
This is the published version of the bachelor thesis:

Pipoyan Paronyan, Arman; Valveny Llobet, Ernest, dir. Aula de programació
interactiva. 2022. (958 Enginyeria Informàtica)

This version is available at https://ddd.uab.cat/record/264139

under the terms of the license

https://ddd.uab.cat/record/264139


TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)

Aula de programació interactiva

Arman Pipoyan Paronyan

Resum– L’objectiu d’aquest projecte és augmentar les funcionalitats d’una eina de suport docent
integrant diferents tecnologies existents com GitHub, Jupyter o Moodle i afegir altres funcionalitats
que no requereixen mòduls externs. El resultat obtingut és una eina desplegada a un servidor
del centre que permet als docents crear problemes i monitorar les solucions que van donant els
estudiants durant les sessions de classe, amb la possibilitat d’interactuar amb ells de manera online
modificant el seu codi. Tot això amb la possibilitat d’utilitzar GitHub per indicar arxius inicials d’un
problema, per afegir fitxers mentre s’està resolent un exercici o per guardar el progrés a un repositori
privat.

Paraules clau– Eina de suport docent, programació online, docència online, desenvolupa-
ment de software

Abstract– The goal of this project is to increase the functionalities of a teaching support tool by
integrating different existing technologies such as GitHub, Jupyter or Moodle and adding other
functionalities that do not require external modules. The result obtained is a tool deployed on a
server at the center that allows teachers to create problems and monitor the solutions given by
students during class sessions, with the possibility of interacting with them online by modifying their
code. All of this with the possibility of using GitHub to indicate initial problem files, to add files while
solving an exercise or to save the progress in a private repository.

Keywords– Teaching support tool, online programming, online teaching, software develop-
ment

✦

1 INTRODUCCIÓ

PER aprendre a programar s’ha de programar, això
és el que diuen tots. Però també és important
equivocar-se i aprendre dels errors que es cometen.

Una bona manera de fer-ho, i més si s’està a una classe,
és preguntant a algú que sàpiga molt del tema, que a les
aules acostuma a ser el professor. Gran part d’aquests
errors comesos són comuns, per tant, tenir la possibilitat
d’explicar la solució d’una errata a tot el grup tenint un
exemple real al que assenyalar resulta molt útil, ja que
alguns conceptes són molt difı́cils de deixar clar sense
pràctica. Tot i ser una cosa tan important és una tasca que
es dificulta quan la quantitat d’estudiants és molt gran i es
disposa d’un temps limitat.

Un altra problema que ens trobem és que no tots te-
nen les eines necessàries per poder programar, ja que

• E-mail de contacte: arman.pipoyan26@gmail.com
• Menció realitzada: Enginyeria del Software
• Treball tutoritzat per: Ernest Valveny (Computació)
• Curs 2021/22

alguns programes tenen uns requeriments mı́nims una mica
elevats i no totes les màquines les poden executar. Per tant,
poder programar en un navegador i que el codi s’executi
a una màquina remota fa que tots els usuaris parteixin del
mateix entorn de treball.

Per resoldre aquest problemes neix aquesta eina de
suport a la docència que permet als estudiants escriure
codi que pot ser revisat pel professor que està present a
l’aula sense la necessitat de desplaçar-se a la seva taula i, a
més, executar-ho remotament per poder veure el resultat de
l’execució.

Cal tenir en compte que la primera versió d’aquest
projecte es va desenvolupar durant la pandèmia del
COVID-19 i que un dels objectius que es perseguia era
el de disminuir el contacte entre persones i ajudar a que,
si s’estava a l’aula les distàncies mı́nimes de seguretat
es mantinguessin. Com actualment les restriccions han
variat aquests objectius ja no tenen tant de pes com abans,
però s’han tingut en compte pel desenvolupament d’aquest
projecte.

El que s’explicarà en aquest document són els canvis

Juny de 2022, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMÀTICA: AULA DE PROGRAMACIÓ INTERACTIVA

introduı̈ts tant a nivell de funcionalitats com a nivell visual
i el procés que s’ha seguit per tal de poder-los implementar.

2 ESTAT INICIAL DEL PROJECTE

S’ha hagut d’actualitzar una eina desenvolupada en un pro-
jecte anterior [1] que permetia a professors interactuar, ja
fos editant o només mirant, amb estudiants que estiguessin
fent problemes de programació que havien proposat.

L’eina permetia als mestres agregar assignatures i dins d’a-
questes afegir, editar, amagar i eliminar problemes. També
tenien la possibilitat de mirar, editar i executar l’última
solució guardada de qualsevol exercici dels alumnes.

