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Semantic segmentation of ancient ceramics
based on hyperspectral data

Gerard Graugés Bellver

Resum - Les ceramiques han jugat un paper clau en el desenvolupament de I'arqueologia. Sén els
artefactes més habituals que es troben als jaciments arqueologics a causa de la seva composicié
que els fa molt duradors. Ser capag de datar-los i classificar-los és una part essencial de la feina
dels arqueodlegs. Aquest projecte se centra a classificar, a través de segmentacié semantica,
imatges basades en dades hiperespectrals de ceramiques de diferents regions i époques. Les
dades hiperespectrals son Utils per distingir entre diferents materials mitjancant la seva signatura
espectral, que és el que s'utilitza per a la classificacio. El sistema proposat s’ha dividit en tres
moduls. El primer modul consisteix en un algorisme de reduccié de dimensionalitat basat en el
”Principal Component Analysis” (PCA). En segon lloc, un modul de classificacié i finalment un modul
d’evaluacié. El modul de classificacié consisteix en dos algorismes d’aprenentatge computacional:
el "Random Forest” i "Support Vector Machines”, i un algorisme d’aprenentatge profund: la xarxa
neuronal U-net. Els resultats obtinguts han demostrat que la U-net té els millors resultats i és capag
d’aprendre a classificar les ceramiques agrupant-les segons trets comuns com categoria o origen.
La segmentacié semantica ha permes implementar classificacié per fragment, que ha incrementat
lleugerament els resultats aconseguits per segmentacié semantica de la U-net.

Paraules clau — Imatge hiperespectral (HSI), signatura espectral, aprenentatge profund, re-
ducci6 de dimensionalitat, Principal Component Analysis (PCA).

Abstract — Ceramics have played a key role in the development of archaeology. They are the
most common artefact found on archaeological sites because their composition makes them very
durable. Being able to date and classify them is an essential job for archaeologists. This project
focuses on classifying through semantic segmentation images based on hyperspectral data from a
number of ceramics from different types, regions and ages. Hyperspectral data is useful to distinguish
among different materials through their spectral signature, which is used in the classification. The
proposed system has been divided in three modules. The first module consists on a dimensionality
reduction algorithm based on a PCA. Second, a classification module and finally the evaluation
module. The classification module consists on two machine learning algorithms: the Random Forest
and the Support Vector Machines, and a deep learning algorithm: the U-net neural network. The
results obtained showed that the U-net has better results and is able to learn to classify the ceramics
by grouping them based on common traits such as category or origin. Semantic segmentation has
allowed to implement classifying by fragment, slightly improving the results obtained with semantic
segmentation through the U-net neural network.

Keywords — Hyperspectral image (HSI), spectral signature, deep learning, dimensionality reduction,
Principal Component Analysis (PCA).
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1 INTRODUCTION

[1], back when humans first discovered that using
fire to burn an abundant material, called clay,
transformed it into a new hard and durable material: the

THe craft of pottery started around 9000 years ago

o Contact e-mail: gerard.grauges @autonoma.cat ceramic. They discovered that giving shape to raw clay and
* Menci6 realitzada: Computaci6 o burning it would allow them to create containers for storing
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putacié) food and water, as well as decorative objects, among other
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Juny de 2022, Escola d’Enginyeria (UAB)



2 EE/UAB TFG INFORMATICA: Semantic segmentation of ancient ceramics based on hyperspectral data

Ceramics have been essential in the development of ar-
chaeology, [4]. This artefacts are the most recovered class
on the historical sites because they are able to survive on the
ground due to their materials properties. Although they are
commonly found only as fragments. They are easily dat-
able, providing not only information about their period, but
also about topics such as the social and economic status of
their owners, technological changes and many others.

The techniques and materials used to build ceramics have
improved and evolved ever since. Nowadays, ceramics are
still used, but the process to make them is far more sophis-
ticate. A mixture of different materials is used in order to
get the best quality and ensure its durability. The evolution
of the development of ceramics has not only varied through
the ages, but also depending on the region where they were
made.

An interesting characteristic from these materials is that
they have different spectral signatures, which is the variance
of their reflectance with respect to different wavelengths.
The aim of this project is to develop a system capable of
classifying ceramics from different parts of the world and
different ages by analysing their reflectance in hyperspectral
images.

A hyperspectral image is composed of hundreds of bands
which are collected at different wavelengths for the same
spatial area. It measures the spectrum of the light for each
pixel of the scene at different wavelengths. These image
bands conform a hyperspectral cube, where two dimensions
represent the spatial area and the third one the spectral con-
tent, (Figure. 1). Hyperspectral images will be useful for
our project because they provide how light behaves for each
different material, meaning that we can identify each mate-
rial by their spectral signature.

