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Wildlife Censuses Using Deep Learning in
Aerial-Thermal Images

Guillem Martı́nez Sánchez

Resum– La creació de cens d’animals salvatges és essencial per la conservació de la fauna i
ecosistemes. Per realitzar-ho àgilment, la tasca es realitza a partir d’imatges aèries i tèrmiques.
En aquest TFG, es fa una revisió dels mètodes de visió per computador, models i datasets de
detecció d’objectes utilitzats per la creació de censos de fauna. En aquest context, es proposa i
avalua un sistema i s’estudia la utilització de YOLOv5 per la detecció d’animals en temps real. El
sistema és avaluat amb un dataset d’imatges aèries i tèrmiques de referència, BIRDSAI. En el treball
s’identifiquen problemes de desbalanceig i biaix de mostreig en el dataset. Com a solució, s’ha
proposat fer-ne una redistribució estratificada. La proposta millora el mAP en un 33% respecte a una
primera aproximació amb els subconjunts suggerits pels autors de BIRDSAI. A més, s’escenifiquen
els reptes pel dataset en producció dels Agents Rurals en col·laboració amb el CVC.
Paraules clau– Cens d’Animals Salvatjes, Detecció d’Objectes, Aprenentatje Profund, YOLOv5

Abstract– The creation of wildlife censuses is essential for fauna and ecosystem conservation. To
produce them agily, we need to use aerial-thermal images. In this TFG, a revision on computer vision
methods, models and object detection datasets for wildlife censuses creation is performed. In this
context, a system is proposed and evaluated, and the use of YOLOv5 for real-time wildlife detection
is studied. This model is evaluated with a bench-marking wildlife dataset from an aerial-thermal
perspective, BIRDSAI. In this work, unbalance and sampling bias is found in the data. As a solution,
stratified sampling is proposed. The results show a 33% increase of the mAP with respect to a first
approximation with the proposed subsets given by BIRDSAI’s authors. Additionally, some insights
are provided towards the dataset in production from the Agents Rurals in collaboration with the
Computer Vision Center.

Keywords– Wildlife census, Object detection, Deep Learning, YOLOv5
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1 INTRODUCTION

Wildlife conservation is crucial for several reasons: pro-
tecting ecological stability, biodiversity and endangered
species or heritage and culture preservation. Governments
[1] and several foundations [2, 3, 4] take part in wildlife
conservation. As of 2020, Catalonia’s authorities [5]
catalogued 263 local animal species as endangered or
vulnerable. There is not only a way of protecting fauna,
but measures such as the creation of wildlife census [6]
is proven to be an effective method. However, it requires
resources and infrastructure everyone must be conscious of
the actions that need to be taken toward fauna conservation.
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In Figure 1 we can find the causes of wildlife threats.

Wildlife census consists of the count of individuals of
certain species in a determined area. It provides information
for population monitoring, movement tracking, health and
disease control and anti-poaching [7]. However, censusing
wildlife is costly since, in many cases, it requires specific
tools such as drones, visible and/or infra-red cameras and
staff to prepare the information retrieval and to count and
validate the results.

There is no rule of how frequent wildlife census should
be [8]. However, to observe the population growth trend and
for proper monitoring, they should be performed regularly
[9].

There are many ways of performing censuses and retrie-
ving fauna information. Species identification, for instance,
relies on general characteristics such as animal body
pattern, footprint, and sound. Manual techniques such as
animal tracking, footprint recognition or drawing specific
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Fig. 1: Causes of wildlife threats. Human behaviour is the
main cause to the threats to wildlife. [11].

animal characteristics were used in the past. However,
they are outdated. Ground cameras have been commonly
used before aerial imaging was made more effective for
this task. The use of UAVs and computer vision techniques
are currently used to aid the creation of wildlife censuses.
With these techniques we can capture images from above,
removing the occlusion of the environment and at the same
time process, the information faster [10].