Els alumnes tenien menys permisos, només podien
resoldre exercicis eliminant, afegit o modificant els fitxers
que el professor establia en crear l’activitat i, a més, podien
executar el codi per veure el resultat.

Quant al registre de nous usuari, els alumnes podien
crear comptes nous sense cap dificultat, però els professors
necessitaven una invitació per part d’altres membres de
l’equip docent per tal d’aconseguir el permisos necessaris
en crear-se el compte.

A la figura 1 podem veure un diagrama de casos d’ús
de les funcionalitats que oferia aquesta versió de l’eina.

3 OBJECTIUS

En aquest projecte s’han introduı̈t canvis a la web que
ajuden tant als professors com als alumnes a tenir més
facilitats en utilitzar l’aplicació. A la figura 2 tenim
representades les funcionalitats que s’han afegit i que
s’explicaran en detall a continuació. A la figura 14 dels
annexos tenim una visió global del que ens permet fer
l’eina.

Cal esmentar que aquests canvis no modifiquen l’objectiu
principal de la primera versió que s’havia desenvolupat de
la web, que era la creació d’una eina perquè els professors
poguessin pujar problemes i que els alumnes els poguessin
resoldre dins de la web, tenint sempre l’opció de poder
compartir el codi amb el professor de manera senzilla
perquè aquest ho pogués corregir i donar feedback.

3.1 Refactorització del codi
Aquesta tasca s’ha fet amb la intenció de familiaritzar-se
amb el codi i el funcionament general de la web i per resol-
dre problemes d’estructura que tenia.

3.2 Creació de sessions de classe
L’objectiu d’aquesta funcionalitat és permetre als profes-
sors crear agrupacions d’exercicis de manera temporal
per tal de comentar-les durant classes presencials. Durant
aquestes, els alumnes han d’accedir a la sessió creada
pel seu professor per tal de poder tenir la seva supervisió
mentre resolen les activitats proposades, ja que el professor
només serà capaç de veure les respostes dels estudiants de

Fig. 1: Casos d’ús implementats en la versió original de
l’eina.

la seva sessió.

A continuació tenim una breu descripció dels casos
d’ús d’aquesta funcionalitat que s’han completat per
considerar-la acabada:

• Iniciar sessions de classe: Un professor ha de ser
capaç de començar una sessió de classe indicant un
nom i un conjunt de problemes, que han de pertànyer
a la mateixa assignatura que la sessió.

• Veure sessions actives: Tant professors com alumnes
han de poder veure les sessions actives d’una assigna-
tura.

• Accedir a sessions: Els usuaris han de poder accedir a
una sessió i resoldre els problemes d’aquesta comptant
amb l’ajuda del professor.

S’ha decidit no implementar cap mesura de prevenció
per evitar que els alumnes entrin a sessions que no els
pertoca, ja que s’assumeix que no estan interessats a
fer-ho.

• Veure estudiants de la sessió: Els professors han de
tenir un llistat amb tots els membres de la seva sessió
i, a més, han de poder accedir a les seves propostes de
solució i editar-les si era necessari.



AUTOR: ARMAN PIPOYAN PARONYAN 3

Fig. 2: Casos d’ús a implementar a l’eina.

• Tancar sessions de classe: Els professors han de ser
capaços d’esborrar les sessions que considerin acaba-
des.

3.3 Integració amb GitHub
Els objectius d’aquesta integració són:

Crear exercicis: Permetre als professors crear problemes
utilitzant directament carpetes del seu repositori privat. Els
problemes no poden tenir subcarpetes, per tant, totes les car-
petes del repositori s’ignoraran i en cas de trobar un fitxer
readme, el seu contingut s’utilitzarà com descripció de l’e-
xercici.

Guardar solucions: Facilitar als usuari poder guardar el
treball que fan durant les sessions als seus repositoris per
tal de poder accedir a aquests en un futur sense obrir l’eina.

Afegir fitxers a problemes: Possibilitar poder afegir fitxers
des de GitHub indicant l’enllaç a una carpeta o a un fitxer
en concret.

3.4 Integració amb Caronte
A les assignatures de programació els professors acostu-
men a proposar exercicis avaluables a Caronte, el Moodle
dedicat a les enginyeries.

La finalitat d’aquesta integració és permetre al profes-
sor vincular les activitats de Caronte amb problemes de
l’eina, permetent als alumnes fer entregues des de la pàgina

web sense la necessitat d’haver de descarregar el codi i
tornar a pujar-ho al Moodle.

