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Deteccion de Anomalias en Ataques
Epilépticos con Autoencoders

Enrique Ruiz Amakrache

Resumen

En este trabajo se propone realizar un aprendizaje automatico para la deteccion de anomalias en
casos de epilepsia a través del analisis de sehales EEG. Se realizara un estudio del impacto/beneficio
de incorporar la temporalidad en modelos de redes neuronales LSTM, principalmente Autoencoders,

capaces de clasificar anomalias.

Su prevencién mejoraria la calidad de vida de los pacientes reduciendo el nimero y gravedad de
las lesiones que la epilepsia ocasiona, con el fin de tomar las suficientes medidas preventivas.

Previamente se han aplicado distintos modelos (Random Forest, SVM, KNN,..) que permiten
realizar clasificaciones con precisiones entre el 80 % y 98 %. Los resultados de emplear Autoencoders
muestran un 85,6 % de precision en la clasificacion de anomalias en sefales EEG .

Palabras clave— Ataques epilépticos, redes neuronales, prediccion, Redes Neuronales Recurren-
tes(RNN), LSTM, Autoencoders, Series Temporales, anomalias...

Abstract

In this work, it is proposed to carry out machine learning for the detection of anomalies in cases

of epilepsy through the analysis of EEG signals.

A study of the impact/benefit of incorporating

temporality into LSTM neural network models, mainly Autoencoders, capable of classifying anomalies,

will be carried out.

Its prevention would improve the quality of life of patients by reducing the number and severity of
injuries caused by epilepsy, in order to take sufficient preventive measures.

Different models have been previously applied (Random Forest, SVM, KNN,...)

that allow

classifications to be made with precision between 80% and 98%. The results of using Autoencoders
show an 85.6% accuracy in the classification of anomalies in EEG signals.

Keywords— Epileptic seizures, neural networks, prediction, Recurrent Neural Networks (RNN),

LSTM, Autoencoders, Time Series, anomalies...

1 INTRODUCCION

central (neurolégico) en el que la actividad cerebral

normal se altera, lo que provoca convulsiones o
periodos de comportamiento y sensaciones inusuales, y a
veces, pérdida de la consciencia.
Estas convulsiones incontroladas podrian provocar dafios
cerebrales, lesiones graves, o incluso la muerte de sus
pacientes en casos de accidentes de trafico o circunstancias
de riesgo.

I A epilepsia es un trastorno del sistema nervioso
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e Mencion: Computacion (2021/22)
e Trabajo tutorizado por: Débora Gil

Las crisis epilépticas generalmente duran apenas unos
segundos o unos minutos, después de los cuales finalizan
y el cerebro vuelve a funcionar con normalidad. La forma
de manifestarse una crisis depende de la parte del cerebro
afectada y la causa de la epilepsia.

Existen dos grandes tipos de crisis epiléptica: las cri-
sis focales y las generalizadas.

Las crisis focales son mas frecuente, comienzan en
una parte delimitada del cerebro y pueden manifestarse de
diversas formas:

* Crisis parcial simple: se produce una alteracion del
movimiento, la memoria y las sensaciones, ademads de
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los sentidos de la vista y el oido. La persona no pierde
el conocimiento.

e Crisis parcial compleja: la persona pierde el
conocimiento y puede aparentar un estado de trance.
Puede darse una repeticiéon compulsiva de ciertos
movimientos. Aproximadamente, dos tercios de las
personas que padecen epilepsia sufren este tipo de cri-
sis.

* Secundariamente generalizada: comienza como una
crisis parcial y se extiende al resto del cerebro con-
virtiéndose en una crisis generalizada.

Por otro lado las crisis generalizadas empiezan si-
multdneamente en todo el cerebro y provoca la pérdida de
conocimiento. También pueden manifestarse de distintas
formas:

* Epilepsia menor o pequefio mal, pueden causar un
parpadeo rdpido o la mirada fija a lo lejos por unos
pocos segundos.

* Epilepsia mayor o gran mal, pueden hacer que la per-
sona grite, pierda el conocimiento, se caiga al suelo,
tenga rigidez o espasmos musculares.

