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Detección de Anomalı́as en Ataques
Epilépticos con Autoencoders

Enrique Ruiz Amakrache

Resumen

En este trabajo se propone realizar un aprendizaje automático para la detección de anomalı́as en
casos de epilepsia a través del análisis de señales EEG. Se realizará un estudio del impacto/beneficio
de incorporar la temporalidad en modelos de redes neuronales LSTM, principalmente Autoencoders,
capaces de clasificar anomalı́as.

Su prevención mejorarı́a la calidad de vida de los pacientes reduciendo el número y gravedad de
las lesiones que la epilepsia ocasiona, con el fin de tomar las suficientes medidas preventivas.

Previamente se han aplicado distintos modelos (Random Forest, SVM, KNN,..) que permiten
realizar clasificaciones con precisiones entre el 80 % y 98 %. Los resultados de emplear Autoencoders
muestran un 85,6 % de precisión en la clasificación de anomalı́as en señales EEG .

Palabras clave– Ataques epilépticos, redes neuronales, predicción, Redes Neuronales Recurren-
tes(RNN), LSTM, Autoencoders, Series Temporales, anomalı́as...

Abstract

In this work, it is proposed to carry out machine learning for the detection of anomalies in cases
of epilepsy through the analysis of EEG signals. A study of the impact/benefit of incorporating
temporality into LSTM neural network models, mainly Autoencoders, capable of classifying anomalies,
will be carried out.

Its prevention would improve the quality of life of patients by reducing the number and severity of
injuries caused by epilepsy, in order to take sufficient preventive measures.

Different models have been previously applied (Random Forest, SVM, KNN,...) that allow
classifications to be made with precision between 80% and 98%. The results of using Autoencoders
show an 85.6% accuracy in the classification of anomalies in EEG signals.

Keywords– Epileptic seizures, neural networks, prediction, Recurrent Neural Networks (RNN),
LSTM, Autoencoders, Time Series, anomalies...

✦

1 INTRODUCCIÓN

LA epilepsia es un trastorno del sistema nervioso
central (neurológico) en el que la actividad cerebral
normal se altera, lo que provoca convulsiones o

perı́odos de comportamiento y sensaciones inusuales, y a
veces, pérdida de la consciencia.
Estas convulsiones incontroladas podrı́an provocar daños
cerebrales, lesiones graves, o incluso la muerte de sus
pacientes en casos de accidentes de tráfico o circunstancias
de riesgo.
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Las crisis epilépticas generalmente duran apenas unos
segundos o unos minutos, después de los cuales finalizan
y el cerebro vuelve a funcionar con normalidad. La forma
de manifestarse una crisis depende de la parte del cerebro
afectada y la causa de la epilepsia.

Existen dos grandes tipos de crisis epiléptica: las cri-
sis focales y las generalizadas.

Las crisis focales son más frecuente, comienzan en
una parte delimitada del cerebro y pueden manifestarse de
diversas formas:

• Crisis parcial simple: se produce una alteración del
movimiento, la memoria y las sensaciones, además de
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los sentidos de la vista y el oı́do. La persona no pierde
el conocimiento.

• Crisis parcial compleja: la persona pierde el
conocimiento y puede aparentar un estado de trance.
Puede darse una repetición compulsiva de ciertos
movimientos. Aproximadamente, dos tercios de las
personas que padecen epilepsia sufren este tipo de cri-
sis.

• Secundariamente generalizada: comienza como una
crisis parcial y se extiende al resto del cerebro con-
virtiéndose en una crisis generalizada.

Por otro lado las crisis generalizadas empiezan si-
multáneamente en todo el cerebro y provoca la pérdida de
conocimiento. También pueden manifestarse de distintas
formas:

• Epilepsia menor o pequeño mal, pueden causar un
parpadeo rápido o la mirada fija a lo lejos por unos
pocos segundos.