3.5 Integració amb Jupyter Notebook
A algunes assignatures s’utilitza l’entorn web Jupyter Note-
book, que permet crear documents amb cel·les executables
que poden contenir codi, text o imatges [2]. Com aquests
fitxers es guarden en un format concret, es necessita un
editor especial per veure i modificar el contingut d’aquests.

Això és el que es volia aconseguir amb aquesta modi-
ficació: permetre als alumnes obrir i modificar aquests
fitxers des de l’eina sense necessitat d’instal·lar o obrir
programari addicional.

3.6 Redisseny de la pàgina web
La finalitat d’aquesta tasca és unificar el disseny del que
ja estava fet de la pàgina amb els canvis nous que s’han
introduı̈t i, en cas que fos necessari, fer un redisseny de tota
la pàgina web.

Es farà un cop estiguin totes les funcionalitats imple-
mentades (principalment les que requerien afegir o
modificar vistes existents). Això permetrà acabar les
funcionalitats amb més rapidesa i tenir un disseny més
uniforme.

3.7 Desplegar l’eina a un servidor
L’objectiu de fer el desplegament del projecte a una de les
màquines del centre docent era provar en un entorn real l’ei-
na per tal de trobar millores que es podrien afegir o errors
que es puguin arreglar.

4 METODOLOGIA

Per desenvolupar el projecte s’ha decidit utilitzar una
metodologia Agile [3], emprant Trello [4] per poder
organitzar les tasques i tenir una visió general del que s’ha
fet i el que queda per finalitzar. La durada dels sprints
serà generalment d’una setmana, i s’intentarà que durant
aquesta franja de temps es tingui una porció del mòdul que
s’estigui implementant totalment finalitzada, assegurant
aixı́ que es treballa amb constància.

Per tal de tenir sempre una versió estable del codi s’-
ha decidit utilitzar GitHub. Es tindran dues branques
actives: la principal, on estaria la versió estable del codi
i la branca de desenvolupament, on s’implementaran les
noves funcionalitats. Cada vegada que un mòdul estigui
acabat i testejat els canvis es pujaran a la branca principal i
es continuarà treballant a la segona branca.

5 PLANIFICACIÓ

La planificació ha sofert diferents canvis durant el pas del
temps perquè algunes tasques van requerir més temps del
que s’havia planificat i algunes van haver-se de cancel·lar.



4 EE/UAB TFG INFORMÀTICA: AULA DE PROGRAMACIÓ INTERACTIVA

A la planificació inicial es van definir 4 fases, com
podem veure a la figura 3:

• La primera d’aquestes fases era la de planificació, que
consistia en analitzar els requeriments i les subtasques
i decidir si eren viables.

• La següent fase era la d’implementació, que tenia tan-
tes subfases com funcionalitats es volien desenvolupar,
però aquestes no estaven desglossades.

• La tercera fase era el testatge general de la web. Tot i
que cada fase de desenvolupament contemplava també
el temps necessari per provar que funcionava correcta-
ment, es va decidir dedicar aquest temps en comprovar
que l’eina funcionava tal com s’esperava.

• Durant la quarta es redactaria la memòria final i es
començaria a preparar la presentació.

Fig. 3: Planificació inicial del projecte.

Es van anar aplicant diferents canvis a aquesta planifica-
ció, resultant en el que podem veure a la figura 4. Els canvis
aplicats en ordre cronològic són els següents:

• La tasca de refactorització es va allargar una setmana
per falta de temps, fent que la següent tasca es retardés
una setmana.

• El nom de la tasca ‘Control d’accessos’ es va canviar a
‘Sessions de classe’, ja que el primer era pot explicatiu.
A més, es va desglossar tant aquesta tasca com la de la
integració amb GitHub.

• Es va afegir la tasca de redisseny de la pàgina web.
Aquesta es faria abans de començar la redacció de la
memòria final i duraria només una setmana.

• Es va anar desglossant la tasca de la integració amb
Jupyter Notebook segons s’anaven fent versions i pro-
ves.

• En investigar la integració amb Caronte es van trobar
problemes que no permetien implementar les funci-
onalitats desitjades, fent que es pogués dedicar més
temps a altres tasques. Es van allargar les tasques de
redisseny i de testatge final una setmana.

• Es va afegir la tasca de fer un desplegament del codi a
un servidor de la UAB. Aquest duraria dues setmanes i
es faria juntament amb el testatge, abans de començar
la memòria.

Fig. 4: Planificació final del projecte.