2 ESTADO DEL ARTE

2.1 Trabajo Previo

Hasta la actualidad, se han empleado técnicas de clasifi-
cacién de senales EEG con resultados muy positivos
Existen multitud de técnicas dentro del aprendizaje super-
visado, de las que destacamos K-NN, el clasificador del De-
scenso del Gradiente Estocdstico(SGD), maquinas de so-
porte vectorial(SVM), Random Forest y CNN.

e KNN (K-Nearest Neighbor classifier): El clasifi-
cador K vecinos mds cercanos es un clasificador no
paramétrico que predice las clases desconocidas en
funcién de las clases asociadas con las k (nimero de
vecinos) que estdn mas cerca. Utiliza una regla de de-

cisiéon de mayoria simple (la media de los k valores).
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Fig. 1: K-Nearest Neighbor Classifier

¢ SGD (Stochastic Gradient Descendent): Realiza una
Clasificacion Lineal (SVM, logistic regression...) uti-
lizando el optimizador del descenso del gradiente es-
tocdstico (SGD) para entrenar.
Es un clasificador muy eficiente con conjuntos de datos
grandes, esto se debe a que el algoritmo trata con las
instancias de entrenamiento una a una, de manera in-
dependiente.
El modelo aprende el gradiente o la direccién que debe
tomar el modelo para reducir los errores (diferencia en-
tre el valor real y el predicho).

* SVM (LinearSVM): Las Maquinas Vector Soporte en-
cuentran la mejor separacién posible entre clases. En
el caso de las SVM Linear, crea una linea recta que
separa de la mejor manera las dos clases.

En la mayoria de problemas de aprendizaje au-
tomadtico existen multiples dimensiones, en estos ca-
sos, la SVM encuentran el hiperplano que maxi-
miza el margen de separacién entre estas clases.
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Fig. 2: Support Vector Machines

* Random Forest: Es uno de los algoritmos mas potentes

que existen actualmente, se basa en Arboles de de-
cisién y métodos de ensamblaje. Es una combinacién
de arboles predictores en el que cada drbol depende de
los valores de un vector aleatorio, probado independi-
entemente y con la misma distribucién para cada uno
de estos.
Utilizan el mismo algoritmo de entrenamiento para
todos los predictores y los entrenan con subconjun-
tos distintos aleatorios del conjunto de entrenamiento.
Esta técnica se conoce como “bagging”, en lugar de
buscar la mejor caracteristica cuando divide un nodo
(arboles de decisidn) busca la mejor caracteristica de
un subconjunto aleatorio de caracteristicas.

¢ Convolutional Neural Network (CNN): Es una clase de
redes neuronales artificiales (RNA) capaz de estable-
cer relaciones no lineales entre variables de entrada y
salida. Cada neurona artificial se somete a una funcién
de activacién que es modelada por una combinacién
lineal de las entradas de dicha neurona y que da como
resultado su salida.
Se basa en el funcionamiento del sistema neuronal hu-
mano, un sistema complejo, no lineal y paralelo. Este
sistema se conforma de interconexiones entre neuronas
formando un punto clave para el procesamiento del
conocimiento.
Tienen aplicaciones en el reconocimiento de imdgenes
y videos , sistemas de recomendacion, andlisis y clasi-
ficacién de imagenes, procesamiento de lenguaje nat-
ural y series temporales.

2.2 Resultados hasta la actualidad

En 2019, Nandy [3] consiguié mediante un clasificador
SVM una precisiéon del 97,05% en la clasificaciéon de
ataques epilépticos.

Un afio después, Almustafa [4] utilizé varias técnicas de
aprendizaje automadtico, entre ellas las mencionadas ante-
riormente, obteniendo la mayor precisién para el Random
Forest, con una precision del 97.08%.

Recientemente, Shekokar [7]] propusieron una técnica de
clasificacién de sefales de EEG basado en un modelo
LSTM. Este modelo afirma tener una precisioén del 98,5 %.
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En 2022, Chirasani y Manikandan [6] propusieron inte-
grar un mecanismo de atencién jerdrquico a un modelo
basado en CNN mediante el cual obtuvieron precisiones del
96.34%.