• Epilepsia mayor o gran mal, pueden hacer que la per-
sona grite, pierda el conocimiento, se caiga al suelo,
tenga rigidez o espasmos musculares.

2 ESTADO DEL ARTE

2.1 Trabajo Previo
Hasta la actualidad, se han empleado técnicas de clasifi-
cación de señales EEG con resultados muy positivos
Existen multitud de técnicas dentro del aprendizaje super-
visado, de las que destacamos K-NN, el clasificador del De-
scenso del Gradiente Estocástico(SGD), máquinas de so-
porte vectorial(SVM), Random Forest y CNN.

• KNN (K-Nearest Neighbor classifier): El clasifi-
cador K vecinos más cercanos es un clasificador no
paramétrico que predice las clases desconocidas en
función de las clases asociadas con las k (número de
vecinos) que están más cerca. Utiliza una regla de de-
cisión de mayorı́a simple (la media de los k valores).

Fig. 1: K-Nearest Neighbor Classifier

• SGD (Stochastic Gradient Descendent): Realiza una
Clasificación Lineal (SVM, logistic regression...) uti-
lizando el optimizador del descenso del gradiente es-
tocástico (SGD) para entrenar.
Es un clasificador muy eficiente con conjuntos de datos
grandes, esto se debe a que el algoritmo trata con las
instancias de entrenamiento una a una, de manera in-
dependiente.
El modelo aprende el gradiente o la dirección que debe
tomar el modelo para reducir los errores (diferencia en-
tre el valor real y el predicho).

• SVM (LinearSVM): Las Máquinas Vector Soporte en-
cuentran la mejor separación posible entre clases. En
el caso de las SVM Linear, crea una lı́nea recta que
separa de la mejor manera las dos clases.
En la mayorı́a de problemas de aprendizaje au-
tomático existen múltiples dimensiones, en estos ca-
sos, la SVM encuentran el hiperplano que maxi-
miza el margen de separación entre estas clases.

Fig. 2: Support Vector Machines

• Random Forest: Es uno de los algoritmos más potentes
que existen actualmente, se basa en Árboles de de-
cisión y métodos de ensamblaje. Es una combinación
de árboles predictores en el que cada árbol depende de
los valores de un vector aleatorio, probado independi-
entemente y con la misma distribución para cada uno
de estos.
Utilizan el mismo algoritmo de entrenamiento para
todos los predictores y los entrenan con subconjun-
tos distintos aleatorios del conjunto de entrenamiento.
Esta técnica se conoce como “bagging”, en lugar de
buscar la mejor caracterı́stica cuando divide un nodo
(árboles de decisión) busca la mejor caracterı́stica de
un subconjunto aleatorio de caracterı́sticas.

• Convolutional Neural Network (CNN): Es una clase de
redes neuronales artificiales (RNA) capaz de estable-
cer relaciones no lineales entre variables de entrada y
salida. Cada neurona artificial se somete a una función
de activación que es modelada por una combinación
lineal de las entradas de dicha neurona y que da como
resultado su salida.
Se basa en el funcionamiento del sistema neuronal hu-
mano, un sistema complejo, no lineal y paralelo. Este
sistema se conforma de interconexiones entre neuronas
formando un punto clave para el procesamiento del
conocimiento.
Tienen aplicaciones en el reconocimiento de imágenes
y vı́deos , sistemas de recomendación, análisis y clasi-
ficación de imágenes, procesamiento de lenguaje nat-
ural y series temporales.