6 DESENVOLUPAMENT

6.1 Refactorització
El que s’ha fet, principalment, durant la refactorització ha
sigut:

1. Esborrar mètodes i variables que no s’utilitzaven.

2. Traduir tot el codi a un únic idioma (l’anglès), ja que
s’utilitzava tant l’anglès, com el castellà com el català
per definir mètodes o variables.

3. Afegir comentaris al codi.

4. Introduir constants per facilitar la lectura del codi.

5. Modificar i estandarditzar el nom de variables,
mètodes o fitxers que no eren autoexplicatius i que no
sempre seguien el mateix format.

6. Dividir els fitxers molt grans en fitxers petits.

7. Utilitzar un analitzador estàtic de codi, concretament
SonarLint [5], per millorar l’estil de tots els fitxers.

S’han modificat fragments de codi difı́cils d’entendre
com el que es pot veure a la primera imatge de la figura
5. En aquest cas, el que s’ha fet és moure el codi que es tro-
bava a un fitxer ‘.php’ a un fitxer ‘.js’ per tal de no barrejar
scripts amb HTML i PHP, a més, s’han afegit comentaris i
s’ha modificat el nom de les variables per ajudar a entendre
el codi. El resultat del refactor ho veiem a la segona imatge
de la figura 5.

6.2 Implementació de les sessions de classe

6.2.1 Modificació de la BBDD

Per satisfer aquest objectiu s’ha hagut de modificar la base
de dades afegit les taules ‘session’ i ‘session problems’ on
la primera serveix per guardar el seu nom, el professor que
l’ha creat i l’assignatura a la que pertany i la segona tau-
la serveix per relacionar una sessió amb els problemes que
agrupa. A més, s’ha hagut de modificar la taula ‘student’
afegint la clau forana ‘session id’, que serveix per indicar
que un estudiant només pot pertànyer a una única sessió.

A la figura 13 dels annexos podem veure com es relacio-
nen totes les entitats que existeixen a l’eina.



AUTOR: ARMAN PIPOYAN PARONYAN 5

(a) Codi sense refactoritzar.

(b) Codi refactoritzat.

Fig. 5: Comparació abans i després del refactor.

6.2.2 Actualització de les vistes existents

Al llistat d’assignatures s’han fet dos canvis:

• S’ha afegit un botó que porta al formulari de creació
de sessions.

• S’ha afegit a cada ı́tem del llistat un botó que porta a
la llista de sessions actives, que és visible només si hi
ha alguna activa.

Tal com podem veure a la figura 6.

D’altra banda, s’ha fet que el professor no vegi a tots
els estudiants que estan resolent un exercici, sinó que
només veu als alumnes que són a la seva sessió, fent que
sigui més fàcil trobar-los.

Fig. 6: Ítems del llistat d’assignatures.

6.2.3 Creació de vistes noves

S’han hagut de crear dues vistes noves:

• Un llistat de sessions els ı́tems del qual només conte-
nen el nom i un botó per esborrar la sessió, però no
modifica les solucions dels problemes que els alumnes
estaven fent.

• Un formulari de creació de sessions que compta només
amb dos camps: el camp del nom i un selector que
permet indicar quins exercicis s’han de realitzar durant
la sessió, com podem veure a la figura 7.

Fig. 7: Formulari per crear una nova sessió.

6.3 Integració amb GitHub
Per implementar aquesta funcionalitat es va utilitzar la
REST API de GitHub [6], concretament el wrapper escrit
amb PHP [7], que va facilitar la integració de l’API i el
tractament d’errors, ja que no s’havia de mirar la resposta
es rebia, sinó que en cas d’error saltaven excepcions, que
eren més fàcils de tractar.

6.3.1 Configuració prèvia

Abans de començar s’ha hagut de crear una aplicació [8] de
GitHub per tal de poder utilitzar les seves APIs. D’aquesta
aplicació només es necessiten l’identificador i el codi secret
de l’aplicació per fer les primers consultes a GitHub.

6.3.2 Autenticació de l’usuari

Per obtenir el token d’accés de l’usuari de GitHub s’havien
d’utilitzar les claus de l’aplicació. El flux per fer el login és
el següent:

1. Es fa una redirecció a GitHub on l’usuari s’ha d’iden-
tificar amb el seu compte.

2. Es torna a la pàgina on estava l’usuari abans d’inten-
tar autenticar-se amb un codi especial a la URL que
l’usuari no veu.

3. Amb el codi i les claus de l’aplicació es fa una petició
a GitHub per obtenir l’access token de l’usuari amb el
que es podran fer les altres peticions.

6.3.3 Descarregar fitxers i carpetes

Per tal de descarregar fitxers primerament s’ha de tenir el
token d’accés de l’usuari i una URL que apunti a un objecte
que estigui a un repositori de GitHub, ja sigui un fitxer o
una carpeta.