Los resultados de estas técnicas se muestran ordenados en
la siguiente tabla:

Modelo Precision
LSTM 98,50%
Random Forest 97.08%
SVM 97.05%
CNN 96.34%
KNN 95.23%
SGD 81.92%

2.3 Paradigmas

En este trabajo se pretende mostrar de forma detallada el
proceso de clasificacién de los casos epilépticos mediante
el empleo de redes neuronales recurrentes (RNN), ver
Figura E} Estas redes, caracterizadas por el uso de datos
secuenciales, contienen bucles de retroalimentacion en
las capas recurrentes dotando a la red de una memoria
temporal.

Lamentablemente, este tipo de redes no resuelven las de-
pendencias temporales a “largo plazo”, como es nuestro
caso, debido a que el gradiente de la funcién de pérdida
disminuye exponencialmente con el tiempo (Problema de
desvanecimiento de gradiente).

Warking
Memory

1

Fig. 3: Red Neuronal Recurrente

Para solventar este problema, existen ciertos posibles
paradigmas:

1. Redes Long short-term memory (LSTM), son una
extension de las RNN muy dtiles para el aprendizaje
profundo sobre datos secuenciales.

A diferencia de las RNN se caracterizan por el uso de
unidades especiales ademds de las unidades estdndar.
Estas unidades especiales utilizan un conjunto de puer-
tas para controlar cudndo la informacién ingresa a
la memoria, cudndo sale y cudndo se olvida. Esta
arquitectura (ver Figura [d) les permite aprender de-
pendencias a largo plazo. Son muy usadas en el re-
conocimiento de voz y el reconocimiento de escritura.

2. Transformers, se trata de un modelo de Machine
Learning que al igual que la redes LSTM estin

0

Long-term
Memory
LST™ ) )
Working
Memory

1

Fig. 4: Long short-term memory (LSTM)

disefiados para manejar datos de entrada secuenciales.
A diferencia de las redes LSTM, este modelo mantiene
la propiedad de conexiones residuales, esto permite
que los gradientes fluyan a través de las redes direc-
tamente.

Esta propiedad reduce el olvido de algunas carac-
teristicas del conjuntos de datos de entrada durante el
entrenamiento.

. LSTM con conexiones residuales, éste es el

paradigma curioso, consiste en utilizar las conexiones
residuales (ver Figura E]), llamadas también ‘““Skip
Connetions”, en una red neuronal LSTM con el
objetivo de reutilizar caracteristicas entre los bloques
de la red.

Estas conexiones, empleadas también en los Trans-
formers, omiten algunas de las capas de la red
neuronal y alimenta la salida de una capa como
entrada a las siguientes capas.

Gracias a estas conexiones se evita el problema de la
degradacion, en el cual, el rendimiento del modelo
disminuye con el aumento de la profundidad de la
arquitectura de la red durante su entreno.

weight layer

X
identity

Fig. 5: Bloque con una “Skip Connection”

. Fully Convolutional Neural Networks (FCN),

aunque las CNN (Redes Neuronales Convolucionales)
predominan en el uso de conjuntos de datos de
imdgenes, también pueden ser mds utiles que las
RNN en el uso de datos temporales, gracias a que
presentan una arquitectura (FCN) que se caracterizan
por realizar Gnicamente operaciones de convolucion,
es decir, sin capas completamente conectadas.

Las CNN son computacionalmente mds baratas
debido a que aprenden por lotes mientras que las
RNN se entrenan secuencialmente y no pueden usar
la paralelizacién porque debe esperar los célculos
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anteriores.

Pero no todo son ventajas, cuando se trata de que
el modelo dependa de un largo historial y maneje
diferentes tamafios de entrada y salida, las RNN son
mads adecuadas para esas tareas.