Hypercube

Reflectance

uv >NIR
Wavelength L

Fig. 1: Hyperspectral cube representation [5]

The issue that arises when using hyperspectral images is
that the high dimensionality of the data brings the problem
called the curse of dimensionality. This problem causes
that with a small number of training samples, the accuracy
of the classification decreases when the dimensionality
increases. Acquiring a large number of training samples
can be very costly and time-consuming. In order to solve
this, we can use methods that aim to select the most suitable
bands, called band selection, or combine them to compute
a reduced number of features, called band compression, to
reduce the spectral dimensionality.

This paper is organized as follows: section 2 reviews the
state of the art algorithms that have been proposed so far

of the project domain. Section 3 explains the methodology
that has been followed to develop our system, presents the
dataset used in our work and details the algorithms consid-
ered to build the system. The experimental work developed
and the analysis of the results are presented in section 4.
The last section describes the conclusions extracted from
the experiments and results and the future work.

2 STATE OF THE ART

For the sake of designing a proper approach to the intro-
duced ceramics classification problem, a bibliographic re-
search has been done. There are different parts involving
this classification problem. On the one hand data reduction
algorithms are necessary to deal with the curse of dimen-
sionality problem and reduce the computational complex-
ity required to process hyperspectral images. On the other
hand, a robust classifier algorithm must be parameterised to
assign each ceramic sample to its corresponding class.

This section briefly introduces different approaches on
how to deal with hyperspectral imaging. First some papers
aiming at classifying ceramics will be reviewed. Then some
of the dimensionality reduction algorithms used with hyper-
spectral images will be described, followed by analysing
different classification algorithms suitable for the project’s
purposes. Despite being in different subsections, classifica-
tion algorithms can also include the dimensionality reduc-
tion on their own structure, being a part of them.

2.1 Ceramics classification papers

Some papers related to classifying ceramics have been
found. The paper from George L. Miller, [6], tried to clas-
sify ceramics form the 17th and 18th centuries. This ap-
proach was based on classifying the ceramics using the dec-
oration from them. The work in [7] implemented mathe-
matical and computational tools for morphological descrip-
tion, classification and analysis of ceramics from the Iron
Age. All image-based system found in the bibliography are
based on standard color images, no paper has been found
trying to classify ceramics using hyperspectral images.

2.2 Dimensionality reduction

In order to deal with the problem of the curse of dimension-
ality the most common approach is applying dimensionality
reduction methods. Algorithms on this topic have also been
studied for data compression, since they lead to removing
redundant features, reducing the storage space required and
faster transmission and processing time.

There are two different types of approaches which are
reviewed in the following subsections.

2.2.1 Band compression

Band compression algorithms, also called feature extraction
algorithms, aim to reduce the dimensionality of the data by
transforming the original data into lower dimensional fea-
ture space with a defined criteria, [8].

Principal Component Analysis (PCA) has been widely
used when dealing with unsupervised learning. This tech-
nique and a significant number of variants like PCA-
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grounded correlation-based Segmented-PCA (SPCA) or
Spectrally-Segmented-PCA (SSPCA), among others, have
been developed to tackle the curse of dimensionality [9].
The PCA creates new uncorrelated variables, through linear
combination, maximizing the variance so that the minimum
information is lost.

Linear Discriminant Analysis (LDA) is used for super-
vised feature extraction. This algorithm has good results
when data can be linearly divided. Otherwise, when data is
non-linear it is used the kernel discriminant analysis (KDA),
[10]. LDA differs from PCA because it maximizes the sep-
arability between classes, aiming for the best representa-
tion for each one instead of aiming at the variance between
classes.

Compression algorithms can also be used as feature ex-
tractors for hyperspectral images. 3D-DCT (Discrete cosine
transformation) is a transform-based algorithm that con-
verts the raw pixels into a frequency domain using cosine
and inverse cosine transformation functions in the three di-
mensions from the image, [11]. Another example of a com-
pression algorithm used as feature extractor is the auto-
encoder [12]. It is a deep learning approach that is similar
to PCA. However, the autoencoder is used because it is able
to learn non linear transformations that are more adaptable
to the data.

2.2.2 Band selection

The objective of band selection algorithms is selecting a
subset of representative bands, from the set of bands of the
image, to achieve a similar or better performance as using
the original bands from the hyperspectral image in classi-
fication. This approach is feasible because, with hyper-
spectral data, there are always bands with redundant data.
Moreover, there can be certain bands that have more rele-
vant information than others depending on the objective of
the classification problem.

A ranking based method called Minimum Misclassi-
fication Canonical Analysis (MMCA), derived from the
Fisher’s discriminant function, was proposed in [13] to
rank bands according to their classification abilities. The
same work also proposed the application of clustering based
methods, such as k-means or the Affinity Propagation clus-
tering algorithm (AP). The latest aims to select the most
suitable bands to be the initial centroids of the clustering,
taking into account the correlation and similarity between
bands, instead of choosing the initial centroids randomly
like the k-means.