2.2 Resultados hasta la actualidad

En 2019, Nandy [5] consiguió mediante un clasificador
SVM una precisión del 97,05% en la clasificación de
ataques epilépticos.
Un año después, Almustafa [4] utilizó varias técnicas de
aprendizaje automático, entre ellas las mencionadas ante-
riormente, obteniendo la mayor precisión para el Random
Forest, con una precisión del 97.08%.
Recientemente, Shekokar [7] propusieron una técnica de
clasificación de señales de EEG basado en un modelo
LSTM. Este modelo afirma tener una precisión del 98,5 %.
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En 2022, Chirasani y Manikandan [6] propusieron inte-
grar un mecanismo de atención jerárquico a un modelo
basado en CNN mediante el cual obtuvieron precisiones del
96.34%.
Los resultados de estas técnicas se muestran ordenados en
la siguiente tabla:

Modelo Precisión
LSTM 98,50%
Random Forest 97.08%
SVM 97.05%
CNN 96.34%
KNN 95.23%
SGD 81.92%

2.3 Paradigmas
En este trabajo se pretende mostrar de forma detallada el
proceso de clasificación de los casos epilépticos mediante
el empleo de redes neuronales recurrentes (RNN), ver
Figura 3. Estas redes, caracterizadas por el uso de datos
secuenciales, contienen bucles de retroalimentación en
las capas recurrentes dotando a la red de una memoria
temporal.

Lamentablemente, este tipo de redes no resuelven las de-
pendencias temporales a “largo plazo”, como es nuestro
caso, debido a que el gradiente de la función de pérdida
disminuye exponencialmente con el tiempo (Problema de
desvanecimiento de gradiente).

Fig. 3: Red Neuronal Recurrente

Para solventar este problema, existen ciertos posibles
paradigmas:

1. Redes Long short-term memory (LSTM), son una
extensión de las RNN muy útiles para el aprendizaje
profundo sobre datos secuenciales.
A diferencia de las RNN se caracterizan por el uso de
unidades especiales además de las unidades estándar.
Estas unidades especiales utilizan un conjunto de puer-
tas para controlar cuándo la información ingresa a
la memoria, cuándo sale y cuándo se olvida. Esta
arquitectura (ver Figura 4) les permite aprender de-
pendencias a largo plazo. Son muy usadas en el re-
conocimiento de voz y el reconocimiento de escritura.

2. Transformers, se trata de un modelo de Machine
Learning que al igual que la redes LSTM están

Fig. 4: Long short-term memory (LSTM)

diseñados para manejar datos de entrada secuenciales.
A diferencia de las redes LSTM, este modelo mantiene
la propiedad de conexiones residuales, esto permite
que los gradientes fluyan a través de las redes direc-
tamente.
Esta propiedad reduce el olvido de algunas carac-
terı́sticas del conjuntos de datos de entrada durante el
entrenamiento.

3. LSTM con conexiones residuales, éste es el
paradigma curioso, consiste en utilizar las conexiones
residuales (ver Figura 5), llamadas también “Skip
Connetions”, en una red neuronal LSTM con el
objetivo de reutilizar caracterı́sticas entre los bloques
de la red.

Estas conexiones, empleadas también en los Trans-
formers, omiten algunas de las capas de la red
neuronal y alimenta la salida de una capa como
entrada a las siguientes capas.
Gracias a estas conexiones se evita el problema de la
degradación, en el cual, el rendimiento del modelo
disminuye con el aumento de la profundidad de la
arquitectura de la red durante su entreno.

Fig. 5: Bloque con una “Skip Connection”

4. Fully Convolutional Neural Networks (FCN),
aunque las CNN (Redes Neuronales Convolucionales)
predominan en el uso de conjuntos de datos de
imágenes, también pueden ser más útiles que las
RNN en el uso de datos temporales, gracias a que
presentan una arquitectura (FCN) que se caracterizan
por realizar únicamente operaciones de convolución,
es decir, sin capas completamente conectadas.

Las CNN son computacionalmente más baratas
debido a que aprenden por lotes mientras que las
RNN se entrenan secuencialmente y no pueden usar
la paralelización porque debe esperar los cálculos
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anteriores.
Pero no todo son ventajas, cuando se trata de que
el modelo dependa de un largo historial y maneje
diferentes tamaños de entrada y salida, las RNN son
más adecuadas para esas tareas.