In this TFG, we collaborate with Catalonia’s Agents Ru-
rals to create a computer vision system from aerial-thermal
imagery to aid the generation of wildlife censuses on Cata-
lonia’s territory. The Agents Rurals use quadcopters with
thermal and visible spectra cameras to create wildlife cen-
sus. They record from a-far mountain areas during the early
morning to observe higher contrast in the thermal images
between animals and their environment and manually count
the species. We propose to develop a computer vision sys-
tem aiming to reduce time and increase agility when cre-
ating wildlife censuses. However, this task has two main
challenges:

• Large recording distance: Otherwise animals would
run away if the drone were to be close enough.

• Forestry occlusion: animals are commonly observed
partially, since they hid between trees, rocks and vege-
tation.

The result of joining those problems make the task of
detecting animals from images difficult, since in most cases
they are seen in 2-8 pixel areas.

Considering the previous information, we need to fulfill
the following sub-objectives:

• Perform a survey and obtain infrared wildlife datasets.

• Develop an object detection algorithm for wildlife de-
tection on infrared images.

• Evaluate, using objective and coherent metrics, the al-
gorithm’s performance with benchmark datasets and
our own dataset.

1.1 Methodology

To achieve the project’s goals, a research project methodo-
logy has been followed: First, a state-of-the-art survey was
done to understand the technical context and possibilities.
Then, a baseline with a simple object detection method for
wildlife fauna from aerial-thermal images was implemen-
ted. After the baseline was settled, an evaluation was made
to find the system’s weaknesses. This was followed by
iterations where different approaches and upgrades were
considered to increase its performance.

During the development of this TFG, the Agents Rurals
unit acquired thermal sequences to develop the system.
Unfortunately, the amount of collected data was not
enough for the methodological development of a system.
For this reason, the proposed algorithm was done using
a bench-marking dataset, which did not have the same
characteristics as the acquired images by the Agents Rurals
but allowed to perform a study of wildlife detection from
aerial-thermal images.

The data used by the pipeline provided training, valida-
tion and testing subsets, where testing data was only used
during the test phase and never used during training, to
assure model generalization.

When evaluating the Object Detection model’s per-
formance the Mean Average Precision (mAP) [12] is
commonly used by Academia, hence, it was the performan-
ce metric for the developed systems.

At the beginning of the project, five stages were defi-
ned: Planning, Research, Experimentation, Analysis &
Improvement and Presentation. Each stage was defined
with multiple main tasks that can be found in the Gantt
[13] diagram See Figures A.1, A.2 in the appendix. During
the project development, short-term planning with Trello
Board [14] was followed. A workflow toward the next
tasks was defined in each stage.

The project was made in Python 3 and I used PyCharm
IDE connected to a container allocated within Computer
Vision Center computational resources. During the project
development, PyTorch was the main deep learning fra-
mework. Other core Python libraries were NumPy, Pandas,
Scikit-Image and OpenCV.

For the communication between me and my supervisor,
we used Microsoft Teams [15]. During the development of
this project, I also worked with Kanban [16], specifically
Trello Board’s framework [14]. Even in individual projects,
it can be used to increase productivity [17, 18].

For use and further improvement of the system, the code
and documentation can be found at GitHub [19].
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2 STATE OF THE ART

To achieve our goals and solve the problem, we need to
evaluate previous answers to similar problems that apply
the tools that we intend to use [10, 20, 21]. In this section,
we cover Deep Learning (DL) for Object Detection (OD),
Small Object Detection (Small-OD) and Thermal Infrared
(TIR) imaging.

2.1 Deep Learning and Object Detection

Deep Learning (DL) is the stat-of-the-art in several compu-
ter vision tasks, including OD. Over the years, many DL
OD models emerged increasing inference time and perfor-
mance [22]. However, there is a speed-performance trade-
off [23] that divided the landscape into two main meta-
architectures:

• Two-shot detectors (TSD): These perform region pro-
posal and then classification of those regions and refi-
nement of the location prediction. These have higher
accuracy but less inference speed compared to Single-
shot detectors.

• Single-shot detectors (SSD): These skips the region
proposal stage and yields final localization and con-
tent prediction at once. These produce faster results
but with less accuracy than Two-shot detectors.

Nowadays, we can find code repositories that group the
main OD proposals, such as Detectron2: a library that
propose a modular, extensive design that allows users to
plug custom module implementations [24, 25]. It counts
with an OD model zoo including Faster R-CNN, Mask
R-CNN or RetinaNet and other TSD or SSD.