A deep learning approach for band selection has also
been proposed in [14]. The strategy designed is a Band At-
tention Module (BAM) included in a CNN architecture de-
voted to semantic segmentation. The proposed BAM con-
sists of five 3x3 2D convolution layers and two 1D convolu-
tion layers. This module infuses global information learned
from an image mask to increase the importance of the areas
that are more likely to improve the accuracy. Although it
has been referenced in this section, it is implemented within
a classification neural network, in this paper being a VG-
GNet.

2.3 Classification approaches

Classifiers are those algorithms that aim to describe the cat-
egory of new observations based on characteristics that have
extracted from training data. Some widely used algorithms
are Support Vector Machines (SVM) or Random Forests
(RM). However, deep learning approaches are being used
more and more because they have been able to further im-
prove the results obtained compared to classical classifiers.

Classification can be implemented to classify at different
levels. The first level is when algorithms classify the
whole image with a specific label. The second level is to
identify objects on an image and label them, whereas the
last one consists on labeling each pixel from the image,
task denoted as semantic segmentation.

To classify ceramics, there are two viable approaches,
classification by fragment or by pixel. We don’t consider
classifying the whole image because it could contain frag-
ments from different types of ceramics. On this project
the chosen approach has been semantic segmentation. It
has been selected because it is not always possible or easy
to separate the fragments from the background in an im-
age. Additionally, after the semantic segmentation frag-
ments can be classified using the mean label of each pixel
that belong to the same fragment. Several papers on this
topic have been studied, which use hyperspectral images
based on Convolutional Nerual Networks (CNN) models
for the semantic segmentation task.

The work in [14] proposed a neural network following
the structure of an eight-layer VGGnet. It was proposed a
simple neural network architecture, but this could be also
implemented with a CNN, ResNet or DenseNet.

CNN neural networks are usually used when considering
the spatial information from the hyperspectral images. On
the other hand, the CNN3D model was designed in order to
take into account both the spatial and spectral information
from the hyperspectral images, in the work of [15]. 3D con-
volutions are able to read the spatial information, as well as
the band dimension of the image. They are usually used for
medical images and action recognition in videos.

A hybrid neural network combining both CNN and
CNN3D was developed in [16], called HybridSN. This
consists of a CNN3D followed by a CNN, where the
CNN3D joins the spatial-spectral information that is then
learned by the CNN, which reduces the complexity of
using a CNN3D alone.

A Multiscale Convolutional neural network (MCNN)
was developed to learn the deep features of spatial relation-
ships, [17]. It constructs a pyramid structure that present
the spatial features at different scales, and then are concate-
nated with the spectral features to create a dataset for logis-
tic regression.

A framework called self-taught semi-supervised autoen-
coder (SuSA) is also used [18]. This framework is made of
two modules, one that extracts the spatial-spectral features
and the second one that classifies them.

The work in [19] also studied the viability of the U-net
neural network and some variations of it. The variations
employed in this paper were the residual U-net, that ben-
efits from the residual learning. Then the attention U-net,
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which incorporates attention gates (AG) that highlight re-
gions of interest and suppress irrelevant backgrounds. The
last variant was the recurrent residual U-net, it had attention
gates at each block from the architecture.

3 METHODS

This section introduces the methodology followed during
the project. Then we can find a description of the dataset
and the proposed system that has been developed for the
classification task.

3.1

A standard methodology has been followed in order to de-
velop the project. First of all, numerous papers regarding
similar topics have been studied to gain more knowledge of
the subject, which have been analysed in the previous state
of the art section. After reviewing the papers, the algorithms
and techniques that could better adapt to the problem were
chosen and implemented. The implementation step was fol-
lowed by experiments to test the results from the algorithms
and the analysis of the results.

The workflow mentioned was designed to achieve the
objective of the project, which was to develop and train
a model capable of classifying and distinguishing ceram-
ics from different ages and zones from hyperspectral im-
ages. To do so, the project has been divided in different
sub-objectives.

Methodology

» Curate the dataset: Acquisition of a created dataset that
was preprocessed to ensure the quality of the data.

* Select and implement dimensionality reduction meth-
ods.

* Select and implement classic algorithms for classifica-
tion.

* Select and implement deep learning classifier.

* Select and implement performance evaluation meth-
ods.

3.2 Dataset

The dataset used for the ceramics classification was ob-
tained through a collaboration between the “Institut Catala
d’ Arqueologia Classica” (ICAC) and the ”Centre de Visié
per Computador” (CVC) from the “Universitat Autonoma
de Barcelona”.