5. LSTM Autoencoder, este modelo busca aprender
una representación comprimida de una entrada. Son
capaces de aprender la dinámica compleja dentro del
ordenamiento temporal de las secuencias de entrada,
ası́ como de usar una memoria interna para recordar
o usar información a lo largo de largas secuencias de
entrada.

Su arquitectura interna se organiza en un Codificador-
Decodificador LSTM (ver Figura 6) que permite
usar el modelo para admitir secuencias de entrada de
longitud variable y para predecir o generar secuencias
de salida de longitud variable.

Fig. 6: Arquitectura de un Autoencoder

La gracia de usar un Autoencoder sobre señales EEG
es detectar las posibles anomalı́as presentes en las
señales en función a la capacidad del modelo para
recrear la secuencia de entrada.

El modelo se entrenarı́a sólo con señales EEG
normales permitiendo obtener una señal de salida muy
similar a la señal de entrada. Sin embargo, si la señal
de entrada es anómala, la representación resultante
del Autoencoder diferirá de la entrada que se le ha
proporcionado.

El cálculo de la función de perdida entre la en-
trada y la salida y la definición de un “Threshold”
nos permitirá clasificar las señales como normales o
anómalas.

Conocidos los diferentes modelos, este proyecto se en-
focará principalmente en el análisis del impacto/beneficio
de incorporar la temporalidad en un modelo LSTM Au-
toencoder, capaz de detectar anomalı́as y clasificar ataques
epilépticos. Compararemos los resultados de emplear un
Autoencoder con los modelos actuales de clasificación.

3 OBJETIVOS

1. Familiarización y estudio de la temática

• La base de datos: los datos originales se encuen-
tran bastantes dispersos en cuanto a información
se refiere. Hay mucha información que hay que
tratar (los pacientes, los canales de las señales,
el tamaño de las ventanas temporales,...) para
generar una entrada definida.

• Tipos de redes : investigar y entender los con-
ceptos generales de las redes usadas hasta el mo-
mento, incluyendo sus caracterı́sticas y diferen-
cias.

• Integración de los apartados anteriores: estudiar
la posibilidad y el método de integrar la base de
datos al modelo.

2. Proyección de canales Los 21 canales de las señales
EEG proyectan diferentes tipos de actividad eléctrica
cerebral, como la actividad de origen extra-cerebral,
el parpadeo, el movimiento, el sudor, etc.
Componen una dimensión más de los datos y presen-
tan el problema de cómo estructurarlos para que el
entrenamiento sea el correcto debido a que los canales
no miden las señales de la misma manera. Esto hace
que los resultados difieran en función a la distribución
que les asignemos.

Se han utilizado 3 tipos de disposición de los
canales:

• C3-C4: Consiste en emplear únicamente el canal
resultante de la resta de los canales C3 y C4, con-
siderado el canal con mayor importancia para la
detección de la epilepsia. Nos permitirá reducir
la información redundante de los otros canales.

• Canales consecutivos: Concatenar los canales
con el fin de tenerlos a todos en cuenta y reducir
una dimensión en los datos.

• Media aritmética: Realizar el promedio de to-
dos los canales, considerando, de manera pro-
porcional, la información procedente de todos los
canales. Se partirá desde esta configuración.

3. Disposición de las ventanas Si las ventanas de las
señales no están dispuestas de manera secuencial,
no estarı́amos aplicando la temporalidad al modelo
LSTM. Para ello, hay que transformar las ventanas,
muestreadas a 128Hz (128 valores por cada segundo
de señal), en una disposición que contenga un conjunto
como entrada. Es un parámetro ajustable.

En el proceso de transformación se ha teniendo en
cuenta por igual las señales de todos los sujetos. Lo
malo de esto es que podrı́a ocasionar una estrati-
ficación de la población (Population Stratification1).
Pero al tener pocas ventanas de cada paciente y nu-
merosos pacientes, obtendremos mejores resultados
tratando los sujetos como uno solo en lugar de indi-
vidualizarlos dentro del modelo.