Amb aquestes dues dades podem llançar una petició a
GitHub per recuperar la informació del fitxer (o fitxers).
Dins d’aquesta informació tenim el seu contingut i nom,
que és el que utilitzem per crear un fitxer a la màquina a la



6 EE/UAB TFG INFORMÀTICA: AULA DE PROGRAMACIÓ INTERACTIVA

carpeta on toqui, dins d’un problema o dins de la solució
d’un estudiant. A la figura 8 podem veure el flux que es
segueix al descarregar fitxers.

Fig. 8: Diagrama de flux de com es descarreguen fitxers des
de GitHub.

6.3.4 Pujar fitxers i carpetes

Per poder pujar fitxers els requeriments són els mateixos
que per descarregar fitxers: el token d’accés de l’usuari i la
URL a un repositori o carpeta de GitHub.

Al pujar fitxers o carpetes a GitHub el que es fa és
crear una carpeta a la ubicació que s’ha indicat amb la
URL i fer un commit per cadascun dels fitxers. No es fa un
commit amb tots el canvis perquè la API només permet fer
commits amb un únic fitxer.

6.3.5 Vistes modificades

Al llistat de problemes s’ha afegit un botó que permet crear
problemes utilitzant GitHub. A aquest formulari es demana
principalment el nom del problema i el link a la carpeta
contenidora.

A la vista de l’editor s’ha afegit tant l’opció de pujar
la solució a GitHub com el de descarregar fitxers. Quan es
prem un dels botons es demana el link a un repositori.

6.4 Integració amb Jupyter Notebooks
Per implementar aquesta funcionalitat s’havia d’executar un
servidor de Jupyter, ja fos en local o utilitzant un servi-
dor remot, que servı́s els fitxers que demanava l’usuari i
mostrar-los utilitzant un iframe d’HTML.

6.4.1 Idea inicial

Durant els primers dies es va estar fent una tasca d’investi-
gació per decidir si era viable o no, i es va acabar concloent
que sı́ que ho era.

La idea que es tenia abans de començar, i la que es
va acabar utilitzant, era crear un iframe d’HTML (una

pàgina encastada) a la vista de l’editor que substituı́s
l’editor per defecte que hi havia.

6.4.2 Primera versió

A la primera versió es va decidir entre utilitzar un servidor
extern com Binder [9] o un servidor Jupyter que servı́s els
fitxers ‘.ipynb’ per tal de crear el contingut de l’iframe. Es
va decidir fer servir el servidor extern, ja que aquest oferia
un entorn totalment aı̈llat a cada estudiant on aquest podria
executar qualsevol comanda disponible de Python (com per
exemple intentar esborrar tots els fitxers de l’entorn). Des-
afortunadament, aquesta idea no es va poder dur a terme
perquè Binder, a dia 20 de juny de 2022, no permet encas-
tar els entorns que genera en altres pàgines web.

6.4.3 Segona versió

Per la segona versió es va crear un servidor de Jupyter que
servia els fitxers accedint a un URL local. Aquest servidor
s’executava a la carpeta on estaven totes les soluciones
dels alumnes fent que amb l’URL no es pogués accedir als
fitxers del sistema.

Tenint el servidor en local els estudiants podien visu-
alitzar i interactuar amb el Notebook com si ho tinguessin
a la seva pròpia màquina , com podem veure a la figura 9.
Però això comportava un problema: tenien accés il·limitat
a qualsevol fitxer de la màquina on s’executava el servidor
si executaven comandes de Python.

Com no es va trobar la manera de crear un pre-execute
hook (una acció que s’executés abans de que el codi de
l’estudiant fos interpretat) per evitar que s’executessin
lı́nies de codi malicioses, es va haver de modificar com
estava plantejat el servidor Jupyter.

Fig. 9: Notebook visualitzat a la pàgina web.

6.4.4 Tercera versió

A la tercera iteració es va decidir utilitzar un contenidor
de Docker que contingués el servidor de Jupyter. Això
permetia aı̈llar el servidor de Jupyter de la màquina fı́sica
on s’estava executant el codi.

Aquest contenidor tenia enllaçada la carpeta de solu-
cions de la màquina contenidora amb la seva carpeta home
i se servien els fitxers d’aquesta carpeta. Això feia que amb
l’URL només es pogués accedir a les solucions i en cas que
un estudiant intentés executar codi maliciós no afectés la



AUTOR: ARMAN PIPOYAN PARONYAN 7

màquina real.