The dataset consist on hyperspectral images from differ-
ent kind of ceramics. The ceramics are between 17 different
classes to classify. This classes can be grouped depending
on different criteria such as region, kind of ceramic, age,
etc. From the 17 classes, the first two, A and B, are the
same kind: ”Campaniana”. The following 8 classes, from
C to K, belong to the same kind “Terra Sigillata”, but can
also be separated according to their region. As well as L and
M, which are more distinctive because of their region rather
than the kind of ceramic they are. N, P and Q are from the
same kind ”Amfora” also differing on their region. Finally,
R and S are the same kind of ceramic, but have different
ages, being R from the ancient Rome and S contemporary.

There are classes which have more images than others,
despite that, it was ensured that there would be the same
number of fragments of ceramic per class: 30. However,
having the same number of fragments doesn’t mean that
there are the same number of pixels. In Figure 2 we can
see the number of pixels per class, as well as the name for
each class and the letter that represents it. The fragments
per each ceramic have been divided in different sets because
they couldn’t fit on the same image. For each set of frag-
ment, three images were taken: one from the front, one from
behind and the last one from the side.

The whole dataset has a total of 174 hyperspectral images
from different types of ceramics of dimensions 1000*512
pixels and 224 bands. Out of all the images from the dataset,
approximately 93% of the pixels are from the background
while the 7% left correspond to the ceramics. For each im-
age, a black and white mask was created indicating each
fragment and the class they belong to.

The images were normalized using a white paper as a
reference. Despite that, some images presented issues in
certain pixels because they didn’t have the reference. In ad-
dition, Tipp-Ex had to be used to deal with imperfections
on some fragments of ceramics, this meant that those pix-
els from the Tipp-Ex presented normalized values over the
maximum of the reference. All this pixels were labelled as
background on their respective masks.

Fig. 3: Example of ceramic image, from the class ”Campa-
niana A”.

For the experiments, the dataset has been divided in three
different sets, and we can see the division of classes that has
been done on Table 1.

The camera used for the creation of the dataset was the
Specim FX10, [20]. The camera can capture the spectral
range of 400-1000 nm, with a high spatial resolution of
1024 pixels and 224 spectral bands of 5’5nm of spectral
resolution.

3.3 Proposed system

The proposed system is conformed by three modules. First
a dimensionality reduction algorithm, second a classifica-
tion algorithm, which has been divided into two different
versions to evaluate different algorithms of classification,
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Fig. 2: Graph showing the classes of ceramics and the number of pixels per class

b Terra Sigillata Africana A (TSA A), (H)
i Trra Sigillata Africana C (TSA C), ()
3 Trra Sigillata Africana D (TSA D}, (K)
Italica de cuina, (L)
_ Africana de cuina, (M)
Amfora italica campana, (N}
) Amfora bética Costa, (P)
Amfora betica Guadalguivir, [Q)
Material constructiu ceramic roma, (R)
Material constructiu ceramic contemparani, {5) ;i
o

Class | Train Validation | Test
A 3(111117) | 2(77729) | 1(50471)
B 7 (187180) 1 (49608) 1 (27607)
C 4(105219) | 4 (118478) | 1 (32724)
D 4 (129317) 1 (13362) 1 (42378)
E 5(171966) | 3(89889) | 1 (15734)
F 5 (122301) 3 (79044) 1 (31705)
G 5(117159) | 3 (81251) | 1(35744)
H 1 (28445) 4 (89439) 1 (36000)
J 4 (75512) 1(11357) | 1(28717)
K 3 (91558) 5(114097) | 1(17845)
L 6 (177391) | 2 (60400) | 1 (34367)
M 6 (164710) 2 (45716) 1 (34879)
N 10 (351014) | 1 (44762) | 1 (18786)
P 11 (429613) | 3 (104625) | 1 (23731)
Q 9(337687) | 8 (315144) | 1 (47793)
R 16 (570077) | 7 (285470) | 1 (32823)
S 5(233759) | 3(81658) | 1(22090)

Table 1: NUMBER OF IMAGES AND NUMBER OF PIXELS
PER CLASS.

and third, the evaluation metrics.

Dimensionality reduction algorithm: PCA. To imple-
ment this module, the PCA has been chosen because it is a
widely used dimensionality reduction algorithm. The PCA
is a technique that evaluates the correlation between differ-
ent variables, and then projects these variables into a new
dimensional space where they are no longer correlated. The
objective of the PCA is to trade a little accuracy for sim-
pler data. The covariance matrix is used to find the cor-
relation between variables. Once the covariance matrix is
calculated, it is used to compute the eigenvectors and eigen-
values. They are then used to project the linear product of
the variables that give the most information into the new
reduced dimensional space.