1La estratificación de la población surge cuando diferentes propor-
ciones de casos son tomados de muestras de sujetos diferentes, lo que
provoca que cualquier influencia en los resultados se deba a diferencias
entre sujetos en lugar del estudio en sı́.
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4. Baseline Model El primer modelo a desarrollar será
una red LSTM Autoencoder con proyección linear que
permita reconstruir una ventana suministrada como in-
put y clasificar su salida.

Como datos de entrada se realizará el promedio de
los canales y las ventanas se insertarán en conjun-
tos de longitud variable para cada entreno. De esta
forma comprobaremos cómo responde un Autoen-
coder frente a la detección de anomalı́as epilépticas.

5. Selección del umbral y métricas de evaluación Una
vez entrenada la red, hay que definir una función de
pérdida para calcular la desviación entre las predic-
ciones realizadas y los valores obtenidos de todas las
muestras. Mediante la representación de las desvia-
ciones podemos establecer un umbral que nos permi-
tirá clasificar basándose en las pérdidas de ventanas
anómalas y no anómalas.

Para evaluar la exactitud y precisión del modelo se em-
plearán las principales métricas de clasificación bina-
ria: Precision, Recall, F1, Accuracy y la matriz de
confusión. Estas métricas están implementadas en la
librerı́a “Sklearn.metrics”.

6. Optimización del modelo La optimización se re-
alizará atendiendo a las métricas de evaluación. Se
modificarán los parámetros generales en busca de la
mejor configuración de la clasificación. Entre estos
parámetros tenemos:

• Disposición de los canales
• Número de épocas de entreno
• Encoding Dimension2

• Learning Rate3

• Número de ventanas y de muestras

7. Outputs Capacidad para clasificar ventanas emple-
ando diferentes “outputs”. Estas salidas pueden
tener diferentes dimensiones, la clasificación se puede
obtener sólo de la última ventana de una secuencia, o
también de un conjunto de ventanas secuenciales (re-
quiere modificación de las entradas a la red).

4 PLANIFICACIÓN DEL TRABAJO

El trabajo a realizar se va a dividir en cuatro fases objeti-
vas, a cada fase se le estima una dedicación del tiempo total
invertido de todo el trabajo:

4.1 Fase inicial (35% del tiempo total)
La primera fase consiste en entender el funcionamiento de
las redes neuronales sobre datos secuenciales, en nuestro
caso, las señales EGG tratadas. Además de entender la
definición de los datos.
Por otro lado, se ha de estructurar estos datos de entrada
al modelo, eligiendo una aproximación y disposición
adecuada de las señales EEG en ventanas temporales
secuenciales.

2Parámetro que establece el ratio de compresión, relacionado al número
de neuronas ocultas en cada capa de la red

3Parámetro de ajuste en un algoritmo de optimización

Una vez estructurados los datos de manera correcta,
pasamos a la elaboración del modelo clasificatorio.

4.2 Fase implementación (30% del tiempo to-
tal)

La siguiente fase comienza con la implementación y
entrenamiento de la red LSTM Autoencoder. En esta
fase se ven los primeros resultados de cómo afecta el uso
de la temporalidad en un Autoencoder. Además de usar
diferentes disposiciones de canales y ventanas.

4.3 Fase testeo (20% del tiempo total)
Una vez realizado el entrenamiento, pasamos a la fase de
validación, en la que comprobamos la salida obtenida con
el groundtruth de los datos.
Se cuantificarán los resultados mediante el uso de métricas
y se realizarán modificaciones necesarias para opti-
mizar/mejorar la exactitud del modelo.

4.4 Fase final (15% del tiempo total)
La ultima fase consistirá en el análisis y documentación
de los resultados obtenidos de la fase previa además de la
elaboración del informe final y la presentación.