Amb aquest canvi els estudiants només tindrien accés
al contenidor i la màquina fı́sica no podria ser modificada.
Però això encara no evitava que els alumnes poguessin
accedir als fitxers dels altres fent servir comandes Python.

6.4.5 Quarta versió

A la quarta i última versió el que s’ha decidit fer és el
següent:

1. Quan un estudiant entra a un problema de Jupyter es
crea un contenidor per ell que només contindrà les so-
lucions dels problemes que ell ha resolt. Aquest conte-
nidor s’assignarà a un port de la màquina fı́sica i, tant
el port com l’identificador del contenidor es guardaran
a la sessió de l’usuari.

2. Quan l’estudiant surt de la pàgina s’utilitza l’identifi-
cador que s’ha guardat i s’esborra tant el contenidor
com les dades de la sessió relacionades amb el conte-
nidor.

Això permet als alumnes utilitzar qualsevol comanda
al Notebook i assegurar que la màquina fı́sica estarà pro-
tegida contra estudiants que vulguin executar codi maliciós.

S’han implementat algunes millores més:

• S’ha tingut en compte que un estudiant pot tenir més
d’una finestra activa que requereixi un servidor de
Jupyter. Per tant, s’ha fet que el contenidor sigui un
singleton. És a dir, a la sessió es guarda quants proble-
mes de Jupyter l’usuari té oberts i fins que el compta-
dor no arriba a 0, aquest no s’esborra.

• S’ha tingut en compte que a cada contenidor se l’ha
d’escoltar per un port diferent. Com els ports d’usu-
ari van del 1024 al 49151 i el màxim d’alumnes que
estaran utilitzant l’eina alhora serà 40, el que es farà
és escollir un port aleatori i mirar si hi cap contenidor
utilitzant aquell port, en cas de col·lisió es tornarà a es-
collir un port aleatori i a tornar a fer la comprovació.
Com el nombre de ports disponibles és molt superi-
or als que es poden arribar a ocupar simultàniament
no s’ha trobat necessària la utilització de cap sistema
complex de gestió de ports.

6.5 Integració amb Caronte
Com s’ha esmentat en l’apartat 3.4, a les assignatures de
programació s’acostuma a utilitzar Caronte per crear exer-
cicis avaluables de programació. Aquesta funcionalitat no
la proporciona Moodle, sinó un plug-in d’aquest que es diu
Virtual Programming Lab (VPL). Per tant, per implementar
aquesta funcionalitat s’havia d’investigar com funcionava
aquest mòdul per esbrinar si oferia APIs públiques que per-
metessin pujar fitxers i fer un lliurament.

6.5.1 Investigació

Analitzant la informació disponible de VPL i també el co-
di font d’aquest [10] per trobar coses que no estiguessin

especificades a la seva documentació s’ha conclòs que és
impossible pels següents motius:

• S’ha de tenir accés a Caronte per poder configurar els
serveis necessaris per fer consultes a aquest des de l’ei-
na. Una mala utilització d’aquests permisos represen-
taria una bretxa de seguretat si s’activen serveis sen-
se configurar-los i provar-los apropiadament. Aquesta
tasca requereix utilitzar molt temps del projecte resol-
dre tasques administratives que no estan relacionades
amb aquest projecte.

• Encara que activem i configurem els serveis correcta-
ment hi ha un problema més. Revisant el codi dispo-
nible VPL s’ha conclòs que aquest és un mòdul auto-
contingut on els lliuraments de fitxers es fan cridant a
funcions que no estan publicades a cap API.

6.6 Redisseny de la pàgina web

6.6.1 Paleta de colors foscos i clars

Aquesta és una funcionalitat que molts IDE tenen i que
agrada molt als desenvolupadors perquè no tots tenen la
mateixa preferència respecte a la paleta de colors a utilitzar.

La preferència seleccionada per l’usuari es guarda en
la seva sessió, és a dir, quan aquest tanqui sessió la paleta
de colors tornarà a ser la per defecte, la de colors clars.
Com es vol donar la possibilitat als usuaris no registrats de
modificar la paleta de colors, s’ha fet que si no es té una
sessió iniciada les preferències es guardin al navegador. És
molt importat que es guardi perquè sinó, en canviar de vista
es tornaria a utilitzar la paleta per defecte.

A la segona imatge de la figura 10 podem veure una
llista redissenyada que fa servir colors clars i a la segona
imatge de la figura 11 podem veure un formulari utilitzant
colors foscos.