We wanted to compress the spectral information from
ceramics, to do so it was computed the mean and covari-
ance matrix from the ceramic pixels of all the dataset. Be-
cause of the expensive computational cost, this calculation
of the mean and covariance matrix was done incrementally.
The combined mean was calculated using the following for-
mula:

_ Ny * T1 + Ng * Ta
Te = (D

ny + no

where Z. is the combined mean, z; is the mean of the spec-
tral information of a set of ceramic pixels and Z5 the mean
of the spectral information of a second set of ceramic pix-
els, n; is the number of pixels in the first set and n5 is the
number of items in the second set.

To compute the covariance matrix first the variances of
each variable are calculated following (Eq. (2)). Then the
covariance matrix is calculated using (Eq. (3)).

B EC)Q]
(2)

where S? is the combined variance, S7 is the variance of
the first set of data and 522 the variance of the second set, .
is the combined mean of the two sets.

o2 _ nl* [S? + (21 — Zc)?] + n2 % [S5 + (Z2
¢ nl + n2

n1#[ST+ (@1 =Fc) * (1 —F) | 4125[S3 +(T2 =T ) +(§1 — Fe )]
nl+n2
(3)

where Cov is the combined covariance, Z. is the combined
mean of the two sets, Z; is the mean of the first variable of
the first set and 4 is the mean of the second variable of the
first set, the same way, Zo is the mean of the first variable
of the second set and ¥ is the mean of the second variable
of the second set.

Cov =

Classification algorithms. It has been divided into two
approaches. First two classic algorithms have been trained
in order to establish a baseline of results and define a ref-
erence. The second approach is a deep learning algorithm,
which has been chosen because deep learning has proven
an improvement of performance compared to classical ap-
proaches, achieved by extracting features that optimize the
classification.

Both classification algorithms types will be implemented
to do semantic segmentation. We have chosen semantic seg-
mentation because this project wants to serve as a base to
be able to use images from archaeological sites to find and
classify ceramics. Different backgrounds, dirt and because
ceramic fragment’s can come in different shapes and sizes
would make it too difficult to recognize whole ceramic frag-
ments.
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The classical algorithms selected have been Random for-
est and SVM. These two classic algorithms have been cho-
sen because they are both widely used and well-known for
their results with supervised classification.

The deep learning algorithm chosen has been the U-
net. The U-net architecture has been the one presented in
[21]. It was selected because it was designed for semantic
segmentation and has been proven very efficient in fields
such as bio-medicine or with satellite images for Geo sens-
ing. It consists on two parts which are an encoder network
followed by a decoder network. The encoder is used to
project the input image into feature representations. Then,
the learnt feature representations are projected in the pixels
space in the decoder, restoring the full image.

The U-net classifier receives as an input the images that
have the dimensionality reduced with the PCA. The ground
truth correspond to the classes for each image and has been
one-hot-encoded. Additionally, a model checkpoint call-
back has been implemented so that it stores the best model
during training.

A focal loss function has been developed to more
precisely assess the error from the neural network [22],
because this loss function is designed for imbalanced
classes. This loss function will be beneficial for the results
because it focuses on the wrong prediction classes instead
of the ones that have been predicted correctly. We are
interested in this loss because it prioritizes the wrong
predictions, which will help predicting those ceramics that
are harder than the rest.

Evaluation of the model. To evaluate the results ob-
tained from the classifiers, two metrics have been used. The
metrics chosen were precision and recall. Precision com-
putes the percentage of correct pixels that have been labeled
from all the pixels classified to that class. The recall cal-
culates from all the pixels from a certain class, how many
were correctly classified. They have been chosen because
they provide relevant information to assess the quality of
the classification algorithms.

4 EXPERIMENTS AND RESULTS

In this section, we describe the experiments conducted, as
well as the objectives intended and the results obtained from
them.

There are two different sets of experiments. The first set
consists on training the two classical classification algo-
rithms that have been previously mentioned, the Random
Forest classifier and the Support Vector Machine (SVM).
These algorithms have been trained with a sampling from
each class of ceramics. The second set consist on the train-
ing of the deep learning approach, the U-net neural network.

The first experimental results obtained have been the
principal components from the PCA algorithm. Both sets
of experiments have been trained using images after their
dimensionality had been reduced through the PCA. We se-
lected the first 5 principal components because we wanted
to preserve 96.5 % of the whole variance, (Figure. 4). So,
out of the 224 initial bands, they have been transformed into
5 selected principal components to reduce the dimensional-
ity of the images while preserving most of the information.

E) £ E)

Fig. 4: Cumulative variance per principal component ob-
tained with the PCA.

4.1 Baseline experiment: Classic approaches

The baseline experiment has been designed to train two
classic approaches. By doing this, we are defining a base-
line of results to try to improve with the deep learning ap-
proach.

Both algorithms, Random Forest and SVM, were trained
with 10000 pixels for each class of ceramics and the pixels
were chosen through random sampling. From the whole
sample of pixels, 30% was used as validation and the rest
for the training.