5 METODOLOGÍA

5.1 Tratamiento de datos
Este proceso implica eliminar la información redundante,
reducir el número de dimensiones realizando combina-
ciones entre los diferentes canales de las señales EEG y
establecer los parámetros iniciales.

Como datos previos al estudio y creación del modelo pre-
dictivo partimos de lı́neas filtradas de actividad eléctrica
cerebral. Estas lı́neas proceden de 22 sujetos (5 hombres
de 3 a 22 años; y 17 mujeres de 1.5 a 19 años) que padecen
convulsiones intratables y han sido recopiladas en el Hos-
pital de Niños de Boston. Constan de señales multicanales
EEG (ver Figura 7) agrupadas en 23 casos.

Fig. 7: Señales EEG durante un ataque epiléptico

La base de datos inicial, CHB-MIT, se encuentra publi-
cada en el portal web de PhysioNet [1] y ha sido tratada y
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cedida para este trabajo por parte del Centro de Visión por
Computador de la UAB [2].

El equipo del CVC ha empleado ciertos umbrales, gracias
a los cuales se ha podido realizar la correcta distribución y
etiquetación de las señales EEG.
Estos datos se encuentran clasificados en dos conjuntos de
muestras no balanceadas, las muestras anómalas solo com-
ponen un 2% de los datos.
No realizamos un balanceo ya que como se comentó ante-
riormente, la gracia de utilizar un Autoencoder es entrenar
el modelo atendiendo únicamente a los datos normales. Es-
tas muestras anómalas junto a la partición de los datos nor-
males no vistos por el modelo, componen el conjunto de
validación.
El dataset original se ha reducido debido al elevado número
de muestras que contenı́a, esto era uno de los principales
problemas por el coste computacional que requiere tratar
con muchos datos .
La estructura de las muestras anómalas se han transformado
para que sea igual a la de las muestras de entrenamiento de
la siguiente manera: [NSamples, LSeq, LSignal] donde:

• NSamples: Número de muestras del conjunto. Cada
muestra contiene un número de ventanas consecutiva.

• LSeq: Número de ventanas dentro de una secuencia.

• LSignal: Longitud de la ventana. Como los datos están
muestreados a 128hz, cada ventana de un segundo con-
tiene 128 valores de señales.

Inicialmente existı́a una dimensión más correspondiente al
número de canales, pero desaparece ya que la proyección
de canales que se va a seguir es la media aritmética.

5.2 Implementación Red

Para esta primera implementación de la red LSTM Autoen-
coder empleamos 3600 muestras normales, previamente
tratadas y distribuidas en 80% para la parte de entreno y el
20% restante para la parte de testeo. Estas particiones son
resultantes de hacer un KFOLD 5.
Dimensionamos los datos de la siguiente manera: [NSam-
ples, LSeq, LSignal] siendo NSamples=3600 LSeq=5 y
LSignal=128.
El numero de muestras y de ventanas han sido escogidos
aleatoriamente para esta primera implementación. Para
el batchSize se ha seleccionado la longitud de la ven-
tana(LSignal)

El Autoencoder se compone de 2 conjuntos de capas,
un codificador o “Encoder” y un decodificador o “De-
coder”:

• Encoder: compuesto por 2 capas LSTM, se encarga
de comprimir la información que recibe como entrada
basandose en el ratio de compresión (definido por el
parámtro “Encoding Dimension”). Este parámetro se
ha probado con el valor 64.
El codificador transforma una entrada de
[1,LSeq,LSignal] en una salida codificada de
[1,EncodingDim]. Esta salida es recibida por el
decodificador.

• Decoder: además de dos capas LSTM (como el En-
coder) incluye una capa Linear para reconstruir la es-
tructura de la secuencia inicial. El Decoder trans-
forma una entrada [1,EncodingDim] en una secuencia
[1,LSeq,LSignal].