6.6.2 Llistats

S’ha creat una vista genèrica parametritzable d’un llistat per
tal de poder mantenir una consistència entre les vistes i fa-
cilitar i mecanitzar la creació de noves vistes d’aquest tipus
(vegeu figura 10). El funcionament d’aquesta vista és el
següent:

1. Quan l’usuari accedeix a una vista, es crida al contro-
lador d’aquesta.

2. El controlador s’encarrega de fer consultes a la BBDD
per obtenir els objectes que s’han de mostrar.

3. Amb les dades dels objectes es genera un mapa hash
que conté: el tı́tol de la pàgina, una llista de mapes
hash addicional que conté les accions visibles només
pel professor (com el botó per crear objectes d’aquella
vista) i, per últim, una llista de mapes hash més on
està la informació de cada ı́tem (principalment tı́tol,
descripció i llista d’accions de l’element).

Opcionalment, es pot afegir un camp més al mapa
hash de la pàgina per crear finestres emergents indi-
cant només el tı́tol i el contingut d’aquest (que podia
ser un conjunt de camps de formulari o un text).



8 EE/UAB TFG INFORMÀTICA: AULA DE PROGRAMACIÓ INTERACTIVA

(a) Abans del redisseny.

(b) Després del redisseny.

Fig. 10: Comparació d’abans i després del redisseny.

6.6.3 Formularis

Pels formularies s’ha seguit la mateixa idea. S’ha creat
una vista parametritzable per crear formularis de manera
ràpida i fàcil. Amb aquest sistema afegir, treure i mo-
dificar camps es pot fer tocant només 1 lı́nia del controlador.

A la figura 11 podem veure una comparació entre el
disseny anterior del formulari i el nou. L’estructura dels
camps del formulari de registre s’ha mantingut, però s’han
modificat els camps i els botons d’aquest.

6.6.4 Editor

Per la vista de l’editor s’ha utilitzat cap vista genèrica ja
que aquesta no es reutilitza.

Amb el redisseny de la pàgina s’ha fet l’editor més
gran, ja que era massa petit sent el component central
d’aquesta vista. S’han modificat també els botons que
apareixien a sobre de l’editor, fent que aquests segueixin
l’estil de les altres vistes.

Com s’ha incorporat la funcionalitat de canviar entre
tema fosc i tema clar s’ha hagut de fer que l’editor es
modifiqui com la resta de la pàgina. A la figura 12 podem
veure la diferència entre l’editor anterior (imatge a) i el nou
(imatge b) que està utilitzant el tema fosc com la resta de la
pàgina.

7 TESTATGE

S’ha fet un testage global de la web provant els fluxos
d’execució que un usuari normal faria. S’ha creat un
document en el que s’indiquen tots els casos avaluats,
a més, en els casos d’error, s’ha descrit perquè s’havia
originat i com s’ha arreglat.

Un dels errors que s’ha detectat i no s’ha pogut solu-
cionar és que quan un usuari entra a un exercici de Jupyter
s’hauria de llançar un contenidor de Docker amb un
servidor que li servı́s fitxers. Com la pàgina carrega més

(a) Abans del redisseny.

(b) Després del redisseny.

Fig. 11: Comparació d’abans i després del redisseny.

(a) Abans del redisseny.

(b) Després del redisseny.

Fig. 12: Comparació d’abans i després del redisseny.

ràpid que el contenidor, l’usuari veu en comptes de l’editor
de Jupyter una pàgina d’error. Un fix que s’ha trobat al
problema és tenir un fitxer de text buit a l’exercici i fer



AUTOR: ARMAN PIPOYAN PARONYAN 9

que es carregui primer aquest fitxer. Aixı́, quan l’usuari
canviı̈ al fitxer ‘.ipynb’ el contenidor ja estarà iniciat i es
veurà correctament.

8 DESPLEGAMENT A SERVIDOR

Aquesta ha sigut l’última tasca que s’ha realitzat. Ha con-
sistit en pujar el codi a una màquina del centre educatiu i fer
que funcioni tal com ho feia a l’entorn de desenvolupament.

8.1 Entorn Windows
Tot i que les eines que s’havien utilitzat (Docker i Apache)
estaven pensades per ser utilitzades a entorns Linux es va
decidir demanar un Windows perquè el desenvolupament
s’havia fet amb el mateix sistema operatiu i se sabia que
funcionaria correctament i no s’hauria d’adaptar cap part
del codi.

Com a la màquina s’havien d’executar molts conteni-
dors de Docker, es va haver de fer una aproximació dels
recursos necessaris per suportar la càrrega màxima del
sistema, és a dir, quan 40 alumnes estiguessin executant
un servidor cadascú. Cada contenidor requeria 200 MB de
memòria en el millor dels casos, per tant, es va demanar
que la màquina tingués com a mı́nim 16 GB.