For the Random Forest, the number of estimators was
10. The results obtained showed that it was able to learn
some differences between different categories of the ceram-
ics. But the results were very poor.

For the SVM classifier, the regularization parameter was
1 and the kernel used was the radial basis function kernel
(rbf). By analysing the results we could see that it per-
formed a little better than the random forest classifier, but
the results were still poor.

Precision Recall
Class | RF SVM | RF SVM
A 0.31 | 042 | 0.32 | 0.14
B 0.43 | 0.55 | 0.40 | 0.61
C 0.12 | 0.14 | 0.15 | 0.39
D 0.27 | 043 | 0.32 | 0.36
E 0.10 | 0.21 0.10 | 0.02
F 0.12 | 026 | 0.12 | 0.12
G 0.13 | 0.25 | 0.13 | 0.08
H 0.09 | 0.11 | 0.09 | 0.40
J 0.22 | 0.50 | 0.21 | 0.19
K 0.09 | 0.09 | 0.09 | 0.05
L 0.08 | 0.40 | 0.08 | 0.00
M 0.18 | 042 | 0.17 | 0.20
N 0.17 | 0.28 | 0.16 | 0.09
P 0.14 | 0.14 | 0.18 | 0.38
Q 0.46 | 0.49 | 0.50 | 0.66
R 0.09 | 0.11 | 0.08 | 0.15
S 0.11 | 0.64 | 0.08 | 0.01

Table 2: RECALL AND PRECISION FOR RANDOM FOREST
AND SUPPORT VECTOR MACHINE.

Both algorithms got good results for the first two classes

of ceramics, that belong to the same category, (Table.2 ).
Although they had trouble to tell them apart. A big dif-
ference that we can see between Random Forest and SVM
is that the Random Forest results when classifying is able
to learn a little the right class for each ceramic. However,
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wrong predictions are distributed quite equally among all
others classes. On the other hand, the SVM classifier also
learns, better than the Random Forest, the right class for ce-
ramics, but wrong predictions are distributed between two
or three other classes that may belong or not to the same
category of the ceramic. SVM predicted that a lot of pixels
are from class C, H and P, being the three of them from dif-
ferent categories, while almost no pixels were predicted as
class E, L and S.

4.2 Deep learning experiments

This set of experiments has been designed to see if the re-
sults obtained from the classic approaches can be improved
through the deep learning classifier selected, the U-net.

The U-net was trained from scratch using Adam as the
optimizer, with a learning rate of 0.001. It was defined to
train for 350 epochs with an early stop on the validation
precision metric with a patience of 50 epochs. The exper-
iments involving the U-net architecture have been trained
with a batch size of 2 due to limitations in storing the im-
ages during training.

The experiments done using the U-net model have used
the dataset, which has been divided in three different
subsets. The first consists on 104 images for the training
of the model. A second set with 53 images is used as
the validation of the training. Finally, a third set with 17
images, one per class, is used for testing the results from
the training stage of the model.

All the pixels that belonged to the background, including
the pixels that presented issues during the normalizing pro-
cess, were masked in the loss function so that they were not
taken into account. This was done because they introduced
a huge imbalance in the dataset and we wanted the U-net to
focus on learning to classify the ceramics.

4.2.1 Experiment 1: classification by class

The experiment by class consisted on training the model
feeding it the images from the training subset with their
dimensionality reduced. The U-net model had to classify
between 17 classes.

The results were analysed using a confusion matrix, (Fig-
ure. 5), and can also be seen in Table 3. We could see that
the model was learning to classify each different class. The
mistakes that we can see are from ceramics that are very
similar to each other, such as classes A and B, which are
both ”Campaniana”. We can also see that the classes that
are “Terra Sigillata” are predicted between two sets, they
are usually labeled as C or F, for classes C-F and G or J for
classes G-K. This two sets coincide with the differences of
origin between them, except for G. The classes from C to G
are Hispanic, while classes from H-K are from Africa. We
can also see confusion between P, Q and N, because they
are all ”Amfores”.

A visual analysis from the predictions of the ceramics
showed how in those classes that are from the same category
or region are confused. While ceramics from the classes
”Campaniana” have almost no errors and both are labeled
as the same class, the rest of ceramics have quite a lot of
discrepancies. Despite the errors of predicted pixels, we can

Predicted label

Fig. 5: Confusion matrix with U-net model. Experiment
with background masked in the loss function.

see that they are from the classes that share common traits,
such as the kind or region. So we can see that, although it
makes mistakes, the model is able to learn relations between
classes. This can be seen on figure 6, where the ceramics
true class is represented as dark blue. The rest of colors
belong also to ceramics that are “Terra Sigillata”.