5. LSTM Autoencoder, este modelo busca aprender
una representacion comprimida de una entrada. Son
capaces de aprender la dindmica compleja dentro del
ordenamiento temporal de las secuencias de entrada,
asi como de usar una memoria interna para recordar
o usar informacién a lo largo de largas secuencias de
entrada.

Su arquitectura interna se organiza en un Codificador-
Decodificador LSTM (ver Figura [6) que permite
usar el modelo para admitir secuencias de entrada de
longitud variable y para predecir o generar secuencias
de salida de longitud variable.

Rn)

D » XN
=] —

{+—>|Encoder| —*| z(n) | — > |Decoder| —> H

H Encoded H

Representation

Input Sequence Reconstructed Sequence

Fig. 6: Arquitectura de un Autoencoder

La gracia de usar un Autoencoder sobre sefiales EEG
es detectar las posibles anomalias presentes en las
sefiales en funcidon a la capacidad del modelo para
recrear la secuencia de entrada.

El modelo se entrenaria sélo con sefiales EEG
normales permitiendo obtener una sefial de salida muy
similar a la sefial de entrada. Sin embargo, si la sefial
de entrada es andmala, la representacion resultante
del Autoencoder diferird de la entrada que se le ha
proporcionado.

El célculo de la funcién de perdida entre la en-
trada y la salida y la definicién de un “Threshold”
nos permitird clasificar las sefiales como normales o
anémalas.

Conocidos los diferentes modelos, este proyecto se en-
focard principalmente en el andlisis del impacto/beneficio
de incorporar la temporalidad en un modelo LSTM Au-
toencoder, capaz de detectar anomalias y clasificar ataques
epilépticos. Compararemos los resultados de emplear un
Autoencoder con los modelos actuales de clasificacion.

3 OBJETIVOS

1. Familiarizacion y estudio de la tematica

» La base de datos: los datos originales se encuen-
tran bastantes dispersos en cuanto a informacién
se refiere. Hay mucha informacién que hay que
tratar (los pacientes, los canales de las sefiales,
el tamafio de las ventanas temporales,...) para
generar una entrada definida.

* Tipos de redes : investigar y entender los con-
ceptos generales de las redes usadas hasta el mo-
mento, incluyendo sus caracteristicas y diferen-
cias.

* Integracion de los apartados anteriores: estudiar
la posibilidad y el método de integrar la base de
datos al modelo.

2. Proyeccion de canales Los 21 canales de las sefiales

EEG proyectan diferentes tipos de actividad eléctrica
cerebral, como la actividad de origen extra-cerebral,
el parpadeo, el movimiento, el sudor, etc.

Componen una dimensién mds de los datos y presen-
tan el problema de como estructurarlos para que el
entrenamiento sea el correcto debido a que los canales
no miden las sefiales de la misma manera. Esto hace
que los resultados difieran en funcién a la distribucién
que les asignemos.

Se han utilizado 3 tipos de disposicién de los
canales:

* C3-C4: Consiste en emplear unicamente el canal
resultante de la resta de los canales C3 y C4, con-
siderado el canal con mayor importancia para la
deteccion de la epilepsia. Nos permitird reducir
la informacién redundante de los otros canales.

e Canales consecutivos: Concatenar los canales
con el fin de tenerlos a todos en cuenta y reducir
una dimension en los datos.

* Media aritmética: Realizar el promedio de to-
dos los canales, considerando, de manera pro-
porcional, la informacién procedente de todos los
canales. Se partird desde esta configuracion.

3. Disposicion de las ventanas Si las ventanas de las

seflales no estdn dispuestas de manera secuencial,
no estarfamos aplicando la temporalidad al modelo
LSTM. Para ello, hay que transformar las ventanas,
muestreadas a 128Hz (128 valores por cada segundo
de sefal), en una disposicion que contenga un conjunto
como entrada. Es un parametro ajustable.

En el proceso de transformacién se ha teniendo en
cuenta por igual las sefiales de todos los sujetos. Lo
malo de esto es que podria ocasionar una estrati-
ficacion de la poblacién (Population Stratification').
Pero al tener pocas ventanas de cada paciente y nu-
merosos pacientes, obtendremos mejores resultados
tratando los sujetos como uno solo en lugar de indi-
vidualizarlos dentro del modelo.