De esta manera hemos implementado un modelo de red
neuronal capaz de codificar y decodificar una secuencia.
Lo siguiente es establecer una función de perdida y un
umbral de separación para que cuando se reciba una señal
anómala, la función de pérdida aumentará permitiéndonos
detectarlas y clasificarlas a partir del umbral.

Durante el entrenamiento de este modelo observamos
que el coste computacional para una CPU era bastante
elevado. Gracias a que el CVC[2] me proporcionó
una máquina virtual con GPU, el coste del proceso de
entrenamiento se redujo casi a la mitad.

5.3 Selección del umbral (Threshold)
Una vez entrenada la red y obtener las perdidas resultantes
de aplicar el criterio MSE4 como función de pérdida, defin-
imos el “Threshold”.
Es un factor muy importante debido a que es el valor distin-
tivo entre una señal anómala y otra que no lo es.
Se ha elegido el método OTSU, cuya fórmula es:

σ2
w(t) = w0(t)σ

2
0(t) + w1(t)σ

2
1(t)

Este algoritmo se utiliza para realizar la umbralización
automática de imágenes devolviendo un único umbral de
intensidad que separa los pı́xeles en dos clases, primer plano
y fondo.
Aplicando esto a una distribución univariada de todas las
pérdidas (ver Figura 8) resultantes del entreno con ventanas
normales(sin ataques), podemos representar el umbral de
separación:

Fig. 8: Threshold OTSU

5.4 Optimización de la red
Para la optimización de la red atendemos a ciertos criterios:

• Entrenar la red con ventanas temporales de diferentes
longitudes, para evaluar con qué número de ventanas
clasifica mejor.

4Error cuadrático medio (MSE) mide el promedio de los errores al
cuadrado, es decir, la diferencia entre el estimador(input) y lo que se es-
tima(output)
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• Modificar el número de neuronas internas de la red.

• Atender a la función de pérdida (Loss Function5), gra-
cias a la cual podemos conocer a partir de qué mo-
mento temporal la red deja de aprender.

Se han creado listas de configuraciones de los parámetros
mediante las cuales podremos combinar distintos tipos de
configuraciones en busca del mejor funcionamiento del
modelo.

5.5 Evaluación
Para evaluar la exactitud y precisión del modelo realizamos
el testeo con el 20% de los datos no incluidos en la fase
de entrenamiento y cuantificamos los resultados utilizando
las métricas de clasificación binaria mencionadas en los
Objetivos.

Se aplicará un K-Fold o validación cruzada (ver Figura
9), para garantizar que los resultados son independientes de
la partición entre datos de entrenamiento y testeo.
Dividimos los datos en k=5 grupos de aproximadamente el
mismo tamaño y realizaremos k iteraciones del proceso de
entreno.

Fig. 9: KFold 5 Datos Entrenamiento

De esta manera utilizamos un grupo distinto como vali-
dación en cada iteración y la evaluación será la resultante
de la media aritmética de todas las evaluaciones de las it-
eraciones.

6 RESULTADOS Y COMPARACIÓN

Los resultados de las primeras ejecuciones no fueron del
todo buenos, obteniendo precisiones cerca del 46% para
los datos de validación. Principalmente se debı́a un error
de estructura en el Encoder, cuya salida no codificaba
correctamente la dimensión LSignal(128). Este error se
corrigió mediante la activación del parámetro batch first6

de la red.

Con esta modificación los resultados mejoraron notori-
amente con precisiones cerca del 70% de aciertos con los
datos de validación.

5Función que evalúa la desviación entre las predicciones realizadas por
la red neuronal y los valores reales de las observaciones utilizadas durante
el aprendizaje.

6En las RNN, este parámetro nos traspone las dos primeras dimen-
siones a la hora de seleccionar el batch size

El coste computacional del entrenamiento es bastante el-
evado, la duración del entreno con 3600 muestras de 5 ven-
tanas de 1 segundos y 30 épocas era de casi 9 horas emple-
ando un KFold 5.

