowledge the sincere efforts
and valuable time given by my tutor Sara Estravis Nieto,
Department of Information and Communications Engineer-
ing. The valuable guidance and feedback I received during
the period helped me in completing this project success-
fully.

REFERENCES

[1] Nuxt, ”Nuxt Documentation”, Apr 9,2022.
Accessed on: Feb 23, 2022. Available:
https://nuxtjs.org/docs/get-started/installation

[2] SaaS, ”SaaS Documentation”, Apr 8,2022. Ac-
cessed on: Feb 23, 2022. Available: https://sass-
lang.com/guide

[3] Bert Boss, ”Cascading Style Sheet”, Apr 6,
2022. Accessed on: Apr 8, 2022. Available:
https://www.w3.org/Style/CSS/Overview.en.html

[4] bootstrapVue, ”bootstrapVue Documentation”. Ac-
cessed on: Feb 23, 2022. Available: https://bootstrap-
Vue.org/docs

[5] bootstrap, ”bootstrap Documentation”. Accessed on:
Feb 23, 2022. Available: https://bootstrap.org/docs

[6] Vue Formulate, ”Vue formulate documenta-
tion”. Accessed on: Apr 4, 2022. Available:
https://Vueformulate.com

[7] Scrum, ”Scrum”, Accessed
on: Feb 26, 2022. Available:
https://www.mountaingoatsoftware.com/agile/scrum

[8] Vue, ”Vue guide”, Acessed on: Apr 1, 2022. Avail-
able: https://Vuejs.org/guide/introduction.html

[9] SEO, ”Search Engine LAnd”, Ac-
cessed on: Apr 8, 2022. Available:
https://searchengineland.com/guide/what-is-seo

[10] Vuex, ”Vuex documentation”. Accessed on: Apr 6,
2022. Available: https://Vuex.Vuejs.org/guide/

Swarnima Joshi: Discovering Nuxt with Form Builder and Table Component 9

[11] Modal, ”Bootstrap Documentation”. Accessed
on: Apr 6, 2022. Available: https://bootstrap-
vue.org/docs/components/modal

[12] Bagus Fikri, Fikri Studio. Accessed on: feb 24, 2022.
Available: https://dribbble.com/shots/16125238-
Form-Builder-Tiimi-HRM

[13] Schema, ”Schema-based Form Generator For
Vue.js”. Accessed on: Apr 4, 2022. Available:
https://www.Vuescript.com/schema-based-form-
generator-Vue-js/

[14] Props, ”Vue documentation”. Accessed on: Apr 6,
2022. https://vuejs.org/guide/components/props.html

[15] SortableJs, ”Sortablejs/Vuedraggable”, May 14,
2021. Accessed on: Apr 6, 2022. Available:
https://github.com/SortableJS/Vue.Draggable

[16] SortableJs, ”Sortablejs/Vuedraggable”, May 14,
2021. Accessed on: Apr 6, 2022. Available:
https://sortablejs.github.io/Vue.draggable.next/custom-
clone

[17] React, ”React Documentation”. Accessed on: May
16, 2022. Available: https://reactjs.org/docs/getting-
started.html

[18] Angular, ”Angular Documentation”. Accessed on:
May 16, 2022. Available: https://angular.io/start

10 EE/UAB TFG INFORMÀTICA: Discovering Nuxt with Form Builder and Table Component

11 APPENDIX A

Fig. 10: Work Breakdown Structure

Fig. 11: Gantt Diagram

Swarnima Joshi: Discovering Nuxt with Form Builder and Table Component 11

12 APPENDIX B

Fig. 12: Form Builder

Fig. 13: Preview Form

12 EE/UAB TFG INFORMÀTICA: Discovering Nuxt with Form Builder and Table Component

Fig. 14: Saved Form

Fig. 15: User Table

Swarnima Joshi: Discovering Nuxt with Form Builder and Table Component 13

Fig. 16: Add User Feature

Fig. 17: Edit User Feature