One of the earliest SSD architectures is the You Only Lo-
ok Once (YOLO) family. Since the first version, YOLOv1
[26] was released in 2015, it has received incremental upda-
tes. In May 2020 the first version of YOLOv5 was availa-
ble for public use [27]. All YOLOv5 models are pretrained
with COCO [28] dataset. This framework is currently one
of the most used in the industry because of its easy training
and application for real-time OD.

In practice, real-time systems usually require tracking
after producing object detection results. In this topic,
implementations as YOLOv5 DeepSort [29] propose a
two-stage-tracker that generates predictions with a YO-
LOv5 architecture and applies tracking with the Deep Sort
algorithm [30]

In the context of wildlife surveillance, we can find some
works that use OD models to increase human performance.
Delplanque et al. [31] proposed the training and evaluation
of three OD models to detect six different animal species of
African mammals from aerial imagery, resulting in an 80%
precision in a custom dataset.

In another study [32], Barbedo et al. provided an extensi-
ve survey on Convolutional Neural Network(CNN) models
in the context of cattle monitoring, proving that deep lear-
ning and CNN can be used robustly used under non-ideal
terrain circumstances.

In Tibetan Plateau, a modified Faster R-CNN for kiang
detection [33] was used. The research concluded that the
adopted tactics can be applied to either a semiautomatic sur-
vey to accelerate manual verification by 25 times or an auto-
matic survey with an F1 score of approximately 90%. Hen-
ce, this work proved that UAS imagery and deep learning
can generate automatic/semiautomatic, high-performance
and efficient wild animal surveys and census creation.

Hong et al. [34] used 5 State-of-the-art OD models to
detect birds. Their results showed Average Precision values
ranging from 85% to 95% and an inference speed-accuracy
trade-off between Faster-RCNN and YOLOv3. Overall,
showing that deep learning, UAV imagery and OD can be
used for bird detection.

However, the previous case studies only tackle imagery
in the visible spectra. To better approach our problem we
have to perform a survey on TIR imagery and Small-OD
since these are the type of images to be processed in this
work.

2.2 Thermal Infrared Imaging and Small
Object Detection

Thermal imaging is the process of converting infrared (IR)
radiation (heat) into visible images that depict the spatial
distribution of temperature differences in a scene viewed by
a thermal camera [35]. It is used in different contexts due to
its capacity to differentiate the objects of interest from the
background.

In wildlife, detection is especially interesting since ani-
mals camouflage with their environment. Hence, TIR ima-
ging is commonly used in this subject.

In [36], Oishi et al. propose an application of the moving
wildlife algorithm (DWA) to drastically improve the detec-
tion performance by 48% compared to human performance.

Another example of this is the work proposed by Lee et
al. [37]. They proposed a Sobel filter method that provides
a 0.804 precision and 0.699 recall on a custom dataset.

In his thesis, Marais et al. [38] propose a system
including a region proposal algorithm and a deep learning
algorithm. The results showed 98% accuracy and human
workload reduction of 97%

Another problem that we need to face is the small size
of the objects of interest. To address this, several works on
this topic had been published. An example of such is this
pre-print by Benjumea et al. [39], they propose structural
modifications to [27] to increase by 6.9% the detection of
small objects and only add 3ms to inference time. Their
approach included modifications replacing the backbone for
a ResNet50 [40] and modifying the neck from a PANet [41]
to a biFPN [42].

Another example is the work proposed by Singh et al.
[43] presented a ”foveal”object detection framework with
the idea of skimming over the images and spotting interes-
ting regions that would be further processed, like human
vision. They applied Scale Normalized Image Pyramids
(SNIP) that enable attention to objects of different sizes
and an efficient spatial sub-sampling scheme called Scale
Normalized Image Pyramid with Efficient Resampling
(SNIPER). AutoFocus is the resulting algorithm for joining
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Table 1: Computer Vision Center computing resources avai-
lability. Not all CPU and RAM resources were used during
the project development.