ILa estratificacién de la poblacién surge cuando diferentes propor-
ciones de casos son tomados de muestras de sujetos diferentes, lo que
provoca que cualquier influencia en los resultados se deba a diferencias
entre sujetos en lugar del estudio en si.
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4. Baseline Model El primer modelo a desarrollar serd
una red LSTM Autoencoder con proyeccion linear que
permita reconstruir una ventana suministrada como in-
put y clasificar su salida.

Como datos de entrada se realizard el promedio de
los canales y las ventanas se insertardn en conjun-
tos de longitud variable para cada entreno. De esta
forma comprobaremos cémo responde un Autoen-
coder frente a la deteccién de anomalias epilépticas.

5. Seleccion del umbral y métricas de evaluacion Una
vez entrenada la red, hay que definir una funcién de
pérdida para calcular la desviacién entre las predic-
ciones realizadas y los valores obtenidos de todas las
muestras. Mediante la representacién de las desvia-
ciones podemos establecer un umbral que nos permi-
tird clasificar basandose en las pérdidas de ventanas
anémalas y no andmalas.

Para evaluar la exactitud y precision del modelo se em-
plearan las principales métricas de clasificacién bina-
ria: Precision, Recall, F1, Accuracy y la matriz de
confusién. Estas métricas estdn implementadas en la
libreria “Sklearn.metrics”.

6. Optimizacion del modelo La optimizacién se re-
alizard atendiendo a las métricas de evaluacién. Se
modificardn los pardmetros generales en busca de la
mejor configuraciéon de la clasificacion. Entre estos
parametros tenemos:

* Disposicién de los canales

* Nuimero de épocas de entreno

* Encoding Dimension?

* Learning Rate?

* Nimero de ventanas y de muestras

7. Outputs Capacidad para clasificar ventanas emple-
ando diferentes “outputs”.  Estas salidas pueden
tener diferentes dimensiones, la clasificacion se puede
obtener solo de la ultima ventana de una secuencia, o
también de un conjunto de ventanas secuenciales (re-
quiere modificacién de las entradas a la red).

4 PLANIFICACION DEL TRABAJO

El trabajo a realizar se va a dividir en cuatro fases objeti-
vas, a cada fase se le estima una dedicacién del tiempo total
invertido de todo el trabajo:

4.1 Fase inicial (35% del tiempo total)

La primera fase consiste en entender el funcionamiento de
las redes neuronales sobre datos secuenciales, en nuestro
caso, las sefiales EGG tratadas. Ademads de entender la
definicion de los datos.

Por otro lado, se ha de estructurar estos datos de entrada
al modelo, eligiendo una aproximacién y disposicién
adecuada de las sefiales EEG en ventanas temporales
secuenciales.

2Pardmetro que establece el ratio de compresion, relacionado al niimero
de neuronas ocultas en cada capa de la red
3Pardmetro de ajuste en un algoritmo de optimizacién

Una vez estructurados los datos de manera correcta,
pasamos a la elaboracién del modelo clasificatorio.

4.2 Fase implementacion (30% del tiempo to-
tal)

La siguiente fase comienza con la implementacién y
entrenamiento de la red LSTM Autoencoder. En esta
fase se ven los primeros resultados de cémo afecta el uso
de la temporalidad en un Autoencoder. Ademds de usar
diferentes disposiciones de canales y ventanas.

4.3 Fase testeo (20% del tiempo total)

Una vez realizado el entrenamiento, pasamos a la fase de
validacién, en la que comprobamos la salida obtenida con
el groundtruth de los datos.

Se cuantificardn los resultados mediante el uso de métricas
y se realizardn modificaciones necesarias para opti-
mizar/mejorar la exactitud del modelo.

4.4 Fase final (15% del tiempo total)

La ultima fase consistird en el andlisis y documentacion
de los resultados obtenidos de la fase previa ademas de la
elaboracién del informe final y la presentacién.