A partir de este punto he establecido diferentes com-
binaciones de configuraciones para eliminar aquellas
parametrizaciones que no aportan mejoras al modelo:

• LIST LEARNING RATE=[0.01, 0.001, 0.0001]

• LIST ENCODING DIM=[2, 7, 64]

• LIST SEQL=[2, 5, 10]

Los resultados del entreno de estas configuraciones
podemos verlos mediante sus funciones de pérdida (ver
Figura 11).

Atendiendo a los criterios de convergencia y decrec-
imiento de la pérdida a medida que pasan las épocas,
seleccionamos como mejores resultados las muestras con 2
y 5 ventanas y un LearningRate = 0.001.

Vemos en los resultados que las pérdidas continúan
decreciendo sin estabilizarse, es por ello que hay que
aumentar el número de épocas para que el modelo se
entrene de manera efectiva.
Se repite el proceso de entreno con estas selecciones, pero
esta vez aumentando a 150 el número de épocas y a 10.000
el de muestras normales(8.000 para el entreno y 2.000 para
la validación).

Los resultados (ver Figura 12) de las funciones de
pérdida muestran una mejor convergencia y entrenamiento
con estos parámetros. Se observa que la variación del
parámetro EncodingDim no afecta en la mayorı́a de los ca-
sos durante el entrenamiento, pero con un EncodingDim =
7 las gráficas convergen algo mejor. Realizamos la clasi-
ficación estableciendo como parámetros más óptimos los
siguientes:

• Learning Rate = 0.001

• Encoding Dim = 7

• SeqL = 2

Los resultados de la clasificación, cuantificados por las
métricas, se muestran en la siguiente tabla:

class precision recall f1-score
0 0.86 0.87 0.86
1 0.87 0.86 0.86

accuracy 0.865 0.865 0.86
macro avg 0.865 0.865 0.86

weighted avg 0.865 0.865 0.86

Un 86% en cuanto a la precisión, es un resultado muy
positivo para esta clasificación empleando Autoencoders.
No llega a ser un valor tan alto como el de los actuales
modelos que rondan entre el 95% y 98%, pero es un valor
que se le aproxima.

El conjunto de validación está compuesto por 2.000
muestras normales no vistas por el modelo y 2.000 muestras
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anómalas. Si observamos la matriz de confusión resultante
(ver Figura 10) vemos que el prácticamente 3.476 de las
4.000 muestras se han clasificado correctamente, que corre-
sponde con una precisión del 86% de aciertos. En cuanto
al tiempo, la clasificación se ha realizado en menos de 3
segundos.

Fig. 10: Matriz de confusión

7 CONCLUSIONES

Mediante este estudio hemos podido concluir que los Au-
toencoders pueden ser un clasificador bastante efectivo en
cuanto a detección de anomalı́as se refiere. Los resultados
han sido mejores de los que esperaba, aproximados a una
precisión de casi el 90%. Uno de los inconvenientes que le
veo, al igual que ocurre en otros modelos, es el alto coste
computacional para la fase de entrenamiento.
Entre las conclusiones que destaco de este trabajo:

• Me ha servido para perfeccionar mis conocimientos en
la rama del Aprendizaje Profundo(Deep Learning).

• Me ha parecido curioso la idea de emplear un codifi-
cador para la clasificación de anomalı́as entrenado sólo
con muestras de una clase.

• Pienso que ha sido de gran utilidad investigar sobre
una temática que actualmente representa un 0,5% de la
carga de morbilidad mundial, convirtiendo la epilepsia
en uno de los trastornos neurológicos más comunes.
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[9] José Yauri, Aura Hernández-Sabaté, Pau Folch and
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Fig. 11: Funciones de Pérdida por Épocas

Fig. 12: Funciones de Pérdida por Épocas (Modelo Optimizado)