CPU 4x Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
GPU 2x GeForce RTX 3090
RAM 187 GB
OS Ubuntu 18.04.5 LTS

Fig. 2: YOLOv5 consists of three parts:(1) Backbone: CSP-
Darknet, (2) Neck: PANet, and (3) Head: Yolo Layer. Fi-
gured borrowed from [47]

this contributions and increases 2.5-5x inference time.

To address the thesis goal, I will evaluate YOLOv5
[27] performance for thermal images, since all the before-
mentioned works employ RGB images. To do so, I use
BIRDSAI’s dataset [44], a savanna wildlife dataset from an
aereal-thermal perspective.

3 MATERIALS AND METHODS

In this section, we describe the data, preprocessing and used
models used during the development of this project.

3.1 YOLOv5
YoloV5 [27] is an open-source architecture family created
by Ultralytics for real-time OD purposes. It is considered
a state-of-the-art method because of its inference speed
without drastic performance loss, computational resources
demand and simplicity to train and deploy [45]. YOLOv5
is originally built in PyTorch [46] ML open-source fra-
mework, which is also known for its high abstraction level,
easy learning and development. It is considered one of the
top DL tools.

YOLOv5 architecture (see Figure 2) consist of three
parts: The input goes through a Cross Stage Partial Network
(CSPNet) [48] which perform feature extraction, and then
the data is fed to Path Aggregation Network (PANet) [41]
for feature fusion. Lastly, YOLO Layer outputs detection
results (class, score, location, size). The combination of
a CSPNet, which reduces computation and enhances per-

Fig. 3: In the image we can see two four real-world images
from the BIRDSAI dataset [44].

formance compared to other CNNs, jointly with a Feature
Pyramid Network (FPN)[49] such as PANet, that decreases
computation cost and enriches multi-scale OD makes YO-
LOv5 a very good fit to the project needs.

The architecture used in this project is a YOLOv5m that
can be found at [27].

3.2 Datasets
As already mentioned, at the time of developing this TFG
there was no annotated data from the acquisition services
captured by Agents Rurals. Due to that, a search was
done to identify datasets available, where to check the
performance of YOLOv5 on thermal data. There are no
aerial-thermal datasets that perfectly match the project
challenges. However, there exist two potential datasets:
The Benchmarking IR Dataset for Surveillance with Aerial
Intelligence (BIRDSAI) [44] and, NOAA Arctic Seals
2019 (Artic Seals Dataset) [50]. Both of them contain
labelled bounding boxes of thermal animals from an aerial
perspective. In practice, the thermal images from Arctic
Seals Dataset contain many sequences with corrupted
thermal information, which made this dataset unusable.
Consequently, we only use the BIRDSAI dataset, even
if the animals are bigger than what we can expect in
the animal species that are observable in the sequences
collected by Agents Rurals.

BIRDSAI [44] is a TIR video dataset containing night-
time images of animals and humans in Southern Africa. It
is composed of 48 real aerial videos and 124 AirSim’s [51]
synthetic aerial videos, for a total of 62k and 100k images,
respectively.

The dataset contains a total of 9 classes, including an
unknown class, human, elephant and lion in real and synt-
hetic data, giraffe and dog occur only in real data and cro-
codile, hippo, zebra, and rhino occur only in synthetic data.

In the released paper, the authors state that is interesting
the use of simulated data for this topic, since, is costly and
requires a lot of work to generate real-world data and anno-
tations. They created the simulated data with the AirSim-W
platform [52] and a savanna scenario also defined in [52].
They did the simulation from a UAV perspective.

A comparison between real-world and synthetic data can
be found in Figures 3, 5
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Table 2: BIRDSAI Dataset. Baseline-Real, experiment.
Metrics per class.

Class P R mAP@0.5 mAP@0.5:0.95
all 0.396 0.167 0.161 0.076
elephant 0.847 0.758 0.817 0.393
human 0.205 0.021 0.039 0.014
lion 0.002 0.014 0.000 0.000
giraffe 0.193 0.058 0.061 0.033
dog 1.000 0.000 0.000 0.000
unknown 0.128 0.153 0.046 0.017

BIRDSAI also include tracking information for each of
the animals and humans in the videos. Nevertheless, we
do not use it in this project since our focus is to validate
the performance of the YOLOv5 detector on single thermal
images.