5 METODOLOGIA

5.1 Tratamiento de datos

Este proceso implica eliminar la informacién redundante,
reducir el nimero de dimensiones realizando combina-
ciones entre los diferentes canales de las sefiales EEG y
establecer los parametros iniciales.

Como datos previos al estudio y creacién del modelo pre-
dictivo partimos de lineas filtradas de actividad eléctrica
cerebral. Estas lineas proceden de 22 sujetos (5 hombres
de 3 a 22 afos; y 17 mujeres de 1.5 a 19 afios) que padecen
convulsiones intratables y han sido recopiladas en el Hos-
pital de Nifios de Boston. Constan de sefiales multicanales
EEG (ver Figura[7) agrupadas en 23 casos.

i W
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Fig. 7: Sefiales EEG durante un ataque epiléptico

La base de datos inicial, CHB-MIT, se encuentra publi-
cada en el portal web de PhysioNet [1] y ha sido tratada y
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cedida para este trabajo por parte del Centro de Visién por
Computador de la UAB [2].

El equipo del CVC ha empleado ciertos umbrales, gracias
a los cuales se ha podido realizar la correcta distribucién y
etiquetacion de las sefiales EEG.
Estos datos se encuentran clasificados en dos conjuntos de
muestras no balanceadas, las muestras anomalas solo com-
ponen un 2% de los datos.
No realizamos un balanceo ya que como se comentd ante-
riormente, la gracia de utilizar un Autoencoder es entrenar
el modelo atendiendo tnicamente a los datos normales. Es-
tas muestras andmalas junto a la particién de los datos nor-
males no vistos por el modelo, componen el conjunto de
validacion.
El dataset original se ha reducido debido al elevado nlimero
de muestras que contenia, esto era uno de los principales
problemas por el coste computacional que requiere tratar
con muchos datos .
La estructura de las muestras anémalas se han transformado
para que sea igual a la de las muestras de entrenamiento de
la siguiente manera: [NSamples, LSeq, LSignal] donde:

* NSamples: Nimero de muestras del conjunto. Cada
muestra contiene un nimero de ventanas consecutiva.

* LSeq: Numero de ventanas dentro de una secuencia.

* LSignal: Longitud de la ventana. Como los datos estan
muestreados a 128hz, cada ventana de un segundo con-
tiene 128 valores de sefiales.

Inicialmente existia una dimensién mas correspondiente al
nimero de canales, pero desaparece ya que la proyeccién
de canales que se va a seguir es la media aritmética.

5.2 Implementacion Red

Para esta primera implementacién de la red LSTM Autoen-
coder empleamos 3600 muestras normales, previamente
tratadas y distribuidas en 80% para la parte de entreno y el
20% restante para la parte de testeo. Estas particiones son
resultantes de hacer un KFOLD 5.

Dimensionamos los datos de la siguiente manera: [NSam-
ples, LSeq, LSignal] siendo NSamples=3600 LSeq=5 y
LSignal=128.

El numero de muestras y de ventanas han sido escogidos
aleatoriamente para esta primera implementacién. Para
el batchSize se ha seleccionado la longitud de la ven-
tana(LSignal)

El Autoencoder se compone de 2 conjuntos de capas,
un codificador o “Encoder” y un decodificador o “De-
coder”:

* Encoder: compuesto por 2 capas LSTM, se encarga

de comprimir la informacién que recibe como entrada
basandose en el ratio de compresién (definido por el
paramtro “Encoding Dimension™). Este parametro se
ha probado con el valor 64.
El codificador transforma wuna entrada de
[1,LSeq,LSignal] en una salida codificada de
[1,EncodingDim]. Esta salida es recibida por el
decodificador.

* Decoder: ademas de dos capas LSTM (como el En-
coder) incluye una capa Linear para reconstruir la es-
tructura de la secuencia inicial. El Decoder trans-
forma una entrada [1,EncodingDim] en una secuencia
[1,LSeq,LSignal].