Predicted labels experiment 1

100
200
300
400

500

Fig. 6: Labels predicted for ceramic from class C in exper-
iment 1.

4.2.2 Experiment 2: cropped images

An important hyperparameter from neural networks is the
batch size. The batch size defines the number of samples
that are passed at the network at one time. A big batch size
can lead to poor generalization, whereas a small batch size
is not guaranteed to find the global optima.

That is the reason why another experiment was developed
in which we wanted to see if by increasing the batch size we
could improve the results obtained. To be able to increase
the batch size, the images were cropped into four parts. By
doing that, we were able to increase the batch size to 12.

The results obtained were similar to the previous exper-
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Precision Recall
Classes | Exp. 1 | Exp. 2 | Exp. 1 | Exp. 2
A 0.00 0.65 0.00 0.87
B 0.34 0.32 0.93 0.11
C 0.28 0.37 0.42 0.42
D 0.47 0.59 0.07 0.83
E 0.08 0.12 0.19 0.36
F 0.33 0.10 0.62 0.08
G 0.35 0.39 0.41 0.21
H 0.19 0.46 0.00 0.21
J 0.22 0.3 0.24 0.19
K 0.11 0.17 0.14 0.12
L 0.64 0.48 0.87 0.45
M 0.78 0.53 0.38 0.46
N 0.38 0.60 0.27 0.44
P 0.39 0.30 0.47 0.50
Q 0.63 0.41 0.50 0.43
R 0.43 0.45 0.88 0.63
S 0.45 0.72 0.00 0.07

Table 3: PRECISION AND RECALL PER CLASS FOR EX-
PERIMENT 1, CLASSIFICATION BY CLASS, AND EXPERI-
MENT 2, CROPPED IMAGES.

iment and can be seen on Table 3. It was able to learn to
classify ceramics, distinguishing the same relations as the
previous experiment. Although the distinction of region be-
tween the ceramics that are ”Terra Sigillata” wasn’t so clear.

4.2.3 Experiment 3: first classification by groups

This experiment was designed so that the classes from the
ceramics were grouped by different categories. We wanted
to see if by grouping them into different categories we are
able to classify them with better results.

The categories for the groups were chosen based on the
criteria specified by the archaeologists that provided the
dataset. The first group was “Campaniana” with classes A
and B, because they were both the same kind of ceramic.
The second group was “Terra Sigillata Vermella” grouping
C, D, E, F and G. This group presents ceramics that share
a common age and some are imitations from others, which
makes them very similar. The next group was ~Terra Sig-
illata Africana”, with classes H, J, K and M. This group
was separated from the other one because they are all from
Africa and have distinguishable traits from the rest of ce-
ramics. The fourth group was “Italiques”, with classes L
and N. This group criteria is the same as the previous one,
being this classes of ceramics from Italy. Another group
was ”Amfores” which grouped P and Q for being the same
kind of ceramic. Although class N is also from the kind
»Amfora” it has been chosen to group with the classes orig-
inated from Italy. The last two classes R and S, were left as
different groups.

This experiment used the full sized images, not the
cropped images from the previous experiment. The results,
(Table. 4), show that the classifier is able to learn with good
results all groups of ceramics except one. We can see that
the groups that were “Terra Sigillata” but from different
regions are able to be distinguished with good results, al-

though the mistakes made are between this two groups.

Classes R and S haven’t been able to tell apart and they
have also been confused with the group ”Amfora”. The rea-
son for them to be very difficult to tell apart is because when
the PCA is applied their spectral signature becomes very
similar, except for class Q. They have more notable differ-
ences when they haven’t had the transformation from the
PCA, which indicates that a dimensionality reduction algo-
rithm that preserves those differences, such as a band selec-
tion algorithm, may improve the results obtained. We can
see their spectral curve in Figure 7 for each band and Fig-
ure 8 for each principal component obtained from the PCA.
Images P and Q
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Fig. 7: Spectral curve per band for group “Amfora” and
classs R and S.
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Fig. 8: Spectral curve per principal component for group
”Amfora” and classs R and S.

Class Precision | Recall
Campaniana (AB) 1.00 0.90
Terra Sigillata vermella (CDEFG) | 0.8 0.79
Terra Sigillata Africana (HIKM) 0.65 0.74
Italiques (LN) 0.70 0.62
Amfores (PQ) 0.83 0.69
Mat. constructiu Roma”(R) 0.46 0.94
Mat. constructiu contemporani”(S) | 0.00 0.00

Table 4: PRECISION AND RECALL PER GROUPS FROM EX-
PERIMENT 3.

4.2.4 Experiment 4: second classification by groups

In this experiment we defined a different set of groups from
the previous one. The difference between this experiment
and the previous one is that classes L, M and N have been
separated and classified as a group each one.