4 EXPERIMENTS AND RESULTS

In this section, the different experiments carried out in my
work using BIRDSAI’s dataset 3.2 are presented, including
their purpose, design factors and details, jointly with the
results in an organised way.

YOLOv5m is the common model for all experiments.
Additionally, the default hyper-parameters are used, as
mentioned in the best practices and tips for training YO-
LOv5 [53].

All the experiments tune the image-size parameter
between 640 and 1280. this parameter re-scales the images,
making small object detection easier.

Also, training and validation are divided with an 80-20
ratio, and, none of the subsets shares the same frames of a
sequence.

4.1 Training with real sequences
The objective of this experiment was to define a first base-
line with the dataset, as they do in the original BIRDSAI’s
paper [44]. Hence, this experiment uses the default training
and test set proposed by the authors of the dataset.

This experiment was performed at first with Google Co-
laboratory’s free computational resources. Hence, it was
trained with only the real-world data since, the simulated
data could not fit the space requirements.

However, in this iteration mistakes were made. While
splitting the data between training and validation, instead
of splitting the sequences, the frames were divided between
the two subsets, therefore, the validation data was practi-
cally the same as the training data since they were sharing
contiguous frames. The results produced by this first itera-
tion had overfitting.

In the second iteration, this mistake was solved by
dividing the sequences into training and validation and not
the frames within the sequences. Additionally, this iteration
was performed with Computer Vision Center resources that
are stated at Table 1.

Table 3: BIRDSAI Dataset. Baseline-Total experiment.
Metrics per class.

Class P R mAP@0.5 mAP@0.5:0.95
all 0.399 0.153 0.156 0.059
elephant 0.848 0.674 0.744 0.283
human 0.399 0.070 0.104 0.035
lion 0.021 0.043 0.007 0.003
giraffe 0.054 0.060 0.062 0.026
dog 1.000 0.000 0.000 0.000
unknown 0.069 0.066 0.020 0.008

Fig. 4: This graphic compares the instances distribution of
the joined real-world and simulation training set. We can
also see from this perspective that the simulated data does
not help to balance the real-world instances.

In Table 2 we can see the results for the second iterati-
on of this experiment. We can observe that the model was
effective (high precision, recall and mAP) with the class ’e-
lephant’ but noneffective for the remaining classes. Hence,
we can suspect that either there are not enough instances of
the other classes. This is understandable since, most of the
data is simulated and used in training in the original paper.

This, naturally leads to the following second experiment,
training with real and synthetic sequences.

4.2 Training with real and synthetic sequen-
ces

In this experiment, the objective is, still, to define a
performance baseline for YOLOv5. And, as stated before,
we add the simulated data to the training stage, so we can
increase the number of instances per class and train the
model with more data.

In table 3 we can see the results for this experiment. After
adding the simulated data, there is no increase in the perfor-
mance of the model. By observing the simulated data in 4,
four classes that do not appear in the test set are added to the
training set. Also, the ’lion’ and ’dog’ classes have very few
representations in the training data. B. Therefore, the simu-
lated data does not solve the unbalance problem but made it
worse.

Additionally, the lack of domain transfer should be con-
sidered, since simulated data is different from real-world
data.

To have a dataset without the unbalance problem a subset
dataset is created with the most representative classes.
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Fig. 5: In the image we can see two four synthetic images
from the BIRDSAI dataset [44]. We can see a huge dispa-
rity between real-world data from Figure 3

4.3 Human-Elephant-Giraffe experiment
To understand whether the data or the model is the problem,
the experiment is simplified. The idea behind it is to only
use the three most representative classes: ’human’, ’elep-
hant’ and ’giraffe’ classes. The experiment name is abbre-
viated to ’HEG’. It is not necessary to move the other labels
to unknown, nor use the unknown class, since the sequences
are divided by classes and, in the targeted sequences, only
HEG classes appear.

Table 4: BIRDSAI Dataset. HEG experiment. Metrics per
class.

Class P R mAP@0.5 mAP@0.5:0.95
all 0.480 0.254 0.296 0.136
elephant 0.850 0.623 0.716 0.348
human 0.546 0.067 0.111 0.032
giraffe 0.045 0.073 0.061 0.029

In table 4 we can see the results of this experiment. Af-
ter simplifying the problem by only using three classes we
can see that results do not improve as expected. The per-
formance metrics of ’human’ and ’giraffe are very low. The
distribution of instances between training and test can be
seen in Figure 6.