Amb aquest entorn va sorgir un problema greu. Com
als contenidors de Docker s’executava un sistema operatiu
de Linux amb Jupyter incorporat es necessitava tenir la
virtualització (una tecnologia que permet executar diferents
SO dins de Windows) activa, però com l’entorn ja era una
màquina virtual no va ser possible fer que funcionés.

8.2 Entorn Linux
Es va decidir canviar el SO a un Linux i tornar a començar
amb l’instal·lació. Es van trobar diferents problemes amb
en aquest procés:

• Algunes funciones de PHP no funcionaven de la matei-
xa manera que a l’anterior sistema operatiu. Per tant,
es va haver d’analitzar tot el codi i solucionar els errors
que anaven sorgint per aquest motiu. El que es va fer
arreglar aquest problema va ser substituir les crides a
funcions a execucions de comandes de Linux, tot i que
això ha fet que el codi estigui molt lligat al SO.

• Els contenidors de Docker es podien executar però no
eren accessibles des de fora de la xarxa local de la
màquina degut a les mesures de seguretat que tenia
implementades el centre docent. De les dues soluci-
ons que es van trobar per arreglar el problema, fer una
petició perquè s’obrissin 40 ports i canviar la manera
en la que estava pensada l’eina, es va realitzar la pri-
mera i es va deixar per escrit al dossier com s’hauria
de fer la segona.

9 CONCLUSIONS

9.1 Objectius assolits
Els objectius que s’han assolit han sigut els següents:

• Fer una neteja del codi i estructurar-ho de manera que
tot estigui separat per capes ben diferenciades.

• Implementar el concepte de sessions de classe a l’eina.

• Integrar amb GitHub, sigui per pujar solucions o per
descarregar fitxers per afegir-los a una tasca o per crear
un exercici nou.

• Poder visualitzar i modificar notebooks de Jupyter des
de l’eina.

• Redissenyar la pàgina web.

• Permetre tenir dos problemes amb el mateix nom a as-
signatures diferents.

9.2 Objectius no aconseguits
Els objectius que no s’han assolit han sigut els següents:

• Integrar l’eina amb Caronte. No s’ha pogut complir
aquesta fita per com està plantejat el mòdul que s’uti-
litza per crear els exercicis avaluables de programació.

• Fer que els contenidors de Docker que conten els ser-
vidors de Jupyter siguin accessibles per ordinadors que
no estan a la xarxa local de la màquina. Aquest objec-
tiu no s’ha pogut assolir perquè la universitat té mesu-
res de seguretat aplicades i no obren ports.

En general, s’han assolit una gran part dels objectius
que s’havien plantejat inicialment. Amb aquests canvis
l’aplicació pot arribar a ser molt útil pels estudiants dels
primers cursos, que són principalment els que més supervi-
sió necessiten al programar.

No haver pogut aconseguir que Jupyter funcionés a la
màquina del centre ha suposat un problema que no s’havia
plantejat i ha fet que una funcionalitat important no es pu-
gui utilitzar. Tot i això, els coneixements que s’han adquirit
sobre la utilització d’APIs, els llenguatges de programació
que s’han utilitzat i la utilització de contenidors Docker
considero que són molt valuosos.

REFERÈNCIES

[1] Y. A. Asbahi, “Aula de programació interactiva.”
https://shorturl.at/jkruG, 2022.

[2] “Jupyter notebook.”
https://en.wikipedia.org/wiki/Project Jupyter.

[3] “What is agile?.” https://www.atlassian.com/agile.

[4] “Trello.” https://trello.com/en.

[5] “Sonarlint.” https://www.sonarlint.org/.

[6] “Github rest api.” https://docs.github.com/en/rest.

[7] “Github rest api wrapper for php.”
https://github.com/KnpLabs/php-github-api.

[8] “Oauth apps creation.”
https://docs.github.com/es/developers/apps/building-
oauth-apps.



10 EE/UAB TFG INFORMÀTICA: AULA DE PROGRAMACIÓ INTERACTIVA

[9] “Binder.” https://jupyter.org/binder.

[10] “Vpl plug-in for moodle.”
https://github.com/jcrodriguez-dis/moodle-mod vpl.

APÈNDIX

A.1 Diagrama d’entitats i relacions

Fig. 13: Diagrama d’entitat-relació de la web.



AUTOR: ARMAN PIPOYAN PARONYAN 11

A.2 Diagrama de casos d’ús

Fig. 14: Diagrama de casos d’ús de la web.