De esta manera hemos implementado un modelo de red
neuronal capaz de codificar y decodificar una secuencia.
Lo siguiente es establecer una funcién de perdida y un
umbral de separacién para que cuando se reciba una sefial
andmala, la funcién de pérdida aumentard permitiéndonos
detectarlas y clasificarlas a partir del umbral.

Durante el entrenamiento de este modelo observamos
que el coste computacional para una CPU era bastante
elevado.  Gracias a que el CVC[2] me proporciond
una maquina virtual con GPU, el coste del proceso de
entrenamiento se redujo casi a la mitad.

5.3 Seleccion del umbral (Threshold)

Una vez entrenada la red y obtener las perdidas resultantes
de aplicar el criterio MSE* como funcién de pérdida, defin-
imos el “Threshold”.

Es un factor muy importante debido a que es el valor distin-
tivo entre una sefial anémala y otra que no lo es.

Se ha elegido el método OTSU, cuya férmula es:

77 (t) = wo(t)o (t) +wi(t)of (¢)

Este algoritmo se utiliza para realizar la umbralizacion

automadtica de imagenes devolviendo un dnico umbral de
intensidad que separa los pixeles en dos clases, primer plano
y fondo.
Aplicando esto a una distribucion univariada de todas las
pérdidas (ver Figura[8) resultantes del entreno con ventanas
normales(sin ataques), podemos representar el umbral de
separacion:

0 500

1000 1500 2000 2500 3000 3500 4000

Fig. 8: Threshold OTSU

5.4 Optimizacion de la red

Para la optimizacién de la red atendemos a ciertos criterios:

* Entrenar la red con ventanas temporales de diferentes
longitudes, para evaluar con qué nimero de ventanas
clasifica mejor.

4Error cuadréitico medio (MSE) mide el promedio de los errores al
cuadrado, es decir, la diferencia entre el estimador(input) y lo que se es-
tima(output)
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* Modificar el ndmero de neuronas internas de la red.

+ Atender a la funcién de pérdida (Loss Function®), gra-
cias a la cual podemos conocer a partir de qué mo-
mento temporal la red deja de aprender.

Se han creado listas de configuraciones de los pardmetros
mediante las cuales podremos combinar distintos tipos de
configuraciones en busca del mejor funcionamiento del
modelo.

5.5 Evaluacion

Para evaluar la exactitud y precision del modelo realizamos
el testeo con el 20% de los datos no incluidos en la fase
de entrenamiento y cuantificamos los resultados utilizando
las métricas de clasificacién binaria mencionadas en los
Objetivos.

Se aplicard un K-Fold o validacién cruzada (ver Figura
), para garantizar que los resultados son independientes de
la particién entre datos de entrenamiento y testeo.
Dividimos los datos en k=5 grupos de aproximadamente el
mismo tamafio y realizaremos k iteraciones del proceso de
entreno.

Validation
Fold

Training
Fold

1st — Performance;

s
=1 Y Performance,

|- Performance

K Iterations (K-Folds)

Fig. 9: KFold 5 Datos Entrenamiento

De esta manera utilizamos un grupo distinto como vali-
dacién en cada iteracion y la evaluacién serd la resultante
de la media aritmética de todas las evaluaciones de las it-
eraciones.

6 RESULTADOS Y COMPARACION

Los resultados de las primeras ejecuciones no fueron del
todo buenos, obteniendo precisiones cerca del 46% para
los datos de validacién. Principalmente se debia un error
de estructura en el Encoder, cuya salida no codificaba
correctamente la dimensién LSignal(128). Este error se
corrigié mediante la activacién del pardmetro batch_first®
de la red.

Con esta modificacién los resultados mejoraron notori-
amente con precisiones cerca del 70% de aciertos con los
datos de validacion.

SFuncién que evalda la desviacién entre las predicciones realizadas por
la red neuronal y los valores reales de las observaciones utilizadas durante
el aprendizaje.

SEn las RNN, este pardmetro nos traspone las dos primeras dimen-
siones a la hora de seleccionar el batch size

El coste computacional del entrenamiento es bastante el-
evado, la duracion del entreno con 3600 muestras de 5 ven-
tanas de 1 segundos y 30 épocas era de casi 9 horas emple-
ando un KFold 5.