Fig. 6: This graphic compares the instances distribution of
the proposed HEG training and test.

After this experiment, and taking an analytical look at the
original testing set, a different angle is tried. The hypothesis

behind it is that the test subset could contain sequences that
are very different from the training subset, difficulting the
model task to generalize.

4.4 Split & Rearrange

This experiment consists in, by only using the real data, mo-
dify the split between training and test. The test set can
include sampling bias since all the instances are extracted
from fifteen short video sequences that can be different from
the (also few and short) thirty-two training video sequences.
In Figure 7 can be seen the distribution between training and
test instances.

Fig. 7: This graphic compares the instances distribution of
the original training and test. Overall is an unbalanced da-
taset, also, there are no instances of dogs in the training set,
but there are in the test set.

To do so, all the real-world sequences are divided into
two and training and test subsets contain one-half of the
sequence each. This way we assure stratified sampling for
the test set. A visualization of the resulting distribution
can be seen in Figure 8. This experiment provides a fairer
distribution and assures that the sequences between training
and test are similar.

Fig. 8: This graphic compares the instances distribution of
the proposed training and test. It is a fairer distribution
between training and test, nonetheless, the dataset is unba-
lanced still.

In table 5 we can see the results of this experiment. As
expected, we can observe that the metrics considerably in-
crease compared to the other experiments, proving that the
dataset contains sampling bias.
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Table 5: BIRDSAI Dataset. Split & Rearrange experiment.
Metrics per class.

Class P R mAP@0.5 mAP@0.5:0.95
all 0.756 0.455 0.484 0.211
elephant 0.878 0.85 0.908 0.507
human 0.648 0.445 0.483 0.019
lion 0.754 0.176 0.158 0.057
giraffe 0.74 0.575 0.638 0.242
dog 0.753 0.020 0.033 0.018
unknown 0.764 0.668 0.683 0.251

4.5 HEG: Split & Rearrange
To see how the HEG experiment would perform with
the stratified sampling method, the HEG experiment is
repeated and applied this tactic.

Table 6: BIRDSAI Dataset. HEG: Split & Rearrange expe-
riment. Metrics per class.

Class P R mAP@0.5 mAP@0.5:0.95
all 0.797 0.639 0.707 0.329
elephant 0.892 0.834 0.899 0.509
human 0.748 0.450 0.539 0.219
giraffe 0.753 0.632 0.683 0.258

In table 6 we can see the results for this experiment. The
mAP increased by 0.4 compared to the HEG experiment
with the original training-test split.

5 DISCUSSION

In this section, knowledge is extracted from the results and
new questions are formulated towards future work.

Table 7: BIRDSAI Dataset. Class average results over the
experiments described in the section 4. Real and Sim are
the original real-world and simulated data. S&R stands by
Split & Rearrange; this subset is extracted from the real-
world data.

Experiment Data P R mAP@0.5
Baseline-Real Real 0.396 0.167 0.161
Baseline-Total Real+Sim 0.399 0.153 0.156
S&R Real-S&R 0.756 0.455 0.484
HEG Real 0.480 0.254 0.296
S&R-HEG Real-S&R 0.789 0.639 0.707

In Table 7, the general results for all the experiments are
shown. The S&R experiments are the ones with the best
performance. The first S&R experiment shows that strati-
fied sampling solves the sampling bias in the dataset since
it improves the precision, recall and mAP by 0.357, 0.302
and 0.323 points respectively.

In the S&R experiment where we only use the most re-
presentative classes (HEG), the performance also increases
with respect to the HEG baseline experiment in precision,
recall and mAP by 0.309, 0.396 and 0.411 respectively.

This result shows that when properly representing the
instances we can get better results.

The different experiments perform within the TFG
allowed the identification of a set of problems in the
bench-marking dataset used:

The main problem is that most classes are underrepresen-
ted and lack a proper number of instances. ¡PROVE¿.