We want to see whether the classifier is able to tell this
aforementioned classes apart or not. If they couldn’t be dif-
ferentiated, we wanted to see if class N would be more sim-
ilar to the category ”Amfores” or to the other ceramic that
is also from Italy, class L. The same way was for class M,
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Class Precision | Recall
Campaniana (AB) 1.00 0.95
Terra Sigillata vermella (CDEFG) | 0.84 0.66
Terra Sigillata Africana (HIK) 0.53 0.72
Italica de cuina (L) 0.44 0.82
Africana de cuina (M) 0.78 0.32
Amfora italica campana (N) 0.54 0.67
Amfores (PQ) 0.73 0.64
Mat. constructiu Roma” (R) 0.39 0.69
Mat. constructiu contemporani (S) | 0.95 0.03

Table 5: PRECISION AND RECALL PER GROUPS FROM EX-
PERIMENT 4.

which we wanted to see if it would be similar with the ce-
ramics from Africa or not because it’s a different kind of
ceramic.

After analysing the results, (Table. 5), we can see that
class M has been mostly confused with class L. The class N
has been proven that it has more similarity with the group
”Amfores”, rather than with the other ceramic from Italy,
class L. Class R has had good results, with a 0.69 recall,
because it was usually able to classify ceramics of class R,
but the precision is only 0.39 because ceramics from class
S were also labeled as class R. When the classifier failed to
predict a pixel from a ceramic of class R, it was confused
with group ”Amfora”.

4.3 Fragment classification

After analysing the results obtained from the classifiers
through semantic segmentation, an interesting approach
was to label whole fragments from their prediction. The
predicted label for the whole fragment is chosen by com-
puting the most predicted class out of all the pixels from
that fragment.

First, the fragments were labeled using the results from
the first deep learning experiment. We are able to see that
the results by labeling whole fragments have a slight im-
provement compared to labeling by pixel. This is because
by taking the maximum predicted label per fragment, the
isolated errors from wrong predictions that are only in some
pixels are corrected. We can see that on the confusion ma-
trix in figure 9.

The results obtained when labeling per fragment with the
others deep learning experiments showed that they also fol-
lowed the same pattern. They also had a slight improvement
of the results.

5 CONCLUSIONS AND FUTURE WORK

In this article, we have designed a computer vision system
to classify ceramics based on hyperspectral data. Our sys-
tem is composed of three modules. The first one consists
on a dimensionality reduction algorithm based on a PCA.
Second, a classification module and finally the evaluation
module. The classification module consists on two classic
machine learning algorithms, the Random Forest and the
Support Vector Machines, and a deep learning approach:
the U-net neural network.

Confusion matrix fragments U-net

TFue label
- ® — I & m m O N @ »

H ] K
Predicted label

A4 B C D E F G L M N P Q R 5

Fig. 9: Confusion matrix labeling fragment.

We have been able to see that the deep learning approach
has obtained better results than the classical algorithms and
that the ceramics can be classified by category using their
spectral signature. This was expected, because the deep
learning algorithm learns the information from the images
taking into account the neighbours while the classic ap-
proaches learn each pixel independently.

The results obtained proved that there is a significant
difference that can be used to classify them. Results have
improved considerably, because the classic approaches had
a precision and recall close or lower than 50% in their
predictions. On the other hand, for classes such as the ones
that were “Campaniana”, the U-net achieved a 100% of
precision and 90% of recall in experiment 3, and 100%
precision and 95% recall in experiment 4. The groups
“Terra Sigillata vermella” and “Terra Sigillata Africana”
have also been able to be distinguished in both experiment
3 and 4 with notable results. Experiment 3 achieved a
precision of 80% and a recall of 79% for the first group
and a precision of 65% and a recall of 74% for the second
group. Experiment 4 achieved a precision of 84% and a
recall of 66% for the first group and a precision of 53% and
a recall of 72% for the second group. Better results were
expected for the ceramics that belong to the last classes.
They were confused because key information about their
spectral signature was lost due to the dimensionality
reduction of the PCA.

Semantic segmentation has proven efficient in clas-
sifying the ceramics and also using the results to then
label by fragments. The results obtained were slightly
better than semantic segmentation. For example, using the
predictions from experiment 3, the precision for “Terra
Sigillata Vermella” increased 5% and the recall 6%. A
similar increase happened for “Terra Sigillata Africana”,
where precision increased by 10% and the recall by 5%.

Due to the lack of state of the art surrounding the clas-
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sification of ceramics based on hyperspectral images, this
project has been able to establish and define the first ex-
periments and a baseline of results to take into account and
further improve.

After reviewing all the results, we believe that the U-net
neural network has proven efficient in classifying the ce-
ramics. We have left for future work implementing a band
selection algorithm to see if it is able to preserve more im-
portant information to distinguish the ceramics.
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