A partir de este punto he establecido diferentes com-
binaciones de configuraciones para eliminar aquellas
parametrizaciones que no aportan mejoras al modelo:

» LIST_ LEARNING_RATE=[0.01, 0.001, 0.0001]
* LIST_ ENCODING_DIM=[2, 7, 64]
* LIST_.SEQL=[2, 5, 10]

Los resultados del entreno de estas configuraciones
podemos verlos mediante sus funciones de pérdida (ver

Figura[TT).

Atendiendo a los criterios de convergencia y decrec-
imiento de la pérdida a medida que pasan las épocas,
seleccionamos como mejores resultados las muestras con 2
y 5 ventanas y un LearningRate = 0.001.

Vemos en los resultados que las pérdidas contindan

decreciendo sin estabilizarse, es por ello que hay que
aumentar el ndmero de épocas para que el modelo se
entrene de manera efectiva.
Se repite el proceso de entreno con estas selecciones, pero
esta vez aumentando a 150 el ndmero de épocas y a 10.000
el de muestras normales(8.000 para el entreno y 2.000 para
la validacion).

Los resultados (ver Figura [I2) de las funciones de
pérdida muestran una mejor convergencia y entrenamiento
con estos pardmetros. Se observa que la variaciéon del
pardmetro EncodingDim no afecta en la mayoria de los ca-
sos durante el entrenamiento, pero con un EncodingDim =
7 las graficas convergen algo mejor. Realizamos la clasi-
ficacién estableciendo como pardmetros mas 6ptimos los
siguientes:

* Learning_Rate = 0.001
* Encoding Dim =7
e SeqL =2

Los resultados de la clasificacion, cuantificados por las
métricas, se muestran en la siguiente tabla:

class | precision | recall | fl-score
01| 0.86 0.87 0.86
1| 0.87 0.86 0.86
accuracy | 0.865 0.865 | 0.86
macro avg | 0.865 0.865 | 0.86
weighted avg | 0.865 0.865 | 0.86

Un 86% en cuanto a la precision, es un resultado muy
positivo para esta clasificaciéon empleando Autoencoders.
No llega a ser un valor tan alto como el de los actuales
modelos que rondan entre el 95% y 98%, pero es un valor
que se le aproxima.

El conjunto de validacién estd compuesto por 2.000
muestras normales no vistas por el modelo y 2.000 muestras
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andmalas. Si observamos la matriz de confusién resultante
(ver Figura vemos que el practicamente 3.476 de las
4.000 muestras se han clasificado correctamente, que corre-
sponde con una precisién del 86% de aciertos. En cuanto
al tiempo, la clasificacién se ha realizado en menos de 3
segundos.

True Neg False Pos
1737

43.43%

wn
[}
=
©
>
©
=]
=
9
<

False Neg True Pos

1739
43.48%

!
True

Predicted Values

Fig. 10: Matriz de confusién

7 CONCLUSIONES

Mediante este estudio hemos podido concluir que los Au-
toencoders pueden ser un clasificador bastante efectivo en
cuanto a deteccién de anomalias se refiere. Los resultados
han sido mejores de los que esperaba, aproximados a una
precision de casi el 90%. Uno de los inconvenientes que le
veo, al igual que ocurre en otros modelos, es el alto coste
computacional para la fase de entrenamiento.

Entre las conclusiones que destaco de este trabajo:

* Me ha servido para perfeccionar mis conocimientos en
la rama del Aprendizaje Profundo(Deep Learning).

* Me ha parecido curioso la idea de emplear un codifi-
cador para la clasificacion de anomalias entrenado s6lo
con muestras de una clase.

* Pienso que ha sido de gran utilidad investigar sobre
una temdtica que actualmente representa un 0,5% de la
carga de morbilidad mundial, convirtiendo la epilepsia
en uno de los trastornos neurolégicos mas comunes.
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Fig. 11: Funciones de Pérdida por Epocas
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Fig. 12: Funciones de Pérdida por Epocas (Modelo Optimizado)