This post by Ultralytics [53], empathizes that for proper
training of YOLOv5, a dataset should contain more than
1.5k images per class and more than 10k instances per class,
which is something that BIRDSAI’s struggles with.

The second one is that the simulated data does not help
to balance out the underrepresented instances. The simula-
tion data add classes that are not seen in the test set and
mainly increases the number of instances of the already
well-represented classes such as ’elephant. See Figure 4.

Moreover, using simulation data requires domain adap-
tation, see Figure 5, which is a technique that is not native
to YOLOv5 and was not applied in this work.

The third problem is that the original test set contains
sequences that are not representative of the training data.
Some of the previously stated issues include sampling bias,
and simulation data not representative of real data (classes
that are not seen in real-world data or the simulated data
being way different from real-world data). This can be
proven by the S&R experiments, where stratified sampling
is applied.

6 CONCLUSIONS AND FUTURE WORK

In this work, a system for wildlife census from aerial-
thermal images was implemented. For this, a survey on
computer vision and deep learning methods used for real-
time object detection and small object detection was perfor-
med. Moreover, datasets for the creation of wildlife censu-
ses using TIR images from an aerial perspective were revi-
ewed.

YOLOv5 was the chosen method for this task since it
showed better performance for RGB images.

While applying this algorithm to BIRDSAI’s dataset, the
results identified low performance.

A series of experiments were performed to analyze the
data. The experimentation concluded that the dataset had
class unbalance and sampling bias. A stratified redistri-
bution was proposed to fix these problems. The changes
increased the mAP by 33% when using the entire dataset
and 41% when exclusively using the HEG classes.

For future work, I would propose to implement oversam-
pling of the underrepresented classes, since YOLOv5 does
not count with this technique nor weighted losses by de-
fault.

Also, other experiments could be done with different
models other than YOLOv5, such as Fast-RCNN, Mask-
RCNN or other approaches that include domain adaptation
or multi-scale features.
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Additionally, some other points can be written down
from this TFG:

First, there are few low-quality datasets for wildlife ob-
ject detection from an aerial-thermal perspective. Hence, in
this field, more datasets are needed.

In the second place, before committing to BIRDSAI’s da-
taset, a more exhaustive data exploration should have be-
en done. Knowing that this was a very challenging dataset
would have been more obvious.

Foreseeing the upcoming dataset from Agent Rurals, it
is necessary to comment that it will be an even less trivial
dataset since the object occlusion will be way higher than
a savanna dataset such as BIRDSAI. Moreover, the size of
the objects will be a lot smaller.

REFERÈNCIES
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A PLANNING: GANTT DIAGRAM

The project executed the Gantt’s scheduling defined at Figures A.1, A.2

Fig. A.1: First part of the Gantt’s Diagram. This section tackles from the beginning of the project to the Progress Report
II

Fig. A.2: Second part of the Gantt’s Diagram. This section tackles from the Final Report Proposal to the Thesis Defense
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B BIRDSAI: INSTANCES PER CLASS

In this section, we can find BIRDSAI’s dataset instances
per class. The figures show different subsets used during
the experiments:

Fig. B.1: Test Data instances per class. This test set is com-
posed of only real-world sequences and is the one proposed
by the authors. However, it is unbalanced and contains very
few instances of the classes unknown, lion, giraffe and dog.

Fig. B.2: Real Training Data instances per class. This trai-
ning set is composed of only real-world sequences and is
the one proposed by the authors. However, it is unbalanced
and contains very few instances of the class lion and none
of the dog class.

Fig. B.3: This graphic showcase the instances per class
of the real-world data. As previously stated, it is class-
unbalanced.

Fig. B.4: Simulated Training Data instances per class.
This training set is composed of only simulated sequences.
However, contains very few instances of the underrepresen-
ted classes in the real-world data. The simulation adds clas-
ses that are not seen in the real-world data.

Fig. B.5: This graphic showcase the instances per class of
the real data.

Fig. B.6: This graphic showcase the instances per class of
the original test data.

Fig. B.7: This graphic showcase the instances per class of
the original train real data.
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Fig. B.8: This graphic showcase the instances per class of
the simulated data

Fig. B.9: This graphic showcase the instances per class of
the total data.


